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Abstract
We determine the computational complexity of computing the Hausdorff distance. Specifically, we
show that the decision problem of whether the Hausdorff distance of two semi-algebraic sets is
bounded by a given threshold is complete for the complexity class ∀∃<R. This implies that the
problem is NP-, co-NP-, ∃R- and ∀R-hard.

Related Version Full version available on arXiv: 2112.04343.

1 Introduction

The question of ‘how similar are two given objects’ occurs in numerous settings. A typical
tool to quantify their similarity is the Hausdorff distance. Two sets have a small Hausdorff
distance if every point of one set is close to some point of the other set and vice versa. The
Hausdorff distance appears in many branches of science. To illustrate the range of use cases,
we consider two examples. For illustrations consider Figure 1. In mathematics, the Hausdorff
distance provides a metric on sets and henceforth also a topology. This topology can be
used to discuss continuous transformations of one set to another [7]. In computer vision and
geographical information science, the Hausdorff distance is used to measure the similarity
between spacial objects [17, 18], for example the quality of quadrangulations of complex 3D
models [20]. In this paper, we study the computational complexity of the Hausdorff distance
from a theoretical perspective.

Figure 1 Left: Continuous deformation of a cup into a doughnut [10]. Right: Quadrangulation of
a smooth surface used for rendering [20].

Definition. The directed Hausdorff distance between a non-empty set A ⊆ Rn and a
non-empty set B ⊆ Rn is defined as

~dH(A, B) := sup
a∈A

inf
b∈B
‖a− b‖.

The directed Hausdorff distance between A and B can be interpreted as the smallest value
ε ≥ 0 such that the (closed) ε-neighborhood of B contains A. Hence, it nicely captures the
intuition of how much B has to be blown up to contain A. Note that ~dH(A, B) and ~dH(B, A)
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Figure 2 How similar are these sets?

must not be equal. For an example, consider Fig. 2; while A1 ⊂ B1 and thus ~dH(A1, B1) = 0,
it holds that ~dH(B1, A1) > 0. The (undirected) Hausdorff distance is symmetric and defined
as dH(A, B) := max

{
~dH(A, B), ~dH(B, A)

}
. In this paper, we investigate the computational

complexity of deciding whether the Hausdorff distance of two sets is at most a given threshold.

Semi-Algebraic Sets. The algorithmic complexity of the Hausdorff distance clearly depends
on the type of the considered sets. If we are given the sets in a way that we cannot even
decide if they are empty, it seems near impossible to compute their Hausdorff distance.
However, if the sets consists of finitely many points, their Hausdorff distance can be easily
computed by checking all pairs of points. In practice, we are often somewhere between those
two extreme situations. For instance, the sets could be a collection of disks in the plane or
cubic splines, describing a surface in three dimensions, see also Fig. 3.

Figure 3 The Hausdorff distance can appear in simpler or more complicated settings. Left: Two
finite point sets (black and white) in the plane. Middle: Two sets of blue and red disks in the plane.
Right: Two surfaces in 3-space with different meshes, image taken from [20].

In this paper, we focus on semi-algebraic sets, i.e., sets that can be described by polynomial
inequalities. Formally, a semi-algebraic set is the finite union of basic semi-algebraic sets. A
basic semi-algebraic set S is specified by two families of polynomials P and Q such that

S =
{

x∈Rn
∣∣ ∧

P∈P
P (x) ≤ 0 ∧

∧
Q∈Q

Q(x) < 0
}
.

Semi-algebraic sets cover clearly the vast majority of practical cases and finding efficient
algorithms for this problem would be a tremendous contribution. Simultaneously, when
considering smooth sets, one is quickly in the situation that one needs to deal with polynomials
anyway. So the step to general semi-algebraic sets is not a very big one.

General Decision Algorithm. We consider a situation where we are given two semi-algebraic
sets A and B as well as a threshold t; for simplicity, we assume here (only in this paragraph)
that A and B are closed. The statement ~dH(A, B) ≤ t can be encoded into a logical sentence

∀a∈A .∃b∈B : ‖a− b‖2 ≤ t2,
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where ‖x‖ denotes the Euclidean norm of the vector x. We can decide the truth of this
sentence by employing sophisticated algorithms from real algebraic geometry that can deal
with two blocks of quantifiers [5, Chapter 14]. These algorithms are impractical for all
non-trivial instances. Our main result roughly states that in general there is little hope for
an improvement. To state this formally, we continue by defining suitable complexity classes.

Algorithmic Complexity. Let ϕ be a quantifier-free formula in the first-order theory of the
reals, i.e., a formula formed over the alphabet Σ = {0, 1, +, ·, =,≤, <,∨,∧,¬} together with
symbols for the variables. The Universal Existential Theory of the Reals (UETR)
asks to decide the truth value of a sentence

Φ := ∀X ∈Rn .∃Y ∈Rm : ϕ(X, Y ).

An instance of UETR belongs to Strict-UETR if the corresponding formula ϕ is over
the alphabet Σ = {0, 1, +, ·, <,∨,∧}, i.e., if every atom is a strict inequality and there
are no negations. The complexity classes ∀∃R and ∀∃<R contain all decision problems for
which there exists a polynomial-time many-one reduction to UETR and Strict-UETR,
respectively. We propose to pronounce the complexity classe ∀∃R as ‘UER’ or ‘forall exists
R’ and ∀∃<R as ‘Strict-UER’ or ‘strict forall exists R’. To the best of our knowledge, ∀∃R
was first introduced by Bürgisser and Cucker [9, Section 9] under the name BP0(∀∃) (in the
constant-free Blum-Shub-Smale-model [6]). The notation ∀∃R arised later in [13] extending
the notation from Schaefer and Števankovič [19]. The sister class co-∀∃<R = ∃∀≤R was first
studied by D’Costa, Lefaucheux, Neumann, Ouaknine and Worrel [12].

Problem and Results. We now have all ingredients to state our problem and main results.
Let ΦA(X) and ΦB(X) be two quantifier-free formulas defining the semi-algebraic sets
A = {x∈Rn | ΦA(x)} and B = {x∈Rn | ΦB(x)}, and let t ∈ Q be a rational number. The
Hausdorff problem asks whether dH(A, B) ≤ t. Here the dimension n of the ambient space
of A and B is part of the input (there is a polynomial-time algorithm for every fixed n, see
the related work in Section 2). The computational complexity of this problem was posed as
an open question by Dobbins, Kleist, Miltzow and Rzążewski [13].

I Theorem 1.1. The Hausdorff problem is ∀∃<R-complete.

Note that prior to our result, it was not even known if computing the Hausdorff distance
was NP-hard. As ∀∃<R contains, NP, co-NP, ∃R and ∀R, we also get hardness for all of
these complexity classes. In the proof of ∀∃<R-hardness for Theorem 1.1, we create instances
with some additional properties. In particular, we can guarantee a gap, i.e., the Hausdorff
distance is either below the threshold t or at least t · 22Ω(d) , where d denotes the number of
variables of ΦA and ΦB . Thus our result also rules out approximation algorithms.

I Corollary 1.2. Let A and B be two semi-algebraic sets in Rd and f(d) = 22o(d) . Then there
is no polynomial time f(d)-approximation algorithm to compute dH(A, B), unless P = ∀∃<R.

2 Related Work

This section reviews previous work concerning two directions. First, we discuss the complexity
of computing the Hausdorff distance for special sets. Afterwards, we investigate previous
work on the complexity class ∀∃R.
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Computing the Hausdorff Distance. The notion of the Hausdorff distance was introduced
by Felix Hausdorff in 1914 [16]. Most of the early works focused on the Hausdorff distance
for finite point sets. For a set of n points and a set of m points in any fixed dimension, the
Hausdorff distance can be easily computed by checking all pairs, i.e., in time O(mn). In the
plane, this can be improved to O((n + m) log(m + n)) by using Voronoi diagrams [1]. In fact,
this method can be extended to sets consisting of pairwise non-crossing line segments in the
plane, e.g., simple polygons and polygonal chains fulfill this property. If the polygons are
additionally convex, their Hausdorff distance can even be computed in linear time [4].

More generally, the Hausdorff distance can be computed in polynomial time whenever
the two sets can be described by a simplicial complex of fixed dimension. Based on the
PhD thesis of Godau [15], Alt et al. [2, Theorem 3.3] show how to compute the directed
Hausdorff distance between two sets in Rd consisting of n and m k-dimensional simplices in
time O(nmk+2) (assuming d is constant). Using a Las Vegas algorithm for computing the
vertices of the lower envelope, similar ideas yield an approach with randomized expected
time in O(nmk+ε) for k > 1 and every ε > 0 [2, Theorem 3.4]. They additionally present
algorithms with better randomized expected running times for sets of triangles in R3 and
point sets in Rd.

Given two semi-algebraic sets A, B ⊆ Rn, the Hausdorff problem can be encoded
as a sentence of the form ∀X ∈ Rn .∃Y ∈ Rn : ϕ(X, Y ) with Θ(n) variables, where ϕ is
quantifier-free. Such a sentence can be decided in time roughly equal to (sd)O(n2) [5, Theorem
14.14] where d denotes the maximum degree of any polynomial in ϕ and s denotes the number
of atoms.

In other contexts the two sets are allowed to undergo certain transformations (e.g.
translations) such that the Hausdorff distance is minimized [8]. See Alt [3] for a survey.

Universal Existential Theory of the Reals. As mentioned above, the complexity class ∀∃R
was first studied by Bürgisser and Cucker who prove complexity results for many decision
problems involving circuits [9]. Dobbins, Kleist, Miltzow, and Rzążewski [14, 13] consider
∀∃R in the context of area-universality of graphs. A plane graph is area-universal if for
every assignment of reals to the inner faces of a plane graph, there exists a straight-line
drawing such that the area of each inner face equals the assigned number. Dobbins et
al. conjecture that the decision problem whether a given plane graph is area-universal is
complete for ∀∃R. They support this conjecture by proving hardness for several related
notions [13]. Additionally, for future research directions, they present a number of candidates
for potentially ∀∃R-hard problems. Among them, they stated a question motivating this
paper as an open problem, namely whether the Hausdorff problem is ∀∃R-complete. The
other candidates exhibit intrinsic connections to imprecision, robustness and extendability.

The sister class ∃∀R was recently investigated by D’Costa et al. [12]. They show that it
is ∃∀≤R-complete to decide for a given rational matrix A and a compact semi-algebraic set
K ⊆ Rn, whether there exists a starting point x ∈ K such that xn := Anx is contained in K

for all n ∈ N .

3 Techniques and Proof Overview

In this section, we present the general idea behind the hardness reduction for the Hausdorff
problem. The goal is to convey the intuition and to motivate the technical intermediate steps
needed. The sketched reduction is oversimplified and thus neither in polynomial time nor
fully correct. We point out both of these issues and give first ideas on how to solve them.
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Figure 4 Consider the formula ∀X ∈R .∃Y ∈R : XY > 1. (a) Each point (x, y)∈R2 in the blue
open region satisfies xy > 1. Only for x = 0 (in red) no suitable y∈R exists. (b) Restricting the
range of Y to [−1, 1], then for all x∈ [−1, 1] (in red) no y with xy > 1 exists.

Let Φ := ∀X ∈Rn .∃Y ∈Rm : ϕ(X, Y ) be a Strict-UETR instance. We define two sets

A := {x∈Rn | ∃Y ∈Rm : ϕ(x, Y )} and
B := Rn

and ask whether dH(A, B) = 0. If Φ is true, then A = Rn and we have dH(A, B) = 0 because
both sets are equal. Otherwise, if Φ is false, then there exists some x∈Rn for which there
is no y∈Rm satisfying ϕ(x, y) and we conclude that A 6= Rn. In general we call the set of
all x∈Rn for which there is no y ∈Rm satisfying ϕ(x, y) the counterexamples ⊥(Φ) of Φ.
One might hope that ⊥(Φ) 6= ∅ is enough to obtain dH(A, B) > 0, but this is not the case.
To this end, consider the formula Ψ := ∀X ∈ R .∃Y ∈ R : XY > 0, which is false. The
set ⊥(Ψ) = {0} contains only a single element, so we have A = R \ {0} and B = R. However,
their Hausdorff distance also evaluates to dH(A, B) = 0. We conclude that above reduction
does not (yet completely) work, because it maps a yes- and a no-instances of Strict-UETR
to a yes-instance of Hausdorff.

We solve this issue by blowing up the set of counterexamples. Specifically, Theorem 12
(in the full version) establishes a polynomial time algorithm to transform a Strict-UETR
instance Φ into an equivalent formula Φ′ such that the set of counterexamples is either empty
(if Φ′ is true) or contains an open ball of positive radius (if Φ′ is false). The radius of the
ball serves as a lower bound on the Hausdorff distance dH(A, B). Thus a reduction starting
with Φ′ is correct. As a key tool for this step, we restrict the variable ranges from Rn and Rm

to small and compact intervals. Fig. 4 presents an an example on how such a range restriction
may enlarge the set of counterexamples from a single point to an interval. We think that the
special property of blown up counterexamples can prove useful in future reductions to show
∀∃<R-hardness of other problems because it makes handling the no-instances easier.

A further challenge is given by the definition of the sets A and B. While the description
complexity of B depends only on n, the definition of A contains an existential quantifier.
This is troublesome because our definition of the Hausdorff problem requires quantifier-
free formulas as its input, and in general there is no equivalent quantifier-free formula of
polynomial length which describes the set A [11]. We overcome this issue by taking the
existentially quantified variables as additional dimensions into account. We cannot know
their precise values for each possible choice of the universally quantified variables. But by
scaling them to a tiny range, their influence on the Hausdorff distance becomes negligible.
Therefore instead of the above we work with sets similar to

A := {(x, y)∈ [−1, 1]n × [−ε, ε]m | ϕ(x, y)} and
B := [−1, 1]n × {0}m
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for some tiny value ε depending on the radius r (of the ball contained in the counterexamples).
This definition of A and B introduces the new issue that even if Φ is true, the Hausdorff
distance dH(A, B) might be strictly positive. However, we manage to identify a threshold t,
such that dH(A, B) ≤ t if and only if Φ is true. This completes the proof of ∀∃<R-hardness.
∀∃<R-membership is shown by formulating the Hausdorff problems as an equivalent

Strict-UETR instance (see Section 6 of the full version).
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