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Abstract

Computing a shortest path from one node to another in a directed graph is a very
common task in practice. This problem is classically solved by Dijkstra’s algorithm.
Many techniques are known to speed up this algorithm heuristically, while optimality
of the solution can still be guaranteed. In most studies, such techniques are considered
individually. The focus of our work is combination of speed-up techniques for Dijkstra’s
algorithm. We consider all possible combinations of four known techniques, namely goal-
directed search, bidirectional search, multi-level approach, and shortest-path containers,
and show how these can be implemented. In an extensive experimental study we compare
the performance of the various combinations and analyze how the techniques harmonize
when applied jointly. Several real-world graphs from road maps and public transport and
three types of generated random graphs are taken into account.

1 Introduction

We consider the problem of (repeatedly) finding single-source single-target shortest paths
in large, sparse graphs. Typical applications of this problem include route planning sys-
tems for cars, bikes, and hikers [Zhan and Noon, 2000, Barrett et al., 2002] or scheduled
vehicles like trains and buses [Nachtigall, 1995, Preuss and Syrbe, 1997], spatial databases
[Shekhar et al., 1997], and web searching [Barrett et al., 2000]. Usually, the problem is solved
by Dijkstra’s algorithm [Dijkstra, 1959], which is a label-setting single-source algorithm and
as such can be terminated once the target is reached. Besides Dijkstra’s algorithm, with a
worst-case running time of O(m+n log n) using Fibonacci heaps [Fredman and Tarjan, 1987],
there are many recent algorithms that solve variants and special cases of the shortest-path
problem with better running time (worst-case or average-case; see [Cherkassky et al., 1996] for
an experimental comparison, [Zwick, 2001] for a survey, and [Goldberg, 2001b, Meyer, 2001,
Pettie et al., 2002] for some more recent work).

The focus of this paper are variants of Dijkstra’s algorithm—also denoted as speed-up
techniques in the following—that further exploit the fact that a target is given. Typically,
such improvements of Dijkstra’s algorithm cannot be proven to be asymptotically faster than
the original algorithm, and are heuristics in this sense. However, it can be empirically shown
that they indeed improve the running time drastically for many realistic data sets. During
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the last few years, several new techniques of that kind have been developed. In the scenario
described above, it is affordable, and applied by most of these new techniques, to precompute
and store additional information on shortest paths, which is used in the on-line phase to reduce
the running time for solving a shortest-path query. In [Willhalm and Wagner, 2006], a survey
on such speed-up techniques for Dijkstra’s algorithm is provided (see also [Willhalm, 2005]).
For our study, we exemplarily consider the following four speed-up techniques:

Goal-Directed Search. The given edge weights are modified to favor edges leading towards
the target node [Hart et al., 1968, Shekhar et al., 1993]. With graphs from timetable
information, a speed-up in running time of a factor of roughly 1.5 is reported in
[Schulz et al., 2000].

Bidirectional Search. Start a second search backwards, from the target to the source (see
[Ahuja et al., 1993], Section 4.5). Both searches stop when their search horizons meet.
Experiments in [Pohl, 1969] showed that search space can be reduced by a factor of
2, and in [Kaindl and Kainz, 1997] it was shown that combinations with goal-directed
search can be beneficial.

Multi-Level Approach. This approach takes advantage of hierarchical coarsenings of the
given graph, where additional edges have to be computed. These can be regarded as
distributed to multiple levels. Depending on the given query, only a small fraction
of these edges have to be considered to find a shortest path. Using this technique,
speed-up factors of more than 3.5 were observed for road map and public-transport
graphs [Holzer, 2003]. Timetable information queries could be improved by a factor of
11 (see [Schulz et al., 2002]), and also in [Jung and Pramanik, 2002] good improvement
for road maps is reported.

Shortest-Path Containers. These containers provide a necessary condition for each edge,
whether or not it has to be respected during the search. More precisely, the bounding
box of all nodes that can be reached on a shortest path using this edge is stored. Speed-
up factors in the range between 10 and 20 can be achieved [Wagner and Willhalm, 2003].

Our main focus is combination of these speed-up techniques. We selected only four tech-
niques in order to provide a detailed analysis of all possible combinations (the complexity of
the analysis grows exponentially with the number of techniques under investigation). How-
ever, we believe that hereby we cover the characteristics of most of the existing approaches:
Goal-directed search and shortest-path containers, as several other approaches, too, are only
applicable if a layout of the graph is provided, and multi-level approach and shortest-path
containers both require a preprocessing, calculating additional edges and containers, respec-
tively.

The combination of the four techniques is very natural, since all of the techniques modify
the search space of Dijkstra’s algorithm independently of each other: Goal-directed search
directs the search space towards the target of the search by modifying the edge lengths;
bidirectional search maintains two search spaces; the multi-level graph approach runs common
Dijkstra’s algorithm on a subgraph of the augmented input graph; and with shortest-path
containers, search space can be pruned by ignoring such edges that for sure do not contribute
to a shortest path.

The main question is whether the search space of a combination is better (i.e., smaller)
than the one of a single speed-up technique. Another point concerns the additional effort
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needed to reduce the search space. For example, with goal-directed search, edge weights have
to be calculated during the search. This additional effort usually increases the running time
per visited edge by a small constant factor. Considering a combination of techniques, the
constant factor per edge is higher than with a single technique, so there is a trade-off between
reduction of search space and the additional running time per edge in the search space.

The single techniques are, as mentioned above, heuristics in the sense that the reduction
of the search space cannot be proven in general. Hence, the same holds in particular for
a combination of such techniques, and the method of choice to answer the questions posed
above is an extensive experimental study of the combinations. Since even the single speed-up
techniques do not work equally well on all kinds of graphs, we consider several types of both
real-world and randomly generated graphs.

The next section contains, after some definitions, a description of the speed-up techniques
and shows in more detail how to combine them. Section 3 presents the experimental setup
and data sets for the statistics, and the belonging results are given in Section 4. Section 5,
finally, gives some conclusions.

2 Definitions and Problem Description

2.1 Definitions

A directed simple graph G is a pair (V,E), where V is the set of nodes and E ⊆ V × V the
set of edges in G. Throughout this paper, the number of nodes, |V |, is denoted by n and the
number of edges, |E|, by m.

A path in G is a sequence of nodes u1, . . . , uk such that (ui, ui+1) ∈ E for all 1 ≤ i < k.
Given non-negative edge lengths l : E → R

+

0
, the length of a path u1, . . . , uk is the sum of

weights of its edges,
∑k−1

i=1
l(ui, ui+1). The (single-source single-target) shortest-path problem

consists of finding a path of minimum length from a given source s ∈ V to a target t ∈ V .
A graph layout is a mapping L : V → R

2 of the graph’s nodes to the Euclidean plane.
For ease of notation, we will identify a node v ∈ V with its location L(v) in the plane. The
Euclidean distance between two nodes u, v ∈ V is then denoted by d(u, v).

2.2 Speed-up Techniques

Our base algorithm is Dijkstra’s algorithm using binary heaps as priority queue. In this
section, we provide a short description of the four speed-up techniques, whose combinations
are discussed in the next section. For a synopsis of the main features, cf. Table 1.

2.2.1 Goal-Directed Search (go)

This technique uses a potential function on the node set. The edge lengths are modified in
order to direct the graph search towards the target. Let λ be such a potential function. The
new length of an edge (v,w) is defined to be l(v,w) := l(v,w) − λ(v) + λ(w). The potential
must fulfill the condition that for each edge e, its new edge length l(e) is non-negative, in
order to guarantee optimal solutions.

In case edge lengths are Euclidean distances, the Euclidean distance d(u, t) of a node u to
the target t is a valid potential, due to the triangle inequality. Otherwise, a potential function
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orig prune info pre-time pre-space

go (✓) — potential — —
bi ✓ — — — —
ml — ✓ selections O(ln · T (SSSP))∗ O(ln2)∗

sc ✓ ✓ layout O(n · T (SSSP)) O(m)

Figure 1: Main features of the speed-up techniques: original graph used for routing, pruning
involved, additional information used, preprocessing time, space requirement of precomputed
information.

∗ see [Holzer et al., 2006] for tighter bounds.

can be defined as follows: let vmax denote the maximum “edge-speed” d(u, v)/l(e) over all
edges e = (u, v). The potential of a node u can now be defined as λ(u) = d(u, t)/vmax.

2.2.2 Bidirectional Search (bi)

Bidirectional search simultaneously applies the “normal,” or forward, variant of the algo-
rithm, starting at the source node, and a so-called reverse, or backward, variant of Dijkstra’s
algorithm, starting at the destination node. With the reverse variant, the algorithm is applied
to the reverse graph, i.e., a graph with the same node set V as that of the original graph, and
the reverse edge set E = {(u, v) | (v, u) ∈ E}. Let df (u) be the distance labels of the forward
search and db(u) the labels of the backward search. The algorithm can be terminated when
one node has been designated to be permanent by both the forward and the reverse algorithm.
Then the shortest path is determined by the node u with minimum value df (u) + db(u) and
can be composed of the one from the start node to u, found by the forward search, and the
edges reverted again on the path from the destination to u, found by the reverse search.

2.2.3 Multi-Level Approach (ml)

This speed-up technique requires a preprocessing step at which the input graph G = (V,E) is
decomposed into l + 1 (l ≥ 1) levels and enriched with additional edges representing shortest
paths between certain nodes. This decomposition depends on subsets Si of the graph’s node
set for each level, called selected nodes at level i: S0 := V ⊇ S1 ⊇ . . . ⊇ Sl. These node sets
can be determined on diverse criteria; with our implementation, they consist of the desired
numbers of nodes with highest degree in the graph, which has turned out to be an appropriate
criterion [Holzer, 2003].

There are three different types of edges being added to the graph: upward edges, going
from a node that is not selected at one level to a node selected at that level, downward edges,
going from selected to non-selected nodes, and level edges, passing between selected nodes at
one level. The weight of such an edge is assigned the length of a shortest path between the
end-nodes.

To find a shortest path between two nodes, then, it suffices for Dijkstra’s algorithm to
consider a relatively small subgraph of the “multi-level graph” (a certain set of upward and
of downward edges and a set of level edges passing at a maximal level that has to be taken
into account for the given source and target nodes).
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2.2.4 Shortest-Path Containers (sc)

This speed-up technique requires a preprocessing computing all shortest- path trees. For each
edge e ∈ E, we compute the set S(e) of those nodes to which a shortest path starts with edge
e. Using a given layout, we then store for each edge e ∈ E the bounding box of S(e) in an
associative array C with index set E.

It is then sufficient to perform Dijkstra’s algorithm on the subgraph induced by the edges
e ∈ E with the target node included in C[e]. This subgraph can be determined on the fly, by
excluding all other edges in the search. (One can think of shortest-path containers as traffic
signs which characterize the region that they lead to.)

A variation of this technique is introduced in [Schulz et al., 2000], where as geometric
objects angular sectors instead of bounding boxes were used, for application to a timetable
information system. An extensive study in [Wagner and Willhalm, 2003] showed that bound-
ing boxes are the best geometric objects in terms of running time and competitive with much
more complex geometric objects in terms of visited nodes.

2.3 Combining the Speed-up Techniques

In this section, we first outline the key notion of combining each pair of techniques and mo-
tivate afterwards that extending these to combinations including three or all four techniques
is not difficult.

2.3.1 Goal-Directed Search and Bidirectional Search

Combining goal-directed and bidirectional search is not as obvious as it may seem at first
glance. [Pohl, 1969] provides a counter-example for the fact that simple application of a
goal-directed search forward and backward yields a wrong termination condition. However,
the alternative condition proposed there is shown in [Kaindl and Kainz, 1997] to be quite
inefficient, as the search in each direction almost reaches the source of the other direction.
This often results in a slower algorithm.

To overcome these deficiencies, we simply use the very same edge weights l(v,w) :=
l(v,w)− λ(v) + λ(w) for both the forward and the backward search. With these weights, the
forward search is directed to the target t and the backward search has no preferred direction,
but favors edges that are directed towards t. This proceeding always computes shortest paths,
as an s-t-path is shortest independent of whether l or l is used for the edge weights.

2.3.2 Goal-Directed Search and Multi-Level Approach

As described in Section 2.2.3, the multi-level approach basically determines for each query a
subgraph of the multi-level graph on which Dijkstra’s algorithm is finally run. The computa-
tion of this subgraph does not affect edge lengths and thus goal-directed search can be simply
performed on it.

2.3.3 Goal-Directed Search and Shortest-Path Containers

Similar to the multi-level approach, the shortest-path containers approach determines for
a given query a subgraph of the original graph. Again, edge lengths are irrelevant for the
computation of the subgraph and goal-directed search can be applied offhand.
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gobi ml sc

Figure 2: Interdependencies of the speed-up techniques regarding preprocessing.

2.3.4 Bidirectional Search and Multi-Level Approach

Basically, bidirectional search can be applied to the subgraph defined by the multi-level ap-
proach. In our implementation, that subgraph is computed on the fly during Dijkstra’s
algorithm: for each node considered, the set of necessary outgoing edges is determined. To
perform a bidirectional search on the multi-level subgraph, a symmetric, backward version of
the subgraph computation has to be implemented: for each node considered in the backward
search, the incoming edges that are part of the subgraph have to be determined. Shortest
paths are guaranteed since bidirectional search is run on a subgraph that preserves optimality
and, by the additional edges, only contains supplementary information consistent with the
original graph.

2.3.5 Bidirectional Search and Shortest-Path Containers

In order to take advantage of shortest-path containers in both directions of a bidirectional
search, a second set of containers is needed. For each edge e ∈ E, we compute the set Sb(e)
of those nodes from which a shortest path ending with e exists. We store for each edge e ∈ E
the bounding box of Sb(e) in an associative array Cb with index set E. The forward search
checks whether the target is contained in C(e), the backward search, whether the source is in
Cb(e). It is easy to verify that by construction only such edges are pruned that do not form
part of any partial shortest path and thus of any shortest s-t-path.

2.3.6 Multi-Level Approach and Shortest-Path Containers

The multi-level approach enriches a given graph with additional edges. Each new edge (u1, uk)
represents a shortest path (u1, u2, . . . , uk) in G. We annotate such a new edge (u1, uk) with
C(u1, u2), the associated bounding box of the first edge on this path. This consistent labeling
of new edges, which represent shortcuts in the original graph, ensures still shortest paths.

2.3.7 Extension to Arbitrary Combinations

Extracting the essence from the above discussion, we now motivate that assembling any
combination of our speed-up techniques can be done in a straight-forward manner. To this
end, we order the techniques in such a way that it reflects their interdependencies when it
comes to preprocessing (cf. Figure 2); the actual steps to be taken for a specific combination
can then be seen from that ordering.

Bidirectional search requires supplementary information to be precomputed with both
the multi-level approach and shortest-path containers, while the multi-level technique entails
additional work for shortest-path container preprocessing. Including goal-directed search does
not affect preprocessing.

For justification of straight-forwardness of a new search algorithm, it suffices to verify
that each technique kicks in at a different spot and thus they do not impede one another:
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street

n 1444 3045 16471 20466 25982 38823 45852 45073 51510 79456
m 3060 7310 34530 42288 57620 79988 98098 91314 110676 172374

public transport

n 409 705 1660 2279 2399 4598 6884 10815 12070 14335
m 1215 1681 4327 6015 8008 14937 18601 29351 33728 39887

planar

n 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
m 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

waxman

n 938 1974 2951 3938 4949 5946 6943 7917 8882 9906
m 4070 9504 14506 19658 24474 29648 34764 39138 44208 48730

hierarchical

n 1021 2017 3014 4010 5007 6002 7025 8021 9016 10012
m 5814 10942 16138 21048 26064 31030 36124 41146 46246 51130

Table 1: Number of nodes and edges for all test graphs.

If including bidirectional search, we have to keep track of two search horizons and combine
partial shortest paths properly; with the multi-level approach, the search is performed on
a subgraph of the enriched graph instead of the original graph; under use of shortest-path
containers, some edges may (additionally) be pruned; and performing goal-directed search,
the lengths of the edges scanned are modified.

3 Experimental Setup

In this section, we provide details on the input data used, consisting of real-world and ran-
domly generated graphs, and on the execution of the experiments.

3.1 Data

3.1.1 Real-World Graphs

In our experiments we included two sets of graphs that stem from real applications. As in
other experimental work, it turned out that using realistic data is quite important, as the
performance of the algorithms strongly depends on the characteristics of the data. Note that
all our graphs are embedded either by geographic information or by construction.

Street Graphs. Our street graphs are networks of U.S. cities and their surroundings. These
graphs are bidirected, and edge lengths are Euclidean distances. The graphs are fairly
large and very sparse because bends are represented by polygonal lines. (With such a
representation of a street network, it is possible to efficiently find the nearest point in a
street by a point-to-point search.)

Public-Transport Graphs. A public-transport graph represents a network of trains, buses,
and other scheduled vehicles. The nodes of such a graph correspond to stations or stops,
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and there exists an edge between two nodes if there is a non-stop connection between
the respective stations. The weight of an edge is the average travel time of all vehicles
that contribute to this edge. In particular, the edge lengths are not Euclidean distances
in this set of graphs.

3.1.2 Random Graphs

We generated three sets of random graphs: planar, Waxman, and some kind of hierarchical
graphs. Each set consists of ten connected, bidirected graphs with (approximately) n = 1000·i
nodes (i = 1, . . . , 10) and an average out-degree of 2.5 (i.e., the graphs have approximately
5n edges).

Random Planar Graphs. For construction of random planar graphs, we used a genera-
tor provided by LEDA [Näher and Mehlhorn, 1999]. A given number, n, of nodes are
uniformly distributed in a square with a lateral length of 1, and a triangulation of the
nodes is computed. This yields a complete undirected planar graph. Finally, edges are
deleted at random until the graph contains 2.5 · n edges, and each of these is replaced
by two directed edges, one in either direction.

Random Waxman Graphs. Construction of these graphs is based on a random graph
model introduced by Waxman [Waxman, 1988]. We use this model in an attempt to
emulate one aspect of our public-transport graphs, the existance of long-distance edges,
i.e., edges linking rather far-apart nodes. As previous experiments showed, copying
node degrees from public-transport graphs does not suffice to obtain random graphs
with similar properties.

Input parameters to this model are the number of nodes n and two positive rational
numbers α and β. The nodes are again distributed uniformly in a square of a lateral
length of 1, and the probability that an edge (u, v) exists is β · exp(−d(u, v)/(

√
2α)).

Higher β values increase the edge density, while smaller α values increase the density
of short edges in relation to long edges. To ensure connectedness and bidirectedness
of the graphs, all nodes that do not belong to the largest connected component are
deleted (thus, slightly less than n nodes remain) and the graph is bidirected by insertion
of missing reverse edges. We set α = 0.01 and empirically determined that setting
β = 2.5 · 1620/n yields the wanted number of edges.

Hierarchical Graphs. Our motivation for including such a type of graph in our experiments
was that several real-world graph classes exhibit some kind of hierarchical structure; e.g.,
public-transport graphs as described above typically consist of few stations having great
node degrees, forming a coarse overall network or backbone, as will be referred to in the
following, while the rest of the nodes are more locally connected and have considerably
smaller degrees.

Our generated hierarchical graphs can be regarded as 5×5 grids, constructed roughly as
follows: Pick n/14 nodes for the backbone, distribute the remaining nodes uniformly to
the 25 grid cells, and associate each backbone node with one cell. Construct a Delaunay-
triangulation-based planar graph with an edge factor of 2.5 on the nodes of each cell
and the backbone nodes. For each cell, three nodes associated with it are linked to
nodes from that cell such that all degrees of backbone nodes exceed the greatest degree
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of all other nodes. Again, for each edge the respective back edge is inserted, and the
largest connected component of the entire graph thus obtained is finally returned.

3.2 Experiments

We implemented all combinations of speed-up techniques as described in Sections 2.2 and 2.3
in C++, using the graph and priority queue data structures of the LEDA library (version 4.4;
cf. [Näher and Mehlhorn, 1999]). The code was compiled with the GNU compiler (version
3.3), and the experiments were carried out on an Intel Xeon machine with 2.6 GHz and 2 GB
of memory, running Linux (kernel version 2.4).

For each graph and combination, we computed for a set of queries shortest paths, measur-
ing two types of performance: the mean values of the running times (CPU time in seconds)
and the number of nodes inserted in the priority queue (also called visited nodes in the fol-
lowing). The queries were chosen at random and the amount of them was determined such
that statistical relevance can be guaranteed (see also [Wagner and Willhalm, 2003]).

4 Experimental Results

The main outcome of our experimental study is shown in Figures 3 and 4. Further diagrams
that we used for our analysis are depicted in Figures 5–9. Each combination is referred to by
a 4-tuple of tokens: go (goal-directed), bi (bidirectional), ml (multi-level), sc (shortest-path
container), and -- if the respective technique is not used (e.g., go -- ml sc). In all figures, the
graphs are ordered as listed in Table 1.

The outcomes referring to one graph class with one combination of techniques are summa-
rized in the form of boxplots: the box represents the middle 50 percent of the respective values
(with the median marked as a small horizontal line), the whiskers, i.e., the upper and lower
bounds of the dashed lines, are the extremal outcomes within a range 1.5 times the height
of the box above and below the border of the box, respectively, and outliers, i.e., outcomes
lying beyond the whiskers, are drawn as circles.

We calculated two different values denoting relative speed-up: on the one hand, Figures 3–
4 show the speed-up that we achieved compared to plain Dijkstra, i.e., for each combination of
techniques the ratio of the performance of plain Dijkstra and the performance of Dijkstra with
the specific combination of techniques applied. There are separate figures for the number of
nodes and running time. The horizontal line in each of these as well as the remaining diagrams
marks the border between gain and loss in efficiency relative to plain Dijkstra.

On the other hand, for each of the Figures 5–8, we focus on one technique T and show for
each combination containing T the speed-up (with respect to the number of visited nodes)
that can be achieved compared to the combination without T . For example, when focusing
on bidirectional search and considering the combination go bi -- sc, say, we investigate by
which factor the performance gets better when the combination go bi -- bb is used instead of
go -- -- sc only.

In the following, we discuss, for each technique separately, how combinations with that
technique behave, and then turn to the relation of the two performance parameters measured,
the number of visited nodes and running time: We define the overhead of a combination to
be the ratio of running time and the number of visited nodes. In other words, the overhead
reflects the time spent per node.
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Figure 3: Speed-up relative to Dijkstra’s algorithm in terms of visited nodes.
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Figure 4: Speed-up relative to Dijkstra’s algorithm in terms of running time.
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4.1 Speed-up of the Combinations

4.1.1 Goal-Directed Search

Comparing the number of nodes visited with pure goal-directed search to that with plain
Dijkstra, speed-up varies a lot between the different types of graphs (cf. Figures 3 and 5): We
get a speed-up of about 2 for the planar graphs, and of 4 to 5 for the hierarchical and Waxman
graphs, which is surprisingly good compared to speed-up values of less than 2 observed with
the real-world graphs.

Adding goal-directed search to the multi-level approach performs a little worse than adding
it to plain Dijkstra and with bidirectional search, we get another slight deterioration. Adding
it to shortest-path containers is hardly beneficial (see also Figure 5).

Figure 4 reveals that, for real-world graphs, adding goal-directed search to any combina-
tion does not improve the running time. For generated graphs, however, for most combinations
running time decreases when goal-directed search is applied additionally. In particular, it is
advantageous to add it to a combination containing the multi-level approach. To conclude,
our experiments indicate that combining goal-directed search with the multi-level approach
is generally a good idea.

4.1.2 Bidirectional Search

Pure bidirectional search yields a speed-up of between 1.5 and 2 for the number of visited
nodes (cf. Figure 3) and for the running time (cf. Figure 4), for all types of graphs (for the
hierarchical graphs, the speed-up, of a factor of more than 2, is even better).

For combinations of bidirectional search with other speed-up techniques, the situation is
different and depends heavily on the type of graph, as Figure 6 shows: For street graphs,
bidirectional search almost always gives an actual speed-up compared to any combination of
techniques without bidirectional search. For Waxman and hierarchical graphs, almost none
of the combinations can be improved by additional application of bidirectional search. Only
shortest-path containers and the combination of shortest-path containers with goal-directed
search can always be improved through bidirectional search.

4.1.3 Multi-Level Approach

The multi-level approach crucially depends on the decomposition of the given graph, i.e., the
balancedness of the resulting multi-level graph. The Waxman graphs could not be decomposed
properly and therefore all combinations containing the multi-level approach yield speed-up
factors of less than 1 for the Waxman graphs, which means a slowing down (cf. Figure 4).

Thus, we consider only the remaining graph classes: with these graphs, pure multi-level
approach reduces the number of visited nodes to a similar extent, the median values of the
observed speed-up factors (cf. Figure 7) ranging between 9 and 12 for all graph classes,
which implies good decomposability, as required for the approach. Note that large ranges of
speed-up factors inside one graph class can be observed (consider, e.g., the public-transport
graphs in Figure 7). Reasons for this behavior are on the one hand the fact that the achieved
decompositions are not always of similar quality within one graph class (e.g., the French
railway network, with Paris as its center, is very different from the German railway network,
which is more evenly spread); on the other hand, the speed-up achieved with the multi-level
approach also depends on the size of the graph.
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Figure 5: Speed-up relative to the respective combination without goal-directed search in
terms of visited nodes.
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Figure 6: Speed-up relative to the respective combination without bidirectional search in
terms of visited nodes.
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Figure 7: Speed-up relative to the respective combination without multi-level approach in
terms of visited nodes.
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Figure 8: Speed-up relative to the respective combination without shortest-path containers
in terms of visited nodes.
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Adding the multi-level approach to goal-directed and bidirectional search and their com-
bination also results in good improvement for the number of nodes (cf. Figure 7). In com-
bination with shortest-path containers, the multi-level approach is beneficial only in the case
of street graphs.

Caused by the big overhead of the multi-level approach (cf. Figure 9), however, running
time cannot be improved in the same order of magnitude as the number of nodes (cf. Figure 4).
Also, the multi-level approach allows tuning of several parameters, such as the number of
levels and the choice of the selected nodes. This tuning crucially depends on the input
graph [Holzer, 2003, Holzer et al., 2006]. Hence, we believe that considerable improvement of
the presented results is possible if specific parameters are chosen for every single graph.

4.1.4 Shortest-Path Containers

Shortest-path containers work especially well when applied to planar graphs (see Figure 8);
actually, speed-up even increases with the size of the graph (which again yields large ranges of
speed-up factors within one graph class, as similarly observed with the multi-level approach).
For Waxman graphs, the situation is completely different: with graph size, speed-up gets
smaller (not shown in the diagrams). This can be explained by the fact that large Waxman
graphs have, due to construction, more long-distance edges than small ones. Because of this,
shortest paths become more tortuous and the bounding boxes contain more “wrong” nodes.

Figures 3, 4, and 8 show that throughout the different types of graphs, shortest-path con-
tainers individually as well as in combination with goal-directed and bidirectional search yield
exceptionally high speed-ups. Only the combinations that include the multi-level approach
cannot be improved that much.

4.2 Overhead

For goal-directed and bidirectional search, the overhead (time per visited node) is quite small,
while for shortest-path containers it is of a factor of about 2 compared to plain Dijkstra (cf.
Figure 9). The overhead caused by the multi-level approach is generally high and varies
quite a lot depending on the type of graph. As Waxman graphs do not decompose well, the
overhead for the multi-level approach is large and becomes even larger when the size of the
graph increases. For very large street graphs, the multi-level approach overhead increases
dramatically. We assume that it would be necessary to add another level for graphs of this
size.

It is also interesting to note that the relative overhead of the combination go bi ml -- is
smaller than that of pure multi-level—especially for the generated graphs.

5 Conclusion and Outlook

To summarize, we conclude that there are speed-up techniques that combine well and others
where speed-up does not scale. Our main result is that goal-directed search and multi-
level approach is a good combination and bidirectional search and shortest-path containers
complement each other.

For real-world graphs, the combination -- bi ml sc is the best choice as to the number of
visited nodes. In terms of running time, the winner is -- bi -- sc. For generated graphs, the
best combination is go bi -- sc for both the number of nodes and running time.
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Figure 9: Average running time per visited node in µs.
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When waiving an expensive preprocessing, the combination go bi -- -- is generally the
fastest heuristic with smallest search space—except for Waxman graphs, for which pure goal-
directed search is better. Actually, goal-directed search is the only speed-up technique that
works comparatively well for Waxman graphs. Because of this specific behavior, we conclude
that the planar and hierarchical graphs are a better approximation of the real-world graphs
than the Waxman graphs, which is also confirmed by the fact that with the multi-level
approach, all graphs except the Waxman graphs exhibit similar behavior.

It would be interesting to further investigate combinations with improved variants of the
approaches considered in this paper (e.g., in [Holzer et al., 2006] speed-up factors of up to 50
have been observed with road graphs in the multi-level approach) and other, very recently
developed speed-up techniques relying on preprocessed information (which have already been
mentioned briefly in the introduction). The relation of the four techniques under investigation
in this work to those other approaches is as follows:

(i) The ALT algorithm proposed in [Goldberg and Harrelson, 2005] improves goal-directed
search by precomputed shortest-path information from and to so-called “landmark nodes”.
The combination of this algorithm with bidirectional search was investigated in the same
work.

(ii) Approaches relying on hierarchical decomposition of the underlying graph by means
of edge-separators [Jung and Pramanik, 2002, Flinsenberg, 2004] are often applied to road
networks, where the edge separators are usually determined by topographical information.
Another approach relying on graph decompositions are the so-called hierarchically encoded
path views [Jing et al., 1998]. These techniques are very similar to the multi-level approach.

(iii) Techniques to divide a graph into regions and to store those very regions reachable
via an edge in bit-vectors attached to that edge [Köhler et al., 2004, Lauther, 2004] are closely
related to the shortest-path containers.

(iv) In the reach-based routing scheme [Gutman, 2004], for each vertex a “reach value”
(which intuitively reflects the lengths of shortest paths on which it lies) is computed be-
forehand and used during the online phase to speed up the shortest-path search. The
combination of reach-based routing with goal-directed search has been shown to be fruit-
ful [Goldberg et al., 2006]. In the latter work, also several improvements of the reach-based
routing are presented.

(v) Finally, we would like to mention a speed-up technique that precomputes highway
hierarchies [Sanders and Schultes, 2005]. In the online phase, depending on the distance
from the source and to the target, edges in lower levels of the hierarchy can be ignored. This
technique relies on a bidirectional variant of Dijkstra’s algorithm and is related to a variant
of reach-based routing that uses reach values for edges (cf. [Goldberg et al., 2006]).

Another starting point for future work is given by the observation that, except for bidi-
rectional search, the speed-up techniques under investigation in this work can be regarded
as a standard run of Dijkstra’s algorithm on a modified graph. From a shortest path in the
modified graph one can easily determine a shortest path in the original graph. It is an inter-
esting question whether the techniques can be applied directly, or in a modified fashion, to
improve also the running time of other shortest-path algorithms.

Furthermore, specialized priority queues used in Dijkstra’s algorithm have been shown
to be fast in practice [Dial, 1969, Goldberg, 2001a]. Using such queues would provide the
same results for the number of visited nodes. Running times, however, would be different and
therefore interesting to evaluate.
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