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Abstract

The page number of a directed acyclic graph G is the minimum k for which there is a topological ordering
of G and a k-coloring of the edges such that no two edges of the same color cross, i.e., have alternating endpoints
along the topological ordering. We address the long-standing open problem asking for the largest page number
among all upward planar graphs. We improve the best known lower bound to 5 and present the first asymptotic
improvement over the trivial O(n) upper bound, where n denotes the number of vertices in G. Specifically, we
first prove that the page number of every upward planar graph is bounded in terms of its width, as well as its
height. We then combine both approaches to show that every n-vertex upward planar graph has page number
O(n2/3 log2/3(n)).

1 Introduction

In an upward planar drawing of a directed acyclic graph G = (V,E), every vertex v ∈ V is a point in the Euclidean
plane, and every edge (u, v) ∈ E is a strictly y-monotone curve1 with lower endpoint u and upper endpoint v
that is disjoint from other points and curves, except in its endpoints. A directed acyclic graph admitting such a
drawing is called upward planar. In other words, a directed graph is upward planar if it allows a planar drawing
with all edges “going strictly upwards”. In Figure 1 we have an upward planar graph G on the left, while the
planar directed acyclic graph Gk on the right is not upward planar.

In a book embedding of a directed acyclic graph G = (V,E), the vertex set V is endowed with a topological
ordering <, called the spine ordering, and the edge set E is partitioned into so-called pages with the property that no
page contains two edges (u1, v1), (u2, v2) that cross with respect to <, i.e., u1 < u2 < v1 < v2 or u2 < u1 < v2 < v1.
Then the page number pn(G) of a directed acyclic graph G is the minimum k for which it admits a book embedding
with k pages. In other words, pn(G) 6 k if the vertices can be ordered along the spine with all “edges going right”
and there exists a k-edge coloring so that any two edges with alternating endpoints along the spine have distinct
colors.

In Figure 2 we have book embeddings of the directed acyclic graphs in Figure 1 with three pages (left) and k
pages (right), respectively. This shows that pn(G) 6 3 and pn(Gk) 6 k. In fact, observe that Gk admits only
one topological ordering <, as there is a directed Hamiltonian path `1, . . . , `k, r1, . . . , rk in Gk. As the edges
(`1, r1), . . . , (`k, rk) are pairwise crossing w.r.t. <, it follows that pn(Gk) = k. It is easy to see (as observed for
example in [9]) that for any directed graph G we have pn(G) 6 2 if and only if G is a spanning subgraph of an
upward planar graph with a directed Hamiltonian path. (Recall that Gk from the right of Figure 1 is not upward
planar.) It thus follows that pn(G) = 3 for the graph G in the left of Figure 1.

The page number of undirected graphs (where the spine ordering may be any vertex ordering) was introduced
by Bernhart and Kainen in 1979 [8], building upon the suggested notion of Ollmann [29]. Their conjecture that
the page number of planar graphs is unbounded was quickly disproven [10,20], with Yannakakis [31] giving the
best upper bound of 4, which was just very recently shown to be best-possible [7, 32].

Book embeddings of directed graphs were first considered by Nowakowski and Parker [28] in 1989. They
introduced the page number of a poset P by considering its cover graph G(P ) and restricting the spine ordering to
be a topological ordering of G(P ), or equivalently, a linear extension of P . They then ask whether posets with a
planar order diagram have bounded page number — equivalently, whether upward planar and transitively reduced
graphs have bounded page number. Despite significant effort on posets [2–4,21–24,30] and general acyclic directed
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Figure 1: Left: An upward planar st-graph G of height 5 and width 3. Middle: The reachability poset PG of G.
Right: A planar directed acyclic graph Gk with pn(Gk) = k.
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Figure 2: Book embeddings of the graphs in Figure 1.

graphs [1, 5, 9, 16–18,26], this question is still open. In fact, the asymptotically best known upper bound is linear
in n, the number of vertices, which can be obtained by simply putting each edge on a separate page.

In this paper, we provide the first upper bound for any upward planar graph that is sublinear in the number
of vertices. Specifically, we prove that n-vertex upward planar graphs have page number O(n2/3 log2/3(n)). We
do so by bounding the page number of any upward planar graph first in terms of its width, then in terms of its
height, and finally combining both approaches to achieve the desired bound in terms of its number of vertices.

Related Work. Nowakowski and Parker [28] (and independently Heath et al. [23]) show that directed forests
have page number 1. Alzohairi and Rival [3] (see also [16]) show that series-parallel upward planar graphs have
page number 2, which was later generalized to N -free upward planar graphs by Mchedlidze and Symvonis [26].

The best known upper bounds for the page number of upward planar graphs are due to Frati et al. [17],
who prove that every n-vertex upward planar triangulation with o(n/ log n) diameter has o(n) page number, any
n-vertex upward planar triangulation has page number at most min{O(k log n),O(2k)}, where k is the maximum
page number among its 4-connected subgraphs2, and finally that every n-vertex upward planar triangulation
has page number o(n) if that is true for those with maximum degree O(

√
n). According to the authors of [17]

“Determining whether every n-vertex upward planar DAG has o(n) page number [. . . ] remains among the most
important problems in the theory of linear graph layouts.”

For lower bounds, Nowakowski and Parker [28] present a planar poset with page number 3, while Hung [24]
presents a planar poset with page number 4. For general upward planar graphs one can also easily derive the same
lower bound of 4 from one of the undirected planar graphs of page number 4 [7, 32]. As nothing better is known
here, we also present in this paper upward planar graphs with page number at least 5.

Preliminaries. We denote the directed reachability of a vertex v from another vertex u in a directed acyclic
graph G by u ≺G v (omitting the index if it is clear from the context), and write u 4 v if u ≺ v or u = v. This
way we obatin the reachability poset PG = (V,≺) of G as the vertices of G partially ordered by their directed
reachability. Transferring these notions from posets to directed acyclic graphs, we say that u and v are comparable
if u ≺ v or v ≺ u; otherwise u and v are incomparable. Consequently, the height h(G) and width w(G) of a

2A recent result by Davies and McCarty [13] automatically improves the result by Frati et al. [17] to min{O(k logn),O(k2)}. An
even more recent (and yet unpublished) result by Davies [12] further improves this to O(k log k).
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directed acyclic graph G is the largest number of pairwise comparable, respectively incomparable, vertices in G.
Equivalently, h(G) is the number of vertices in a longest directed path in G, while w(G) is the largest number of
vertices in G with no directed reachabilities among them. See the left and middle of Figure 1 for some example.
Let us also define for a subset X of vertices of G its height h(X) and width w(X) as the maximum number of
vertices in X that are pairwise comparable, respectively incomparable, in G.

An upward planar graph G = (V,E) is an st-graph if there is a (unique) vertex s with s 4 v for all v ∈ V and
a (unique) vertex t with v 4 t for all v ∈ V . An st-path in G is a directed path from s to t in G. In particular,
the height of an st-graph is the length of a longest st-path. It is known [25] that every upward planar graph G (on
at least three vertices) is a spanning subgraph of some st-graph G whose faces are all bounded by triangles. Note
that this augmentation is not unique. As pn(G) 6 pn(G) whenever G ⊆ G, we may restrict ourselves to st-graphs
when proving upper bounds on the page number of upward planar graphs in terms of their number of vertices.
(Note however that this is not true when working in terms of height.) Let us also remark that if G is an st-graph,
its reachability poset PG is called a planar lattice in order theory [6].

A notion closely related to the page number is the twist number tn(G), which is defined as the smallest k for
which there exists a topological ordering < of G with no (k+ 1)-twist, i.e., no k+ 1 edges that are pairwise crossing
w.r.t. <. Clearly, tn(G) 6 pn(G), as the k edges of a k-twist must be assigned to pairwise distinct pages. Indeed,
having already decided on a spine ordering with no (k + 1)-twist, assigning the edges to pages is equivalent to
coloring the vertices of a corresponding circle graph H with no (k + 1)-clique. As circle graphs are χ-bounded [19],
one can actually bound the number of pages in terms of the largest twist size. The currently best result due to
Davies and McCarty [13] states that χ(H) 6 7ω(H)2 for every circle graph H (where ω(H) is the clique number
of H), which gives the following.3

Observation 1.1. For every directed acyclic graph G we have pn(G) 6 7 tn(G)2.

Already in 2007, Černý [11] proved that χ(H) 6 O(ω(H) · log(|V (H)|) for every circle graph H. As the
vertices of H correspond to the edges of G in this application, this gives the following.

Observation 1.2. For every n-vertex upward planar graph G we have pn(G) 6 O(tn(G) · log(n)).

In fact, we shall often times bound the twist number of the considered upward planar graph G and then
conclude for its page number via Observation 1.1 or Observation 1.2.

All graphs considered in this paper are directed and in most figures we omit the arrows indicating an edge’s
direction. If not explicitly drawn otherwise, all edges are oriented upwards.

Our Results. First, we bound the page number of upward planar graphs G in terms of their width.

Theorem 1.1. Every upward planar graph G of width w has pn(G) 6 14 · w.

Then, we bound the page number of st-graphs in terms of their height. In fact, we show that tn(G) 6 4h(G),
improving on the tn(G) 6 O(h(G) log(n)) bound for every n-vertex st-graph G due to Frati et al. [17].4 Together
with Observation 1.1 this gives the following.

Theorem 1.2. Every upward planar graph G of height h has pn(G) 6 112 · h2.

We remark that with a very recent (and yet unpublished) improvement of Observation 1.1 by Davies [12], we
obtain O(h log(h)) as an upper bound on the page number of upward planar graphs with height h.

Combining our approaches for bounded width and bounded height, we give the first sublinear upper bound on
pn(G) in terms of the number of vertices in G.

Theorem 1.3. Every upward planar graph G on n vertices has pn(G) 6 O(n2/3 log2/3(n)).

Finally, we improve the best known lower bound on the maximum twist number and page number among
upward planar graphs to 5.

Theorem 1.4. There is an upward planar graph G with pn(G) > tn(G) > 5.

3Davies [12] recently improved this bound to O(ω(H) log(ω(H))).
4Frati et al. [17] refer to h(G) as the diameter of G.
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2 Bounded Width

Recall that the width w(X) of a subset X ⊆ V (G) of the vertex set of an st-graph G is the largest number of
vertices in X that are pairwise incomparable in G. In this section we prove that the pagenumber is bounded by a
linear function of the width. In fact, we show a more general statement: Given a subset X ⊆ V (G), we embed
all edges of G[X] in O(w(X)) pages, where G[X] denotes the subgraph of G induced by X. This generalization
will be used in Section 4, where we combine it with the results from Section 3. Theorem 1.1 will follow by
setting X = V (G).

The main lemma of this section (Lemma 2.1) takes as input an st-graph G and a subset X ⊆ V (G) of
the vertices. It describes how to assign all edges in G[X] to few pages. Additionally, the lemma constructs a
new st-graph G′ that is used in Section 4 to handle the remaining edges, namely those with at most one endpoint
in X. The vertex set of G′ is a superset of the vertices of G. Further, for every two vertices u, v ∈ V (G),
whenever u ≺G v, then also u ≺G′ v. Therefore every topological ordering of G′ (restricted to the vertex set
of G) yields a topological ordering of G. Note that for some u and v, we might have u ≺G′ v but u 6≺G v. These
additional comparabilities in G′ make sure that the already assigned edges remain crossing-free on their respective
pages, no matter which topological ordering of G′ is chosen in later steps. All edges in E(G)− E(G′) =: E∆ that
are removed while constructing G′ are accounted for by Lemma 2.1 as well.

So consider the st-graph G and a set X ⊆ V (G). All vertices in X can be covered by a set P of st-paths,
where |P| = w(X). To see this, consider the directed acyclic graph H with vertex set X and an edge from u ∈ X
to v ∈ X if and only if u ≺G v. Its reachability poset PH has width w(PH) = w(X). By Dilworth’s Theorem, PH

can be decomposed into w(X) chains, i.e. subsets of pairwise comparable elements. Each of these chains can be
extended to an st-path in G. Given an upward planar embedding of G, we can define what it means for two of
these paths to cross: Let P,Q ∈ P be two paths and v be the last vertex on the longest shared subpath beginning
at s (the case v = s is possible). Without loss of generality the next edge of P precedes the next edge of Q in the
clockwise order of v’s outgoing edges. We say that P and Q cross at another common vertex w if the next edge
of P succeeds the next edge of Q in the clockwise order of w’s outgoing edges. Note that this definition allows P
and Q to have common vertices and edges, even if they do not cross. In the following we always assume P to
be non-crossing, meaning there is a left-to-right ordering P1, . . . , Pw(X) of the st-paths in P such that no two
consecutive paths cross. This assumption is justified, as a crossing between two paths P and Q at vertex w can be
removed by swapping their subpaths starting at w. Thus, any set of crossing paths can be made non-crossing in
every upward planar embedding (see for example the blue, yellow and red path in Figure 3, which cross in the left
but not in the right subfigure).

For two consecutive paths Pi, Pi+1 ∈ P, a lens L between Pi and Pi+1 is a subgraph of G enclosed by two
subpaths P ′i ⊆ Pi and P ′i+1 ⊆ Pi+1 such that their endpoints coincide and they do not share any inner vertices. A
lens L has a unique source sL and a unique sink tL with sL, tL ∈ V (P ′i ) ∩ V (P ′i+1) and sL ≺G tL. As any two
paths in P share the global source s and sink t, there is at least one lens between any two consecutive paths in P .
Given the st-paths in P , we distinguish two kinds of edges of G[P ], where G[P ] is the subgraph of G induced by all
vertices covered by P : We call an edge e having both endpoints contained in the same path in P an intra-path-edge
(e can be an edge of the path or a transitive edge). In contrast, an inter-path-edge e has its two endpoints in
two different paths in P. We note that if Pi and Pi+1 share some vertices and edges, it is technically possible for
an edge to be an intra-path-edge and an inter-path-edge at the same time. In this case, we consider it to be an
intra-path-edge. See Figure 3 for a visualization of the terminology.

Lemma 2.1. Let G be an st-graph and let X ⊆ V (G) be a subset of its vertices of width w. Then there is
an st-graph G′ with V (G) ⊆ V (G′) such that:

• For every two vertices u, v ∈ V (G) with u ≺G v we have u ≺G′ v.

• Every topological ordering of G′ admits an assignment of E(G′[X]) and E∆ to 14w pages.

Proof. We start by initially setting G′ = G. As we go on, we add additional edges to G′ and subdivide existing
ones. Thus at the end G′ is a supergraph of a subdivision of G and all reachabilities of G are maintained. All
edges of G not in G′ (exactly the ones that are subdivided) form the set E∆.

As X has width w, there is a set P = {P1, . . . , Pw} of non-crossing st-paths in G′ covering all vertices of X.
Note that whenever we subdivide an edge on some path P ∈ P, the new subdivision vertex and its two incident
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Figure 3: Left: An st-graph G with three paths covering the subset X ⊆ V (G) of all labeled vertices. Right: The
same graph with three non-crossing paths covering X. All colored edges as well as (a, g), (e, t), (c, h), (b, f) and
(f, i) are intra-path-edges. On the other hand, (b, c) and (c, f) are inter-path-edges. The two shaded regions are
the two lenses between the yellow and the red path.

edges are added to P (replacing the subdivided edge). This way, the subgraph G′[P] induced by the paths
in P is well-defined at every step. Let the paths be numbered such that Pi is to the left of Pj whenever i < j.
Let Pi, Pi+1 ∈ P be two consecutive paths in the left-to-right ordering and let L1, L2 be two lenses between
them. For j = 1, 2, let sj and tj denote the source, respectively the sink, of Lj . By definition, sj and tj are
the only vertices bounding Lj common to both Pi and Pi+1. Thus we can assume without loss of generality
that s1 ≺G′ t1 4G′ s2 ≺G′ t2. We conclude that in every topological ordering of G′ two edges from different lenses
of Pi, Pi+1 do not cross, allowing us to deal with each lens separately and to reuse the same set of pages for all
lenses between Pi and Pi+1.

For a single lens L between Pi and Pi+1 we partition the inter-path-edges in L into
−→
EL (oriented from Pi

to Pi+1) and
←−
EL (oriented from Pi+1 to Pi). From the planarity of G′ we obtain a bottom-to-top ordering

e1, . . . , e` of the inter-path-edges, i.e., we order them by their endpoints along Pi, using the endpoints on Pi+1 as
a tie-breaker.

Before we actually assign the edges to pages, let us give a short overview over the strategy: We will consider

the inter-path-edges in
−→
EL and

←−
EL separately, distributing their edges (and all edges that are subdivided in the

process) to six pages each. This results in a total of twelve pages for all lenses between two consecutive paths Pi

and Pi+1. We will finish the proof by observing that each path itself (possibly with its subdivided edges) requires
just two more pages. As there are w paths, this adds up to 2w + 12(w − 1) 6 14w pages.

In the following we only consider the inter-path-edges in
−→
EL, the case for

←−
EL works symmetrically. Some

of these edges may be transitive in G′[P]. We observe that for every transitive edge e there is a non-transitive
edge f = (vj , wj), such that e is either incident to vj and above f , or incident to wj and below f (above and below
refer to the bottom-to-top ordering of the inter-path-edges)). See on the left of Figure 4 for some examples of
transitive and non-transitive inter-path-edges.

Let (v1, w1), . . . , (vk, wk) be the subset of all inter-path-edges in
−→
EL that are non-transitive in G′[P] ordered

from bottom to top. We observe that these edges form a matching, as otherwise at least one of them would be
transitive. Now subdivide each ej = (vj , wj) with j ∈ {1, . . . , k} in G′ and call the subdivision vertex uj . Further
subdivide the edge of Pi outgoing from vj and the edge of Pi+1 incoming to wj in G′ calling the subdivision
vertices v′j and w′j , respectively. By upward planarity, v′j 6≺G′ w′j and thus adding a directed path from w′j to v′j
in G′ (which we shall do next) maintains the acyclicity of G′. Additionally we have to ensure that G′ remains a
planar st-graph (and thus upward planar) with this new directed path (see the right of Figure 4): Call Ew,j the
set of edges incoming to wj in clockwise order between (w′j , wj) and (uj , wj). Subdivide each edge in Ew,j once
and add a path from w′j to uj through the subdivision vertices in clockwise order. Analogously, Ev,j contains the
edges outgoing from vj between (vj , uj) and (vj , v

′
j) in counterclockwise order. We subdivide all edges in Ev,j and

extend the new path from uj to v′j through all subdivision vertices in counterclockwise order. Now w′j ≺G′ v′j ,
as desired. Note that E∆ consists of all edges that were subdivided in G. This includes all inter-path-edges and
additionally some intra-path-edges and those edges incident to vj or wj with only one endpoint in P.
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Figure 4: Left: Several inter-path-edges between Pi and Pi+1. Only the solid ones are non-transitive in G′[P].
Right: The comparability between w′j and v′j was achieved by adding a w′j-v

′
j-path. To preserve that G′ is a planar

st-graph, all intersected edges are subdivided at the intersections. Further the comparability wj+1 ≺G′ vj+3 is
highlighted. Note that the dashed edges may have only one endpoint in Pi or Pi+1.

We now assign the edges in G′[P] and E∆ to pages. Note that all edges of G′[P] are inter-path-edges or
intra-path-edges as both their endpoints are in P. The edges in Ev,j ∪ {ej} form a star centered at vj , so they
can all be assigned to the same page in any topological ordering. Further, all of these edges have vj as their
lower endpoint. In an upward planar drawing of G′, all edges in Ev,j are inside the subregion of L enclosed by Pi

and Pi+1 to the sides and the subdivided ej and ej+1 to the bottom and top. Thus in every topological ordering
of G′ they end at wj+1 or earlier and thus before vj+3 (because wj+1 ≺G′ w′j+2 ≺G′ v′j+2 ≺G′ vj+3, see the red
path in the right of Figure 4). Therefore the star centered at vj can be embedded on the same page as the star
centered at vj+3. Generalizing this observation, we assign Ev,j ∪ {ej} to a page Qr

i,i+1 where r is the remainder
of j divided by 3. With a symmetric argument all edges in Ew,j can be assigned to three more pages Qr

i+1,i.
The intra-path-edges are left to be embedded. Each path P ∈ P (including the added subdivision vertices)

induces a planar directed Hamiltonian graph HP ⊆ G′. The edges lost while subdividing can be added to HP

such that it remains planar and Hamiltonian. Therefore all intra-path-edges (of G and G′) can be assigned to two
further pages Q1

i and Q2
i in any topological ordering of G′ [9].

Let us recap, that we use twelve pages for the inter-path-edges between any two consecutive paths in P and
two pages per path for the intra-path-edges. In total we get that 2w + 12(w − 1) 6 14w pages suffice for every
topological ordering of G′.

As mentioned above, Theorem 1.1 now follows as a direct corollary from Lemma 2.1 by choosing X = V (G).
Let us remark that a more careful argumentation leads to a slightly better result. We are able to show that
for every st-graph G we have pn(G) 6 4w(G) − 2 by using a different strategy to embed the inter-path-edges.
However we were not able to show the more general statement of Lemma 2.1 (which we need in Section 4) with
this approach and hence omit this improvement of Theorem 1.1 here.

3 Bounded Height

In this section, we prove Theorem 1.2, which bounds the page number of any st-graph in terms of its height. Recall
that the height h(X) of a subset X ⊆ V (G) of the vertex set of an st-graph G is the largest number of vertices in
X that are pairwise comparable in G. In combination with Lemma 2.1 from the previous section, the following
lemma is central in the proof of our sublinear bound on the page number of upward planar graphs in terms of the
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Figure 5: A dominance drawing (left) and the same graph with spine ordering <x (right). Transitive edges are
drawn dashed for better readability.

number of vertices. As in Lemma 2.1, we prove a stronger statement than Theorem 1.2 by considering arbitrary
subsets X of vertices of the graph.

Lemma 3.1. Let G be an st-graph and let X ⊆ V (G) be a subset of its vertices of height h. Then G admits a
topological vertex ordering such that the size of every twist consisting of edges with at least one endpoint in X is at
most 4h.

Proof. Di Battista, Tamassia, and Tollis [15] showed that for every st-graph, there is a dominance drawing : This is
a planar drawing such that between any two vertices u and v, there is a path from u to v if and only if x(u) 6 x(v)
and y(u) 6 y(v), where x(w) and y(w) denote the x-coordinate and y-coordinate of a vertex w, respectively (see
Figure 5). Let <x denote the vertex ordering that is given by increasing x-coordinates, in case of ties, we define
u <x v if y(u) < y(v). Symmetrically, we define u <y v if and only if y(u) < y(v) or if y(u) = y(v) and x(u) < x(v).
We also write v >x u and v >y u instead of u <x v and u <y v, respectively. Most importantly, we observe that

(3.1) u ≺G v ⇐⇒ u <x v and u <y v.

Now we take <x as the linear vertex ordering for G and consider a largest twist a1 <x · · · <x ak <x b1 <x

· · · <x bk consisting of edges in G with at least one endpoint in X. That is, (ai, bi) ∈ E(G) and we have ai ∈ X
or bi ∈ X for i = 1, . . . , k. We assume for the sake of contradiction that k > 4h. By pigeonhole principle, more
than k/2 of the ai’s are in X or more than k/2 of the bi’s are in X. Assume the first, the latter case works
symmetrically. The symmetric case is shown in Figure 6 (right). Without loss of generality, we have a1, . . . , ak′ ∈ X,
where k′ > 2h. Consider the elements a1, . . . , ak′ and their ordering with respect to <y. As k′ > 2h, by the
Erdős-Szekeres theorem there exists at least one of the following:

• a sequence i1 < · · · < ih+1 of indices with ai1 <y · · · <y aih+1

• a sequence i1 < i2 < i3 of indices with ai1 >y ai2 >y ai3

The first case would give together with (3.1) that ai1 ≺ · · · ≺ aih+1
, i.e., h+ 1 pairwise comparable vertices in X, a

contradiction. Thus, we have the second case: Three vertices ai1 , ai2 , ai3 with opposing ordering with respect to <x

and <y, as illustrated in Figure 6. Together we have that ai2 <x ai3 <x bi1 <x bi2 and ai3 <y ai2 <y ai1 <y bi1 . On
one hand, this implies with (3.1) that ai3 ≺ bi1 and hence there is a path P in G from ai3 to bi1 that is monotone
in x- and y-coordinates, i.e., P lies entirely inside the axis-aligned rectangle R spanned by the elements ai3 and bi1 ,
see Figure 6. On the other hand, the edge e = (ai2 , bi2) crosses through the rectangle R from left to right. Note
that edge e indeed lies below bi1 as it does not cross the edge (ai1 , bi1). We conclude that edge e crosses path P ,
which contradicts the planarity of the drawing.

Choosing X = V (G), Lemma 3.1 gives a topological ordering of any st-graph G whose maximum twist size
is linear in its height. Together with Observation 1.1, this proves Theorem 1.2. We remark that for X = V (G)
we can strenghten the analysis above to tn(G) 6 2h: As all edges have both endpoints in X, we do not need to
apply the pigeonhole principle to get that at least half the twisting edges have their lower (or equally their upper)
endpoint in X, thus saving a factor of 2.
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Figure 6: The situation for the final contradiction in the proof of Lemma 3.1, where ai1 >y ai2 >y ai3 (left),
respectively bi1 >y bi2 >y bi3 (right, symmetric case with b1, . . . , bk′ ∈ X), by Erdős-Szekeres.

4 Bound in Terms of the Number of Vertices

In this section we combine our approaches of bounding the page number in terms of width and height and obtain
the first sublinear upper bound on the page number of upward planar graphs and planar posets. We prove
Theorem 1.3 which states that the page number of n-vertex upward planar graphs is O(n2/3 log2/3(n)).

Proof. [Proof of Theorem 1.3] Let G be an n-vertex upward planar graph. Without loss of generality we may
assume that G is an st-graph [25]. We first identify vertices that can be covered by few long directed paths and use
Lemma 2.1 to embed the subgraph induced by these paths. We then apply Lemma 3.1 to the remaining vertices to
find a topological ordering that admits an assignment of the remaining edges to few pages. However, as Lemma 2.1
introduces new directed reachabilities to the graph, we have to pick the first vertex set in a sequential way.

We construct a sequence G0, G1, . . . of graphs and a sequence L0 ⊆ L1 ⊆ . . . of sets containing the vertices
of “long” directed paths in the respective graphs, starting with G0 = G and L0 = ∅. We thereby ensure that
V (Gi) ⊆ V (Gi+1) and that the width of Li in Gi is at most i for each i > 0. Let ` = n2/3/ log1/3(n); we use this
threshold to decide which paths are considered long paths. For ease of notation, let E∆(i, i+ 1) = E(Gi)−E(Gi+1)
denote the set of edges of Gi that is removed when defining the next graph Gi+1. We write G[X] for the subgraph
that is induced by X ∩ V (G), where X is a set of vertices of Gi which may include vertices that are not in G.

Assume that Gi and Li are already defined and that there is an st-path P in Gi that contains at least `
vertices of G that are not contained in Li. We include the vertices of P in the next set Li+1. That is, we define
Li+1 = Li ∪ V (P ). Note that adding the vertex set of a directed path to a set of vertices increases the width by
at most 1. Hence, the width of Li+1 in Gi is at most i+ 1. Now apply Lemma 2.1 to Gi and Li+1 and obtain
an st-graph Gi+1 with V (Gi) ⊆ V (Gi+1). By Lemma 2.1, every topological ordering of Gi+1 restricted to V (Gi)
admits an assignment of E(Gi+1[Li+1]) ∪E∆(i, i+ 1) to 14(i+ 1) pages. As Li+1 can be covered by i+ 1 paths
in Gi, the same holds in Gi+1 as the reachabilities are preserved. Thus, the width of Li+1 in Gi+1 is at most i+ 1.

Let t denote the largest i for which Gi and Li are defined, i.e., there is no path in Gt that contains at least `
vertices of the initial graph G that are not covered by Lt. Note that t 6 n/` = n1/3 log1/3(n), because we add
at least ` vertices of G in each round. We claim that every topological ordering of Gt restricted to V (G) admits
an assignment of the edges of G[Lt] to O(t2) pages. To this end, fix an arbitrary topological ordering <t of Gt

and consider the restriction < of <t to the vertex set of G. Observe that < is a topological ordering of G as
directed reachabilities in G are maintained in Gt. For i = 0, . . . , t − 1, let Qi,i+1 denote the set of 14(i + 1)
pages used by Lemma 2.1 when applied to Gi. We restrict the pages to contain only edges of G. Observe that
the edges in E∆(i, i + 1) ∩ E(G) are embedded in some page of Qi,i+1 for each i = 0, . . . , t − 1. Now, let Et

denote the remaining edges of G[Lt]. Note that these edges are contained in Gt[Lt] and thus are embedded in
some page of Qt−1,t by Lemma 2.1. We conclude that the union of all Qi,i+1 covers all edges of G[Lt] with∑t−1

i=0 |Qi,i+1| =
∑t−1

i=0 14(i+ 1) = 7t(t+ 1) pages.
It is left to embed the set ES of edges in G that are also contained in Gt and have at most one endpoint

in Lt, i.e., at least one endpoint in S = V (G)− Lt. Recall that there is no path in Gt with at least ` vertices of G
that are not contained in Lt, i.e., the height of S in Gt is less than `. Applying Lemma 3.1 to S and Gt yields a
topological ordering <t of Gt such that the edges in ES form twists of size at most 4`. By Observation 1.2, the
same vertex ordering admits an assignment of the edges in ES to O(` log(n)) pages. Restricting <t to G and
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Figure 7: A 4-fence from v1 to w4 and a topological ordering with w4 < v1 yielding a 4-twist. Note that
(v1, w1), . . . , (v4, w4) are edges, while all other shown reachabilites may be due to paths.

combining the page assignment of ES with the page assignment of G[Lt], we obtain a book embedding of G with

O(` log(n) + t2) = O(n2/3 log2/3(n)) pages (recall that ` = n2/3/ log1/3(n) and t 6 n/` = n1/3 log1/3(n)).

In view of Lemma 3.1 which bounds the twist number instead of the page number, the question arises whether
our bound in terms of the number of vertices can be decreased by improving this step. We point out that
(asymptotically) it does not make a difference whether we use Observation 1.2 giving a bound of O(` log(n)) pages
for ES or the result by Davies [12] which gives O(` log(`)) instead. We also remark that by choosing ` = n2/3, we
obtain that every upward planar graph admits a topological vertex ordering whose maximum twist size is O(n2/3).
That is, any improvement in bounding the page number of upward planar graphs in terms of their twist number
also improves our result. Such an improvement, however, needs to make use of the structure of the graph and the
constructed vertex ordering as Davies’ result is asymptotically tight.

5 Lower Bound

Recall that the twist number tn(G) of a directed acyclic graph G is the maximum k for which every topological
ordering of G contains k pairwise crossing edges. In this section, we construct an upward planar graph whose
twist number, and therefore in particular its page number, is at least 5. This improves on the previously best
known bound of an upward planar graph that requires four pages (but has twist number 3) by Hung [24]. We
remark that Merker [27] improved on our upward planar graph by transforming it into a planar poset whose twist
number and page number are at least 5.

We identify a structure that can lead to large twists if the spine ordering is not chosen carefully. By adding
additional edges, any topological ordering of the augmented graph avoids these twists. For k > 2, a k-fence (from v1

to wk) consists of 2 · k distinct vertices v1 ≺ · · · ≺ vk, w1 ≺ · · · ≺ wk, and edges (wi, vi) for each i = 1, . . . , k. The
edges (wi, vi) are called fence edges. If k is not important, we simply say fence. Figure 7 (left) shows a 4-fence.
Observe that v1 and wk are not necessarily comparable. However, we show that v1 must preceed wk in every spine
ordering that has no k-twist. By transitivity, every v 4 v1 must therefore also preceed every w < wk.

Observation 5.1. Every topological ordering of a k-fence from v1 to wk in which wk < v1 has a k-twist.

Proof. Assuming wk < v1, we obtain w1 < · · · < wk < v1 < · · · < vk as the unique topological ordering. Hence,
the fence edges form a k-twist. See Figure 7 (right) for an illustration.

Given an upward planar graph G, we augment it with additional edges that indicate how to avoid the k-
twists that otherwise are present in k-fences. Let k > 2 and consider a k-fence from v1 to wk in G such that
v1 6≺ wk. We add a new edge (v1, wk) forcing v1 < wk, as every topological ordering with wk < v1 yields a k-twist
(Observation 5.1). Since adding edges increases the set of reachabilities in G, new fences might emerge with each
newly added edge. Here we consider only fences for which the fence edges (vi, wi) for i = 1, . . . , k are still edges of
the original graph G but the reachabilities along the two paths v1 ≺ · · · ≺ vk and w1 ≺ · · · ≺ wk might consist
(partly) of new edges. We continue adding new edges to each current and future k-fence. This process terminates,
as there is only a finite number of possible comparabilities between the unchanged number of vertices The resulting
graph is denoted by G∗k and contains no k-fence from v1 to wk with v1 6≺ wk.

Let us refer to Figure 8 for some illustrative examples. Note that if G is upward planar, then G∗k is not
necessarily upward planar; possibly not planar, nor even acyclic. We emphasize that the new edges in G∗k are
not part of E(G), and as such, need not be assigned to any page in a book embedding. Their sole purpose is to
restrict the set of possible topological orderings of G to those of G∗k.
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Figure 8: Examples of G∗3. The edges in E(G∗3) − E(G) are drawn thick and the 3-fences are highlighted.
Left: Taking a topological ordering of G∗3 shows that tn(G) 6 2. Middle: G∗3 is not acyclic and hence tn(G) > 2.
Right: G∗3 = G as there is no 3-fence, but still tn(G) > 2.

(1, 1)
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(3, 3)
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(4, 1)

(4, 2)
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Figure 9: A 4 × 4 upward grid with levels L2, . . . , L8. Consider the vertex (2, 2). The first left upper vertex
is (3, 2), the second left upper vertex is (4, 1), the first right upper vertex is (2, 3), and the second right upper
vertex is (1, 4).

Observation 5.1 shows that a topological ordering of G which is not a topological ordering of G∗k+1 yields a
(k + 1)-twist. In particular, G∗k+1 being acyclic is a necessary condition for G admitting a k-page book embedding.

Corollary 5.1. Every book embedding of a directed acylic graph G without a (k + 1)-twist (in particular every
k-page book embedding) uses a topological ordering of G∗k+1 as spine ordering.

However, using a topological ordering of G∗k as a spine ordering is not sufficient to avoid k-twists; see e.g., the
right of Figure 8. Quite the contrary, we find that for some small k, the augmented graph G∗k might be cyclic and
therefore not have any topological ordering at all. And even if G∗k is acyclic, choosing any topological ordering
of G∗k can inescapably lead to arbitrarily large twists (which are not due to fences) even if the graph admits a book
embedding with few (but more than k) pages. We shall force such a situation in our construction of an upward
planar graph with twist number at least 5, which then proves Theorem 1.4.

For any integer n > 0, we define an n× n upward grid Gridn as follows (see Figure 9). The vertices of Gridn

are the tuples (`, r) of integers with 1 6 `, r 6 n. The vertices are partitioned into levels, where level Lh contains
the vertices (`, r) with ` + r = h. The edge set of Gridn consists of three subsets. There are left edges of the
form

(
(`, r), (` + 1, r)

)
for each r = 1, . . . , n and ` = 1, . . . , n − 1. Symmetrically, the edges

(
(`, r), (`, r + 1)

)
for ` = 1, . . . , n and r = 1, . . . , n − 1 are called right edges. Finally, we have edges

(
(`, r), (` + 1, r + 1)

)
for

1 6 `, r 6 n− 1 and call them vertical edges.
Consider a vertex v = (`v, rv) in some level Lh of an upward grid. A vertex w = (`w, rw) in level Lh+1 is

called an i-th left (right) upper vertex of v if `w = `v + i (rw = rv + i). A vertex that is an i-th left upper vertex
or an i-th right upper vertex of v is also called an i-th upper vertex of v. Note that every vertex in Lh+1 is an i-th
upper vertex of v for some i > 0.

Based on an n× n upward grid, we define an n× n N-grid, which we denote by Nn, for any integer n > 0. We
shall show in this section that every n× n N-grid has a 5-twist in every topological ordering, provided n is large
enough. The n× n N-grid Nn contains an n× n upward grid Gridn as an induced subgraph and an additional
vertex in each inner face of Gridn. The additional vertices are called N-vertices, whereas the vertices that belong
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(`, r)

(`, r + 1)(`+ 1, r)

(`+ 1, r + 1)

b

a

(`, r)

(`, r + 1)(`+ 1, r)

(`+ 1, r + 1)

c

d

Figure 10: Parts of an N-grid with N-vertices a = a`,r, b = b`,r, c = c`,r, and d = d`,r, where `− r is even (left),
respectively odd (middle). The N-edges are highlighted yellow.

to Gridn are called grid vertices. See Figure 10 for an illustration. Consider two triangles in Gridn that share a
vertical edge. That is, they consist of vertices (`, r), (`+ 1, r), (`, r + 1), and (`+ 1, r + 1) as shown in Figure 10.
If `− r is even, then we insert a vertex a = a`,r into the left triangle and add edges

(
(`, r), a

)
,
(
a, (`+ 1, r)

)
, and(

a, (`+ 1, r + 1)
)
. In addition, we insert a vertex b = b`,r together with the edges

(
(`, r), b

)
,
(
(`, r + 1), b

)
, and(

b, (`+ 1, r+ 1)
)

into the right triangle in this case. If `− r is odd, then we insert vertices c = c`,r and d = d`,r into

the right, respectively left, triangle and add edges
(
(`, r), c

)
,
(
c, (`, r+1)

)
,
(
c, (`+1, r+1)

)
,
(
(`, r), d

)
,
(
(`+1, r), d

)
,

and
(
d, (`+ 1, r+ 1)

)
. The definitions of levels and upper vertices remain as in Gridn, the N-vertices do not belong

to any level. Observe that every N-grid is upward planar. Whenever we refer to an embedding of an N-grid, we
assume the upward grid induced by the grid vertices to be embedded in the canonical way shown in Figure 9 and
the N-vertices to be placed in the respective triangular inner faces as shown in Figure 10.

The rest of this section is devoted to proving that every topological ordering of a sufficiently large N-grid
yields a 5-twist. For this, we consider the graph N∗n,5 that results from augmenting Nn via 5-fences as described
above. By Corollary 5.1, every topological ordering of Nn that is not a topological ordering of N∗n,5 yields a 5-twist.
Hence, we only need to consider topological orderings of N∗n,5. We say that two levels Li, Lj (2 6 i < j 6 2n) are
separated by a topological ordering <, if for all grid vertices (`i, ri) ∈ Li and (`j , rj) ∈ Lj we have (`i, ri) < (`j , rj).
We write Li < Lj in this case. We call a topological ordering < of an N-grid level-separating if it separates every
two consecutive levels, i.e., we have L2 < · · · < L2n. We also say that < separates the levels of the N-grid in
this case. The next lemma shows that we can assume the levels of Nn to be separated if the vertex ordering is a
topological ordering of N∗n,5.

Lemma 5.1. For every n > 0, there is an n′ > n such that every topological ordering < of N∗n′,5 contains a copy
of Nn ⊆ N∗n′,5 whose levels are separated by <.

Proof. We choose n′ = n+ 2(n− 1) and use induction on i = 1, . . . , n. For each i, we identify a set of vertices
Vi ⊆ V (N∗n′,5) such that each grid vertex in Vi has an outgoing edge to all its j-th upper vertices that are contained
in Vi for each j = 1, . . . , i. We thereby ensure Vi ⊆ Vi−1 for i > 1 and that Vi induces a copy of Nn+2(n−i) in Nn′ .
Finally we show that in N∗n′,5[Vn] every grid vertex reaches every vertex of Vn in the subsequent level, and thus Vn
induces the desired copy of Nn in Nn′ .

For i = 1, define V1 = V (N∗n′,5). Observe that in each N-grid, every grid vertex is adjacent to its first left upper
vertex via a left edge and to its first right upper vertex via a right edge, which settles the base case. Now let i > 1
and assume that all grid vertices in Vi−1 reach all j-th upper vertices also contained in Vi−1 for each j 6 i− 1.
Consider the subgraph Nn′ of N∗n′,5 on the same vertex set but without the augmented edges. To obtain Vi from
Vi−1, we drop all grid vertices incident to the outer face of Nn′ [Vi−1] and then remove all N-vertices that are now
incident to the outer face. See Figure 11 to see how Vi lies in Vi−1. Note that every grid vertex in Nn′ [Vi] has an
incoming vertical edge and and an outgoing vertical edge in Nn′ [Vi−1]. Also observe that Vi induces an N-grid
whose size is reduced by 2 in both directions compared to the N-grid Nn′ [Vi−1].

We next find a 5-fence from each grid vertex of Vi to its i-th upper vertices in Vi. Consider a grid
vertex v = (`v, rv) ∈ Vi . Without loss of generality, we assume that `v − rv is even. Swap left and right
otherwise. Let w = (`w, rw) ∈ Vi denote the i-th right upper vertex of v (if it exists). By definition of an i-th
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v4
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w2

w4
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Figure 11: An inner N-grid Nn′ [Vi] (darkblue) inside an outer N-grid Nn′ [Vi−1] (lightblue). Observe that the
shown 5-fence has vertices w1 to v5 outside Nn′ [Vi], but the yellow edge is inside.

right upper vertex, we have rw = rv + i. As the two vertices are in consecutive levels, we have `v + rv = h
and `w + rw = h+ 1, where Lh is the level of (`v, rv). It follows that `w = `v − i+ 1.

Now, consider the vertices

w1 = (`v − 1, rv − 1),

w2 = (`v − 1, rv),

w3 = c`v−1,rv ,

w4 = (`v − 1, rv + 1), and

w5 = (`v − i+ 1, rv + i) = w.

See Figure 12 for an illustration. These five vertices form the lower part of the desired 5-fence. Note that w1 is
not necessarily in Vi but is connected to v by a vertical edge in Nn′ [Vi−1] and thus is contained in Vi−1 (see again
Figure 11, where v = v1). We next observe that w1, . . . , w5 are pairwise comparable. The first four vertices induce
a path in Nn′ . The edge (w4, w5) exists in N∗n′,5[Vi−1] by the induction hypothesis since w5 is an (i− 1)-th upper
vertex of w4. To see this, observe that w4 and w5 are in consecutive levels as (`v−i+1+rv +i)−(`v−1+rv +1) = 1
and their r-coordinates differ by exactly i− 1.

Now, consider the vertices

v1 = (`v, rv) = v,

v2 = d`v−1,rv ,

v3 = (`v, rv + 1),

v4 = (`v, rv + 2), and

v5 = (`w + 1, rw + 1) = (`v − i+ 2, rv + i+ 1).

These five vertices serve as the upper part of the 5-fence from v to w. Again, we find that there is a path connecting
the five vertices in N∗n′,5[Vi−1]. First, the edges (v1, v2) and (v2, v3) exist by construction of an N-grid. The
edge (v3, v4) is a right edge in Nn′ . We again remark that v5 is not necessarily in Vi but is connected to w via
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Figure 12: A 5-fence from v = v1 to w = w5, where w is the second/third right upper vertex of v. The blue edges
(v4, v5) and (w4, w5) exist by induction.
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Figure 13: A 5-fence from v = v1 to w = w5, where w is the second/third left upper vertex of v. The blue edges
(v1, v2) and (w1, w2) exist by induction.

a vertical edge and thus is contained in Vi−1. We obtain the remaining edge (v4, v5) by induction as v5 is an
(i− 1)-th right upper vertex of v4. Thus, we find a 5-fence from v to w using (v1, w1), . . . , (v5, w5) as fence edges.

The proof for the i-th left upper vertex works nearly symmetrically. In contrast to the right upper vertex, we
first use the edges obtained by the induction hypothesis and then the edges of Nn′ to find the two paths of the
5-fence. Let w = (`w, rw) = (`v + i, rv − i+ 1) ∈ Vi denote the i-th left upper vertex of v (if it exists). We find
a 5-fence from v to w using the vertices

w1 = (`w − i− 1, rw + i− 2) = (`v − 1, rv − 1),

w2 = (`w − 2, rw),

w3 = (`w − 1, rw),

w4 = a`w−1,rw , and

w5 = (`w, rw) = w

Copyright © 2022
Copyright for this paper is retained by authors



x3

y3

x2

y2

z3

x1

y1

z2z1

Ln

Ln+1

Ln+2

Figure 14: Three triangles in Grid4 ⊆ N4 with vertices in levels L4, L5, and L6.

for the lower part, while the upper part is formed by the vertices

v1 = (`w − i, rw + i− 1) = v,

v2 = (`w − 1, rw + 1),

v3 = b`w−1,rw ,

v4 = (`w, rw + 1), and

v5 = (`w + 1, rw + 1).

We refer to Figure 13 for an illustration. Note that the coordinates of w3 have an even difference as (`w−1)− rw =
(`v + i− 1)− (rv − i+ 1) = `v − rv + 2i− 2, which means that the claimed a- and b-vertices indeed exist. The
edges (w1, w2) and (v1, v2) exist by induction as their upper endpoints are (i − 1)-th left upper vertices of the
lower endpoints. The other vertices are connected by two paths using only edges of Nn′ . We again obtain a 5-fence
using the edges (v1, w1), . . . , (v5, w5) as fence edges.

To conclude the proof, recall that Vn induces a copy of Nn in Nn′ . Observe that in Nn, no vertex has an i-th
upper vertex for i > n. Thus by the induction above, we have that in N∗n′,5[Vn] every grid vertex reaches all its
upper vertices that are contained in Vn, i.e., all vertices of the subsequent level of Nn. Therefore, the levels of
N∗n′,5[Vn] are separated by every topological ordering of N∗n′,5.

Having Lemma 5.1, we know that we may assume the levels of an N-grid Nn to be separated when we try
to avoid 5-twists, i.e., when we consider topological orderings of N∗n,5. The next lemma, however, shows that
separated levels imply not only 5-twists but arbitrarily large twists, finishing the proof of Theorem 1.4.

Lemma 5.2. For every p > 0, there is an n such that every level-separating topological ordering < of Nn yields a
(p+ 1)-twist. In particular, < does not admit a p-page book embedding.

Proof. Let r = p3 + 1 and n = r + 1. We identify r triangles in Nn, each of which has exactly one vertex
in each of the three levels Ln, Ln+1 and Ln+2. Observe that each of these levels has at least r vertices. For
i = 1, . . . , r, we define the triangle Ti consisting of the vertices xi = (n− i, i) ∈ Ln, yi = (n− i, i+ 1) ∈ Ln+1, and
zi = (n− i+ 1, i+ 1) ∈ Ln+2. See Figure 14 for an example. By our assumption we have Ln < Ln+1 < Ln+2.

We now define an ordering <T on the triangles and use it to find a (p+ 1)-twist. We define Ti <T Tj if and
only if xi < xj . A subsequence yi1 , . . . , yis of y1, . . . , yr is increasing if its ordering corresponds to <T , that is
if Ti1 <T · · · <T Tis . Similarly, a subsequence yi1 , . . . , yis of y1, . . . , yr is called decreasing if their reverse ordering
corresponds to <T , that is if Ti1 >T · · · >T Tis . Increasing and decreasing subsequences of z1, . . . , zr in level Ln+2

are defined analogously.
We now only consider the subgraph of Nn that is given by the triangles T1, . . . , Tr. That is, a neighbor of

a vertex v refers to a vertex in the same triangle as v. If there is an increasing subsequence of y1, . . . , yr or of
z1, . . . , zr of length p+ 1, then we have a (p+ 1)-twist between these vertices and their neighbors in Ln. Hence,
the longest increasing subsequences of y1, . . . , yr and z1, . . . , zr have length at most p. By the Erdős-Szekeres
theorem, there exists a decreasing subsequence yi1 , . . . , yis of y1, . . . , yr of length s = p2 + 1. Again by the
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Erdős-Szekeres theorem, there exists a decreasing subsequence zi′1 , . . . , zi′t of zi1 , . . . , zis of length t = p+ 1. But
then yi′t < · · · < yi′1 < zi′t < · · · < zi′1 form a (p+ 1)-twist as Ln+1 < Ln+2.

We conclude by Lemma 5.2 that for p = 4 and n = p3 + 2 = 66 every level-separating topological ordering of
Nn contains a 5-twist. Further, by Lemma 5.1, there is an n′ > n such that every topological ordering < of N∗n′,5

contains a copy of Nn whose levels are separated by < (i.e., n′ = n+ 2(n− 1) = 192 as in the proof). Together
this yields pn(Nn′) > tn(Nn′) > 5, proving Theorem 1.4.

Finally, we remark that N-grids have bounded page number but it is not obvious whether five pages suffice for
all N-grids. However, separating the levels of N-grids works only with 5-fences, which is why new ideas are needed
for any significant improvement.

6 Conclusions

In this paper, we improve both the lower and the upper bound on the maximum page number among upward
planar graphs. Concerning the lower bound, we remark that Lemma 5.2 does not depend on the size of the twist
to be enforced but yields arbitrarily large twists. That is, for pushing the lower bound further it suffices to find
a large enough upward planar graph whose vertices can be partitioned into levels, i.e., into sets of vertices that
are separated by any topological ordering. However, it is crucial that there are edges connecting non-consecutive
levels. We also expect the concept of fences to prove useful for improving the lower bound further as we only need
to consider topological orderings that respect the augmented edges.

The main contribution of this paper is the first sublinear upper bound on the page number of upward planar
graphs in terms of their number of vertices. We remark that when applying Lemma 2.1 repeatedly, many edges are
embedded multiple times. In fact, we only need the edges of G′[X] in the last application of the lemma, whereas
we use the embedding of the edges in E∆ in all rounds. In light of this observation, we see potential improvements
in reducing the number of pages needed for E∆ (at the expense of the number of pages needed for G′[X]) or in
reducing the number of applications of Lemma 2.1 (e.g., by covering the edges of E∆ with Lemma 3.1). Both
would lead to an upper bound of O(

√
n log(n)). To improve the bound beyond that, we think that new approaches

are necessary.
In addition to the sublinear upper bound, we attack the problem of bounding the page number of upward

planar graphs by showing that families of upward planar graphs with bounded width or bounded height have
bounded page number. However, the initial question by Nowakowski and Parker [28] whether planar posets, and
more generally upward planar graphs, have bounded page number, still remains open.
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