
Combining Speed-Up Techniques for
Shortest-Path Computations�

Martin Holzer, Frank Schulz, and Thomas Willhalm

Universität Karlsruhe, Fakultät für Informatik, Postfach 6980, 76128 Karlsruhe,
Germany.

{mholzer,fschulz,willhalm}@ira.uka.de

Abstract. Computing a shortest path from one node to another in a
directed graph is a very common task in practice. This problem is classi-
cally solved by Dijkstra’s algorithm. Many techniques are known to speed
up this algorithm heuristically, while optimality of the solution can still
be guaranteed. In most studies, such techniques are considered individ-
ually. The focus of our work is the combination of speed-up techniques
for Dijkstra’s algorithm. We consider all possible combinations of four
known techniques, namely goal-directed search, bi-directed search, multi-
level approach, and shortest-path bounding boxes, and show how these
can be implemented. In an extensive experimental study we compare
the performance of different combinations and analyze how the tech-
niques harmonize when applied jointly. Several real-world graphs from
road maps and public transport and two types of generated random
graphs are taken into account.

1 Introduction

We consider the problem of (repetitively) finding single-source single-target
shortest paths in large, sparse graphs. Typical applications of this problem in-
clude route planning systems for cars, bikes, and hikers [1,2] or scheduled ve-
hicles like trains and buses [3,4], spatial databases [5], and web searching [6].
Besides the classical algorithm by Dijkstra [7], with a worst-case running time of
O(m+n log n) using Fibonacci heaps [8], there are many recent algorithms that
solve variants and special cases of the shortest-path problem with better running
time (worst-case or average-case; see [9] for an experimental comparison, [10] for
a survey and some more recent work [11,12,13]).

It is common practice to improve the running time of Dijkstra’s algorithm
heuristically while correctness of the solution is still provable, i.e., it is guaranteed
that a shortest path is returned but not that the modified algorithm is faster.
In particular, we consider the following four speed-up techniques:

� This work was partially supported by the Human Potential Programme of the Euro-
pean Union under contract no. HPRN-CT-1999-00104 (AMORE) and by the DFG
under grant WA 654/12-1.

C.C. Ribeiro and S.L. Martins (Eds.): WEA 2004, LNCS 3059, pp. 269–284, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595.276 841.889] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: AbbrechenEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Error /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

270 M. Holzer, F. Schulz, and T. Willhalm

Goal-Directed Search modifies the given edge weights to favor edges leading
towards the target node [14,15]. With graphs from timetable information, a
speed-up in running time of a factor of roughly 1.5 is reported in [16].

Bi-Directed Search starts a second search backwards, from the target to the
source (see [17], Section 4.5). Both searches stop when their search horizons
meet. Experiments in [18] showed that the search space can be reduced by a
factor of 2, and in [19] it was shown that combinations with the goal-directed
search can be beneficial.

Multi-Level Approach takes advantage of hierarchical coarsenings of the giv-
en graph, where additional edges have to be computed. They can be regarded
as distributed to multiple levels. Depending on the given query, only a small
fraction of these edges has to be considered to find a shortest path. Using
this technique, speed-up factors of more than 3.5 have been observed for road
map and public transport graphs [20]. Timetable information queries could
be improved by a factor of 11 (see [21]), and also in [22] good improvements
for road maps are reported.

Shortest-Path Bounding Boxes provide a necessary condition for each edge,
if it has to be respected in the search. More precisely, the bounding box of
all nodes that can be reached on a shortest path using this edge is given.
Speed-up factors in the range between 10 and 20 can be achieved [23].

Goal-directed search and shortest-path bounding boxes are only applicable if a
layout of the graph is provided. Multi-level approach and shortest-path bounding
boxes both require a preprocessing, calculating additional edges and bounding
boxes, respectively. All these four techniques are tailored to Dijkstra’s algorithm.
They crucially depend on the fact that Dijkstra’s algorithm is label-setting and
that it can be terminated when the destination node is settled.

The focus of this paper is the combination of the four speed-up techniques.
We first show that, with more or less effort, all 24 = 16 combinations can be
implemented. Then, an extensive experimental study of their performance is
provided. Benchmarks were run on several real-world and generated graphs,
where operation counts as well as CPU time were measured.

The next section contains, after some definitions, a description of the speed-
up techniques and shows how to combine them. Section 3 presents the experi-
mental setup and data sets for our statistics, and the belonging results are given
in Section 4. Section 5, finally, gives some conclusions.

2 Definitions and Problem Description

2.1 Definitions

A directed simple graph G is a pair (V, E), where V is the set of nodes and
E ⊆ V × V the set of edges in G. Throughout this paper, the number of nodes,
|V |, is denoted by n and the number of edges, |E|, by m.

A path in G is a sequence of nodes u1, . . . , uk such that (ui, ui+1) ∈ E for all
1 ≤ i < k. Given non-negative edge lengths l : E → R

+
0 , the length of a path

Combining Speed-Up Techniques for Shortest-Path Computations 271

u1, . . . , uk is the sum of weights of its edges,
∑k−1

i=1 l(ui, ui+1). The (single-source
single-target) shortest-path problem consists of finding a path of minimum length
from a given source s ∈ V to a target t ∈ V .

A graph layout is a mapping L : V → R
2 of the graph’s nodes to the

Euclidean plane. For ease of notation, we will identify a node v ∈ V with its
location L(v) in the plane. The Euclidean distance between two nodes u, v ∈ V
is then denoted by d(u, v).

2.2 Speed-Up Techniques

Our base algorithm is Dijkstra’s algorithm using Fibonacci heaps as priority
queue. In this section, we provide a short description of the four speed-up tech-
niques, whose combinations are discussed in the next section.

Goal-Directed Search. This technique uses a potential function on the node
set. The edge lengths are modified in order to direct the graph search towards
the target. Let λ be such a potential function and l(e) be the length of e. The
new length of an edge (v, w) is defined to be l(v, w) := l(v, w) − λ(v) + λ(w).
The potential must fulfill the condition that for each edge e, its new edge length
l(e) is non-negative, in order to guarantee optimal solutions.

In case edge lengths are Euclidean distances, the Euclidean distance d(u, t)
of a node u to the target t is a valid potential, due to the triangular inequality.
Otherwise, a potential function can be defined as follows: let vmax denote the
maximum “edge-speed” d(u, v)/l(e), over all edges e = (u, v). The potential of
a node u can now be defined as λ(u) = d(u, t)/vmax.

Bi-Directed Search. The bi-directed search simultaneously applies the “nor-
mal”, or forward, variant of the algorithm, starting at the source node, and a
so-called reverse, or backward, variant of Dijkstra’s algorithm, starting at the
destination node. With the reverse variant, the algorithm is applied to the re-
verse graph, i.e., a graph with the same node set V as that of the original graph,
and the reverse edge set E = {(u, v) | (v, u) ∈ E}. Let df (u) be the distance
labels of the forward search and db(u) the labels of the backward search, respec-
tively. The algorithm can be terminated when one node has been designated to
be permanent by both the forward and the reverse algorithm. Then the shortest
path is determined by the node u with minimum value df (u) + db(u) and can
be composed of the one from the start node to u, found by the forward search,
and the edges reverted again on the path from the destination to u, found by
the reverse search.

Multi-Level Approach. This speed-up technique requires a preprocessing step
at which the input graph G = (V, E) is decomposed into l + 1 (l ≥ 1) levels
and enriched with additional edges representing shortest paths between certain
nodes. This decomposition depends on subsets Si of the graph’s node set for

272 M. Holzer, F. Schulz, and T. Willhalm

each level, called selected nodes at level i: S0 := V ⊇ S1 ⊇ . . . ⊇ Sl. These
node sets can be determined on diverse criteria; with our implementation, they
consist of the desired numbers of nodes with highest degree in the graph, which
has turned out to be an appropriate criterion [20].

There are three different types of edges being added to the graph: upward
edges, going from a node that is not selected at one level to a node selected at
that level, downward edges, going from selected to non-selected nodes, and level
edges, passing between selected nodes at one level. The weight of such an edge
is assigned the length of a shortest path between the end-nodes.

To find a shortest path between two nodes, then, it suffices for Dijkstra’s
algorithm to consider a relatively small subgraph of the “multi-level graph” (a
certain set of upward and of downward edges and a set of level edges passing
at a maximal level that has to be taken into account for the given source and
target nodes).

Shortest-Path Bounding Boxes. This speed-up technique requires a prepro-
cessing computing all shortest path trees. For each edge e ∈ E, we compute the
set S(e) of those nodes to which a shortest path starts with edge e. Using a
given layout, we then store for each edge e ∈ E the bounding box of S(e) in an
associative array BB with index set E.

It is then sufficient to perform Dijkstra’s algorithm on the subgraph induced
by the edges e ∈ E with the target node included in BB[e]. This subgraph can
be determined on the fly, by excluding all other edges in the search. (One can
think of bounding boxes as traffic signs which characterize the region that they
lead to.)

A variation of this technique has been introduced in [16], where as geometric
objects angular sectors instead of bounding boxes were used, for application to a
timetable information system. An extensive study in [23] showed that bounding
boxes are the fastest geometric objects in terms of running time, and competitive
with much more complex geometric objects in terms of visited nodes.

2.3 Combining the Speed-Up Techniques

In this section, we enlist for every pair of speed-up techniques how we combined
them. The extension to a combination of three or four techniques is straight
forward, once the problem of combining two of them is solved.

Goal-Directed Search and Bi-Directed Search. Combining goal-directed
and bi-directed search is not as obvious as it may seem at first glance. [18]
provides a counter-example for the fact that simple application of a goal-directed
search forward and backward yields a wrong termination condition. However, the
alternative condition proposed there has been shown in [19] to be quite inefficient,
as the search in each direction almost reaches the source of the other direction.
This often results in a slower algorithm.

Combining Speed-Up Techniques for Shortest-Path Computations 273

To overcome these deficiencies, we simply use the very same edge weights
l(v, w) := l(v, w) − λ(v) + λ(w) for both the forward and the backward search.
With these weights, the forward search is directed to the target t and the back-
ward search has no preferred direction, but favors edges that are directed to-
wards t. This should be (and indeed is) faster than each of the two speed-up
techniques. This combination computes a shortest path, because a shortest s-t-
path is the same for given edge weights l and edge weights modified according
to goal-directed search, l.

Goal-Directed Search and Multi-Level Approach. As described in Sec-
tion 2.2, the multi-level approach basically determines for each query a subgraph
of the multi-level graph, on which Dijkstra’s algorithm is run to compute a short-
est path. The computation of this subgraph does not involve edge lengths and
thus goal-directed search can be simply performed on it.

Goal-Directed Search and Shortest-Path Bounding Boxes. Similar to
the multi-level approach, the shortest-path bounding boxes approach determines
for a given query a subgraph of the original graph. Again, edge lengths are
irrelevant for the computation of the subgraph and goal-directed search can be
applied offhand.

Bi-Directed Search and Multi-Level Approach. Basically, bi-directed
search can be applied to the subgraph defined by the multi-level approach. In
our implementation, that subgraph is computed on the fly during Dijkstra’s al-
gorithm: for each node considered, the set of necessary outgoing edges is deter-
mined. If applying bi-directed search to the multi-level subgraph, a symmetric,
backward version of the subgraph computation has to be implemented: for each
node considered in the backward search, the incoming edges that are part of the
subgraph have to be determined.

Bi-Directed Search and Shortest-Path Bounding Boxes. In order to take
advantage of shortest-path bounding boxes in both directions of a bi-directional
search, a second set of bounding boxes is needed. For each edge e ∈ E, we
compute the set Sb(e) of those nodes from which a shortest path ending with e
exists. We store for each edge e ∈ E the bounding box of Sb(e) in an associative
array BBb with index set E. The forward search checks whether the target is
contained BB(e), the backward search, whether the source is in BBb(e).

Multi-Level Approach and Shortest-Path Bounding Boxes. The multi-
level approach enriches a given graph with additional edges. Each new edge
(u1, uk) represents a shortest path (u1, u2, . . . , uk) in G. We annotate such a
new edge (u1, uk) with BB(u1, u2), the associated bounding box of the first
edge on this path.

274 M. Holzer, F. Schulz, and T. Willhalm

Table 1. Number of nodes and edges for all test graphs

street
n 1444 3045 16471 20466 25982 38823 45852 45073 51510 79456
m 3060 7310 34530 42288 57620 79988 98098 91314 110676 172374

public transport
n 409 705 1660 2279 2399 4598 6884 10815 12070 14335
m 1215 1681 4327 6015 8008 14937 18601 29351 33728 39887

planar
n 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
m 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

waxman
n 938 1974 2951 3938 4949 5946 6943 7917 8882 9906
m 4070 9504 14506 19658 24474 29648 34764 39138 44208 48730

3 Experimental Setup

In this section, we provide details on the input data used, consisting of real-world
and randomly generated graphs, and on the execution of the experiments.

3.1 Data

Real-World Graphs. In our experiments we included a set of graphs that stem
from real applications. As in other experimental work, it turned out that using
realistic data is quite important as the performance of the algorithms strongly
depends on the characteristics of the data.

Street Graphs. Our street graphs are street networks of US cities and their
surroundings. These graphs are bi-directed, and edge lengths are Euclidean
distances. The graphs are fairly large and very sparse because bends are rep-
resented by polygonal lines. (With such a representation of a street network,
it is possible to efficiently find the nearest point in a street by a point-to-point
search.)

Public Transport Graphs. A public transport graph represents a network
of trains, buses, and other scheduled vehicles. The nodes of such a graph
correspond to stations or stops, and there exists an edge between two nodes
if there is a non-stop connection between the respective stations. The weight
of an edge is the average travel time of all vehicles that contribute to this
edge. In particular, the edge lengths are not Euclidean distances in this set
of graphs.

Random Graphs. We generated two sets of random graphs that have an
estimated average out-degree of 2.5 (which corresponds to the average degree
in the real-world graphs). Each set consists of ten connected, bi-directed graphs
with (approximately) 1000 · i nodes (i = 1, . . . , 10).

Combining Speed-Up Techniques for Shortest-Path Computations 275

Random Planar Graphs. For the construction of random planar graphs, we
used a generator provided by LEDA [24]. A given number of n nodes are uni-
formly distributed in a square with a lateral length of 1, and a triangulation
of the nodes is computed. This yields a complete undirected planar graph.
Finally, edges are deleted at random until the graph contains 2.5 · n edges,
and each of these is replaced by two directed edges, one in either direction.

Random Waxman Graphs. The construction of these graphs is based on a
random graph model introduced by Waxman [25]. Input parameters are the
number of nodes n and two positive rational numbers α and β. The nodes
are again uniformly distributed in a square of a lateral length of 1, and the
probability that an edge (u, v) exists is β · exp(−d(u, v)/(

√
2α)). Higher β

values increase the edge density, while smaller α values increase the den-
sity of short edges in relation to long edges. To ensure connectedness and
bi-directedness of the graphs, all nodes that do not belong to the largest
connected component are deleted (thus, slightly less than n nodes remain)
and the graph is bi-directed by insertion of missing reverse edges. We set
α = 0.01 and empirically determined that setting β = 2.5 · 1620/n yields an
average degree of 2.5, as wished.

3.2 Experiments

We have implemented all combinations of speed-up techniques as described in
Sections 2.2 and 2.3 in C++, using the graph and Fibonacci heap data structures
of the LEDA library [24] (version 4.4). The code was compiled with the GNU
compiler (version 3.3), and experiments were run on an Intel Xeon machine with
2.6 GHz and 2 GB of memory, running Linux (kernel version 2.4).

For each graph and combination, we computed for a set of queries shortest
paths, measuring two types of performance: the mean values of the running times
(CPU time in seconds) and the number of nodes inserted in the priority queue.
The queries were chosen at random and the amount of them was determined
such that statistical relevance can be guaranteed (see also [23]).

4 Experimental Results

The outcome of the experimental study is shown in Figures 1–4. Further dia-
grams that we used for our analysis are depicted in Figures 5–10. Each combina-
tion is referred to by a 4-tuple of shortcuts: go (goal-directed), bi (bi-directed),
ml (multi-level), bb (bounding box), and xx if the respective technique is not
used (e.g., go-bi-xx-bb). In all figures, the graphs are ordered by size, as listed
in Table 1.

We calculated two different values denoting relative speed-up: on the one
hand, Figures 1–4 show the speed-up that we achieved compared to plain Di-
jkstra, i.e., for each combination of techniques the ratio of the performance of
plain Dijkstra and the performance of Dijkstra with the specific combination of

276 M. Holzer, F. Schulz, and T. Willhalm

0
20

40
60

80
10

0
12

0

xx
-x

x-
xx

-x
x

go
-x

x-
xx

-x
x

xx
-b

i-
xx

-x
x

go
-b

i-
xx

-x
x

xx
-x

x-
ml

-x
x

go
-x

x-
ml

-x
x

xx
-b

i-
ml

-x
x

go
-b

i-
ml

-x
x

xx
-x

x-
xx

-b
b

go
-x

x-
xx

-b
b

xx
-b

i-
xx

-b
b

go
-b

i-
xx

-b
b

xx
-x

x-
ml

-b
b

go
-x

x-
ml

-b
b

xx
-b

i-
ml

-b
b

go
-b

i-
ml

-b
b

Fig. 1. Speed-up relative to Dijkstra’s algorithm in terms of visited nodes for real-world
graphs (in this order: street graphs in red and public transport graphs in blue)

0
50

10
0

15
0

xx
-x

x-
xx

-x
x

go
-x

x-
xx

-x
x

xx
-b

i-
xx

-x
x

go
-b

i-
xx

-x
x

xx
-x

x-
ml

-x
x

go
-x

x-
ml

-x
x

xx
-b

i-
ml

-x
x

go
-b

i-
ml

-x
x

xx
-x

x-
xx

-b
b

go
-x

x-
xx

-b
b

xx
-b

i-
xx

-b
b

go
-b

i-
xx

-b
b

xx
-x

x-
ml

-b
b

go
-x

x-
ml

-b
b

xx
-b

i-
ml

-b
b

go
-b

i-
ml

-b
b

Fig. 2. Speed-up relative to Dijkstra’s algorithm in terms of visited nodes for generated
graphs (in this order: random planar graphs in yellow and random Waxman graphs in
green)

Combining Speed-Up Techniques for Shortest-Path Computations 277

0
5

10
15

20

xx
-x

x-
xx

-x
x

go
-x

x-
xx

-x
x

xx
-b

i-
xx

-x
x

go
-b

i-
xx

-x
x

xx
-x

x-
ml

-x
x

go
-x

x-
ml

-x
x

xx
-b

i-
ml

-x
x

go
-b

i-
ml

-x
x

xx
-x

x-
xx

-b
b

go
-x

x-
xx

-b
b

xx
-b

i-
xx

-b
b

go
-b

i-
xx

-b
b

xx
-x

x-
ml

-b
b

go
-x

x-
ml

-b
b

xx
-b

i-
ml

-b
b

go
-b

i-
ml

-b
b

Fig. 3. Speed-up relative to Dijkstra’s algorithm in terms of running time for real-world
graphs (in this order: street graphs in red and public transport graphs in blue)

0
5

10
15

20
25

30
35

xx
-x

x-
xx

-x
x

go
-x

x-
xx

-x
x

xx
-b

i-
xx

-x
x

go
-b

i-
xx

-x
x

xx
-x

x-
ml

-x
x

go
-x

x-
ml

-x
x

xx
-b

i-
ml

-x
x

go
-b

i-
ml

-x
x

xx
-x

x-
xx

-b
b

go
-x

x-
xx

-b
b

xx
-b

i-
xx

-b
b

go
-b

i-
xx

-b
b

xx
-x

x-
ml

-b
b

go
-x

x-
ml

-b
b

xx
-b

i-
ml

-b
b

go
-b

i-
ml

-b
b

Fig. 4. Speed-up relative to Dijkstra’s algorithm in terms of running time for generated
graphs (in this order: random planar graphs in yellow and random Waxman graphs in
green)

278 M. Holzer, F. Schulz, and T. Willhalm

techniques applied. There are separate figures for real-world and random graphs,
for the number of nodes and running time, respectively.

On the other hand, for each of the Figures 5–8, we focus on one technique T
and show for each combination containing T the speed-up that can be achieved
compared to the combination without T . (Because of lack of space only figures
dealing with the number of visited nodes are depicted.) For example, when focus-
ing on bi-directed search and considering the combination go-bi-xx-bb, say, we
investigate by which factor the performance gets better when the combination
go-bi-xx-bb is used instead of go-xx-xx-bb only.

In the following, we discuss, for each technique separately, how combinations
with the specific technique behave, and then turn to the relation of the two
performance parameters measured, the number of visited nodes and running
time: we define the overhead of a combination of techniques to be the ratio of
running time and the number of visited nodes. In other words, the overhead
reflects the time spent per node.

4.1 Speed-Up of the Combinations

Goal-Directed Search. Individually comparing goal-directed search with plain
Dijkstra (Figure 5), speed-up varies a lot between the different types of graphs:
Considering the random graphs, we get a speed-up of about 2 for planar graphs
but of up to 5 for the Waxman graphs, which is quite surprising. Only little
speed-up, of less than 2, can be observed for the real-world graphs.

Concerning the number of visited nodes, adding goal-directed search to the
multi-level approach is slightly worse than adding it to plain Dijkstra and with
bi-directed search, we get another slight deterioration. Adding it to bounding
boxes (and combinations including bounding boxes) is hardly beneficial.

For real-world graphs, adding goal-directed search to any combination does
not improve the running time. For generated graphs, however, running time
decreases. In particular, it is advantageous to add it to a combination containing
multi-level approach. We conclude that combining goal-directed search with the
multi-level approach generally seems to be a good idea.

Bi-Directed Search. Bi-directed search individually gives a speed-up of about
1.5 for the number of visited nodes (see Figure 6) and for the running time,
for all types of graphs. For combinations of bi-directed search with other speed-
up techniques, the situation is different: For the generated graphs, neither the
number of visited nodes nor the running time improves when bi-directed search
is applied additionally to goal-directed search. However, running time improves
with the combination containing the multi-level approach, and also combining
bi-directed search with bounding boxes works very well. In the latter case, the
speed-up is about 1.5 (as good as the speed-up of individual bi-directed search)
for all types of graphs.

Combining Speed-Up Techniques for Shortest-Path Computations 279

0
1

2
3

4
5

go
-x

x-
xx

-x
x

go
-b

i-
xx

-x
x

go
-x

x-
m

l-
xx

go
-b

i-
m

l-
xx

go
-x

x-
xx

-b
b

go
-b

i-
xx

-b
b

go
-x

x-
m

l-
bb

go
-b

i-
m

l-
bb

Fig. 5. Speed-up relative to the combination without goal-directed search in terms
of visited nodes (in this order: street graphs in red, public transport graphs in blue,
random planar graphs in yellow, and random Waxman graphs in green)

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

xx
-b

i-
xx

-x
x

go
-b

i-
xx

-x
x

xx
-b

i-
m

l-
xx

go
-b

i-
m

l-
xx

xx
-b

i-
xx

-b
b

go
-b

i-
xx

-b
b

xx
-b

i-
m

l-
bb

go
-b

i-
m

l-
bb

Fig. 6. Speed-up relative to the combination without bi-directed search in terms of
visited nodes (in this order: street graphs in red, public transport graphs in blue,
random planar graphs in yellow, and random Waxman graphs in green)

280 M. Holzer, F. Schulz, and T. Willhalm

0
2

4
6

8
10

12

xx
-x

x-
m

l-
xx

go
-x

x-
m

l-
xx

xx
-b

i-
m

l-
xx

go
-b

i-
m

l-
xx

xx
-x

x-
m

l-
bb

go
-x

x-
m

l-
bb

xx
-b

i-
m

l-
bb

go
-b

i-
m

l-
bb

Fig. 7. Speed-up relative to the combination without multi-level approach in terms
of visited nodes (in this order: street graphs in red, public transport graphs in blue,
random planar graphs in yellow, and random Waxman graphs in green)

0
20

40
60

80
10

0

xx
-x

x-
xx

-b
b

go
-x

x-
xx

-b
b

xx
-b

i-
xx

-b
b

go
-b

i-
xx

-b
b

xx
-x

x-
m

l-
bb

go
-x

x-
m

l-
bb

xx
-b

i-
m

l-
bb

go
-b

i-
m

l-
bb

Fig. 8. Speed-up relative to the combination without shortest-path bounding boxes in
terms of visited nodes (in this order: street graphs in red, public transport graphs in
blue, random planar graphs in yellow, and random Waxman graphs in green)

Combining Speed-Up Techniques for Shortest-Path Computations 281

Multi-Level Approach. The multi-level approach crucially depends on the
decomposition of the graph. The Waxman graphs could not be decomposed
properly by the multi-level approach, and therefore all combinations containing
the latter yield speed-up factors of less than 1, which means a slowing down.
Thus we consider only the remaining graph classes.

Adding multi-levels to goal-directed and bi-directed search and their combi-
nation gives a good improvement in the range between 5 and 12 for the number
of nodes (see Figure 7). Caused by the big overhead of the multi-level approach,
however, we get a considerable improvement in running time only for the real-
world graphs. In combination with bounding boxes, the multi-level approach is
beneficial only for the number of visited nodes in the case of street graphs.

The multi-level approach allows tuning of several parameters, such as the
number of levels and the choice of the selected nodes. The tuning crucially de-
pends on the input graph [20]. Hence, we believe that considerable improvements
of the presented results are possible if specific parameters are chosen for every
single graph.

Shortest-Path Bounding Boxes. Shortest-path bounding boxes work espe-
cially well when applied to planar graphs, actually speed-up even increases with
the size of the graph (see Figure 8). For Waxman graphs, the situation is com-
pletely different: with the graph size the speed-up gets smaller. This can be ex-
plained by the fact that large Waxman graphs have, due to construction, more
long-distance edges than small ones. Because of this, shortest paths become more
tortuous and the bounding boxes contain more “wrong” nodes.

Throughout the different types of graphs, bounding boxes individually as well
as in combination with goal-directed and bi-directed search yield exceptionally
high speed-ups. Only the combinations that include the multi-level approach
cannot be improved that much.

4.2 Overhead

For goal-directed and bi-directed search, the overhead (time per visited node)
is quite small, while for bounding boxes it is a factor of about 2 compared to
plain Dijkstra (see Figures 9 and 10). The overhead caused by the multi-level
approach is generally high and quite different, depending on the type of graph.
As Waxman graphs do not decompose well, the overhead for the multi-level ap-
proach is large and becomes even larger when the size of the graph increases.
For very large street graphs, the multi-level approach overhead increases dra-
matically. We assume that it would be necessary to add a third level for graphs
of this size.

It is also interesting to note that the relative overhead of the combina-
tion goal-directed, bi-directed, and multi-level is smaller than just multi-level
—especially for the generated graphs.

282 M. Holzer, F. Schulz, and T. Willhalm

0
50

10
0

15
0

xx
-x

x-
xx

-x
x

go
-x

x-
xx

-x
x

xx
-b

i-
xx

-x
x

go
-b

i-
xx

-x
x

xx
-x

x-
ml

-x
x

go
-x

x-
ml

-x
x

xx
-b

i-
ml

-x
x

go
-b

i-
ml

-x
x

xx
-x

x-
xx

-b
b

go
-x

x-
xx

-b
b

xx
-b

i-
xx

-b
b

go
-b

i-
xx

-b
b

xx
-x

x-
ml

-b
b

go
-x

x-
ml

-b
b

xx
-b

i-
ml

-b
b

go
-b

i-
ml

-b
b

Fig. 9. Average running time per visited node in µs for real-world graphs (in this order:
street graphs in red and public transport graphs in blue)

0
50

10
0

15
0

20
0

xx
-x

x-
xx

-x
x

go
-x

x-
xx

-x
x

xx
-b

i-
xx

-x
x

go
-b

i-
xx

-x
x

xx
-x

x-
ml

-x
x

go
-x

x-
ml

-x
x

xx
-b

i-
ml

-x
x

go
-b

i-
ml

-x
x

xx
-x

x-
xx

-b
b

go
-x

x-
xx

-b
b

xx
-b

i-
xx

-b
b

go
-b

i-
xx

-b
b

xx
-x

x-
ml

-b
b

go
-x

x-
ml

-b
b

xx
-b

i-
ml

-b
b

go
-b

i-
ml

-b
b

Fig. 10. Average running time per visited node in µs for generated graphs (in this
order: random planar graphs in yellow and random Waxman graphs in green)

Combining Speed-Up Techniques for Shortest-Path Computations 283

5 Conclusion and Outlook

To summarize, we conclude that there are speed-up techniques that combine
well and others where speed-up does not scale. Our result is that goal-directed
search and multi-level approach is a good combination and bi-directed search
with shortest-path bounding boxes complement each other.

For real-world graphs, a combination including bi-directed search, multi-level,
and bounding boxes is the best choice as to the number of visited nodes. In terms
of running time, the winner is bi-directed search in combination with bounding
boxes. For generated graphs, the best combination is goal-directed, bi-directed,
and bounding boxes for both the number of nodes and running time.

Without an expensive preprocessing, the combination of goal-directed and
bi-directed search is generally the fastest algorithm with smallest search space—
except for Waxman graphs. For these graphs, pure goal-directed is better than
the combination with bi-directed search. Actually, goal-directed search is the
only speed-up technique that works comparatively well for Waxman graphs.
Because of this different behaviour, we conclude that planar graphs are a bet-
ter approximation of the real-world graphs than Waxman graphs (although the
public transport graphs are not planar).

Except bi-directed search, the speed-up techniques define a modified graph
in which a shortest path is searched. From this shortest path one can easily
determine a shortest path in the original graph. It is an interesting question
whether the techniques can be applied directly, or modified, to improve also the
running time of other shortest-path algorithms.

Furthermore, specialized priority queues used in Dijkstra’s algorithm have
been shown to be fast in practice [26,27]. Using such queues would provide the
same results for the number of visited nodes. Running times, however, would be
different and therefore interesting to evaluate.

References

1. Zhan, F.B., Noon, C.E.: A comparison between label-setting and label-correcting
algorithms for computing one-to-one shortest paths. Journal of Geographic Infor-
mation and Decision Analysis 4 (2000)

2. Barrett, C., Bisset, K., Jacob, R., Konjevod, G., Marathe, M.: Classical and con-
temporary shortest path problems in road networks: Implementation and experi-
mental analysis of the TRANSIMS router. In: Proc. 10th European Symposium
on Algorithms (ESA). Volume 2461 of LNCS., Springer (2002) 126–138

3. Nachtigall, K.: Time depending shortest-path problems with applications to rail-
way networks. European Journal of Operational Research 83 (1995) 154–166

4. Preuss, T., Syrbe, J.H.: An integrated traffic information system. In: Proc. 6th
Int. Conf. Appl. Computer Networking in Architecture, Construction, Design, Civil
Eng., and Urban Planning (europIA ’97). (1997)

5. Shekhar, S., Fetterer, A., Goyal, B.: Materialization trade-offs in hierarchical short-
est path algorithms. In: Proc. Symp. on Large Spatial Databases. (1997) 94–111

6. Barrett, C., Jacob, R., Marathe, M.: Formal-language-constrained path problems.
SIAM Journal on Computing 30 (2000) 809–837

284 M. Holzer, F. Schulz, and T. Willhalm

7. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1 (1959) 269–271

8. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network
optimization algorithms. Journal of the ACM 34 (1987) 596–615

9. Cherkassky, B.V., Goldberg, A.V., Radzik, T.: Shortest paths algorithms: Theory
and experimental evaluation. Mathematical Programming 73 (1996) 129–174

10. Zwick, U.: Exact and approximate distances in graphs - a survey. In: Proc. 9th
European Symposium on Algorithms (ESA). LNCS, Springer (2001) 33–48

11. Goldberg, A.V.: A simple shortest path algorithm with linear average time. In:
Proc. 9th European Symposium on Algorithms (ESA). Volume 2161 of LNCS.,
Springer (2001) 230–241

12. Meyer, U.: Single-source shortest-paths on arbitrary directed graphs in linear
average-case time. In: Proc. 12th Symp. on Discrete Algorithms. (2001) 797–806

13. Pettie, S., Ramachandran, V., Sridhar, S.: Experimental evaluation of a new short-
est path algorithm. In: Proc. Algorithm Engineering and Experiments (ALENEX).
Volume 2409 of LNCS., Springer (2002) 126–142

14. Hart, P., Nilsson, N.J., Raphael, B.A.: A formal basis for the heuristic determina-
tion of minimum cost paths. IEEE Trans. Sys. Sci. Cybernet. 2 (1968)

15. Shekhar, S., Kohli, A., Coyle, M.: Path computation algorithms for advanced
traveler information system (ATIS). In: Proc. 9th IEEE Int. Conf. Data Eng.
(1993) 31–39

16. Schulz, F., Wagner, D., Weihe, K.: Dijkstra’s algorithm on-line: An empirical case
study from public railroad transport. ACM Journal of Exp. Algorithmics 5 (2000)

17. Ahuja, R., Magnanti, T., Orlin, J.: Network Flows. Prentice–Hall (1993)
18. Pohl, I.: Bi-directional and heuristic search in path problems. Technical Report

104, Stanford Linear Accelerator Center, Stanford, California (1969)
19. Kaindl, H., Kainz, G.: Bidirectional heuristic search reconsidered. Journal of

Artificial Intelligence Research 7 (1997) 283–317
20. Holzer, M.: Hierarchical speed-up techniques for shortest-path algorithms. Tech-

nical report, Dept. of Informatics, University of Konstanz, Germany (2003)
http://www.ub.uni-konstanz.de/kops/volltexte/2003/1038/.

21. Schulz, F., Wagner, D., Zaroliagis, C.: Using multi-level graphs for timetable in-
formation in railway systems. In: Proc. 4th Workshop on Algorithm Engineering
and Experiments (ALENEX). Volume 2409 of LNCS., Springer (2002) 43–59

22. Jung, S., Pramanik, S.: An efficient path computation model for hierarchically
structured topographical road maps. IEEE Transactions on Knowledge and Data
Engineering 14 (2002) 1029–1046

23. Wagner, D., Willhalm, T.: Geometric speed-up techniques for finding shortest
paths in large sparse graphs. In: Proc. 11th European Symposium on Algorithms
(ESA). Volume 2832 of LNCS., Springer (2003) 776–787

24. Näher, S., Mehlhorn, K.: The LEDA Platform of Combinatorial and Geomet-
ric Computing. Cambridge University Press (1999) (http://www.algorithmic-
solutions.com).

25. Waxman, B.M.: Routing of multipoint connections. IEEE Journal on Selected
Areas in Communications 6 (1988)

26. Dial, R.: Algorithm 360: Shortest path forest with topological ordering. Commu-
nications of ACM 12 (1969) 632–633

27. Goldberg, A.V.: Shortest path algorithms: Engineering aspects. In: Proc. Inter-
national Symposium on Algorithms and Computation (ISAAC). Volume 2223 of
LNCS., Springer (2001) 502–513

	Introduction
	Definitions and Problem Description
	Definitions
	Speed-Up Techniques
	Combining the Speed-Up Techniques

	Experimental Setup
	Data
	Experiments

	Experimental Results
	Speed-Up of the Combinations
	Overhead

	Conclusion and Outlook

