
Clustering Dynamic Graphs
with Guaranteed Quality

Diplomarbeit von Tanja Hartmann
Thesis of Tanja Hartmann

15th of October 2008

Supervisors: Prof. Dr. Dorothea Wagner and
Dipl.-Math.-tech. Robert Görke

Institute of Theoretical Informatics

Universität Karlsruhe (TH)

The graph shown on the title page in parts models the e-mail correspondence be-
tween members of the Fakultät für Informatik at the Universität Karlsruhe (TH).
The vertices represent the individuals sending and receiving e-mails, the edges are
weighted by the number of exchanged e-mails. This graph illustrates an intermedi-
ate instance occurring during the experimental analysis in Chapter 7, Section 7.2.

Acknowledgments

First of all I would like to thank Prof. Dr. Dorothea Wagner for giving me the
possibility to create this thesis. She further gave me the chance to visit several
conferences, which was a great experience and yielded helpful impulses. I would also
like to thank Robert Görke, who continuously supported my work by annotating
and discussing my written results. I especially enjoyed to write this work in a foreign
language. Thus I gained plenty of experience and insight. Finally I would like to
address special thanks to my family for giving me the possibility to spend a second
period at university and fulfill a dream.

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig verfasst und die
vorgestellten Ergebnisse ohne die Hilfe Dritter erarbeitet habe. Ich habe auf keine
anderen als die angegebenen Quellen und Hilfsmittel zurückgegriffen.

Tanja Hartmann
Karlsruhe, den 15. Oktober 2008

Abstract

This work is aimed at exploring how a clustering with a guaranteed clustering qual-
ity can efficiently be realized on fully dynamic graphs. To this end we concentrate on
the specific cut-clustering method of Flake et al. [FTT04], as this method guarantees
a clustering quality resulting from the structure of minimum-cut trees. In the first
part of this work we analyze but disprove an approach of Saha and Mitra [SM06],
who tried to dynamically extend the cut-clustering method of Flake et al. As a
consequence the second part of this work is aimed at developing new algorithms
for updating clusterings in undirected graphs based on the cut-clustering method.
As the cut-clustering method uses minimum-cut trees to cluster graphs, we at first
give some insights into dynamically extending the Gomory-Hu method [GH61], a
method for calculating those trees, and formulate according algorithms. Abbreviat-
ing these algorithms, which consider complete minimum-cut trees, finally yields four
new, correct and effort saving algorithms for updating clusterings, distinguished by
elementary modifications.

Zusammenfassung

Diese Arbeit beschäftigt sich mit dem Clustern dynamischer Graphen und in diesem
Zusammenhang mit einem speziellen Algorithmus, vorgestellt von Flake et
al. [FTT04]. Dieser Algorithmus, seine Entwickler nennen ihn cut-clustering Al-
gorithmus, ist einer von wenigen Clusteralgorithmen, für deren Ergebnis eine Güte-
garantie beweisbar ist. Die Gütegarantie des cut-clustering Algorithmus gründet
auf speziellen Eigenschaften minimaler Schnittbäume.

Diese Arbeit umfasst zwei übergeordnete Themenblöcke. Der erste Themenblock
analysiert einen bereits bestehenden Ansatz zur Dynamisierung des cut-clustering
Algorithmus, entwickelt von Saha und Mitra [SM06]. Ergebnis dieser Analyse ist
jedoch die Widerlegung dieses Ansatzes, der neben unvollständigen Beweisen vor
allem einen weitreichenden methodischen Fehler aufweist. Die vorliegende Arbeit
vervollständigt die Beweisführung von Saha und Mitra in Teilen.

Als Konsequenz der Widerlegung des Ansatzes von Saha und Mitra widmet
sich der zweite Themenblock der Frage, wie man die Idee des cut-clustering Al-
gorithmus von Flake et al. auf dynamische Graphen übertragen kann. Dabei steht
zunächst die Gomory-Hu Methode [GH61] zur Berechnung minimaler Schnittbäume
im Vordergrund, da minimale Schnittbäume die Basis des cut-clustering Algorith-
mus bilden. Diese Arbeit skizziert eine Idee zur Dynamisierung der Gomory-Hu
Methode und leitet daraus einen neuen Ansatz zum Clustern dynamischer Graphen
unter Beibehaltung der gegebenen Gütegarantie ab.

Die Implementierung der Gomory-Hu Methode ist sehr aufwändig, da diese
Methode kreuzungsfreie minimale u-v-Schnitte berechnet und zu diesem Zweck
unter großem Aufwand Knoten kontrahiert. Gusfield [Gus90] jedoch zeigt, dass
die Kreuzungsfreiheit der Schnitte zur Konstruktion eines minimalen Schnittbaums
nicht zwingend notwendig ist. Daraus entwickelt er eine einfacher zu implemen-
tierende Technik der Baumkonstruktion. Leider lässt sich Gusfields Vorgehensweise
nicht ohne Weiteres auf die in dieser Arbeit vorgestellte dynamische Variante der
Gomory-Hu Methode übertragen. Die Verwendung sich kreuzender Schnitte zur
dynamischen Aktualisierung von minimalen Schnittbäumen bedarf eines erneuten
Beweises des zentralen Theorems in Gusfields Ansatz für eine allgemeinere Situation.
Abschnitt 4.2 stellt Gusfields Technik vor und erbringt den nötigen Zusatzbeweis.

Im Rahmen der dynamischen Berechnung von minimalen Schnittbäumen unter-
sucht diese Arbeit außerdem verschiedene Möglichkeiten zur Aktualisierung einzel-
ner minimaler u-v-Schnitte. Die Diskussion der Einsatzmöglichkeiten dieser Ak-
tualisierungstechniken im Zusammenhang mit dynamischen minimalen Schnittbäu-
men zeigt jedoch Grenzen auf, welche aus der iterativen Konstruktion minimaler
Schnittbäume resultieren. Der Großteil der minimalen u-v-Schnitte, die ein mini-
maler Schnittbaum repräsentiert, wird nicht explizit berechnet, sondern leitet sich
aus seiner iterativen Konstruktion ab. Dies wiederum erschwert eine dynamische
Aktualisierung jener u-v-Schnitte mit Techniken, die auf einer dynamischen Aktu-
alisierung zugehöriger maximaler Flüsse beruhen.

Zum Clustern von Graphen mit Hilfe des cut-clustering Algorithmus von Flake et
al. ist die Berechnung eines kompletten minimalen Schnittbaumes jedoch nicht zwin-
gend notwendig. Meist kann die gewünschte Clusterung bereits vor Ende der Baum-
berechnung abgelesen werden. Das Ergebnis dieser Arbeit ist daher eine neue Meth-
ode zum Clustern dynamischer Graphen basierend auf dem cut-clustering Algorith-
mus, die im Wesentlichen eine gekürzte Version des zuvor entwickelten dynamischen

Algorithmus zum Aktualisieren minimaler Schnittbäume ist. Vorteil dieser neuen
Clustermethode ist, im Vergleich zur kompletten Clusterneuberechnung, das Po-
tential die unnötige Berechnung schon bekannter minimaler u-v-Schnitte oftmals zu
vermeiden, und gleichzeitig jene Cluster zu erhalten, die nicht von der dynamischen
Veränderung des zugrundeliegenden Graphen betroffen sind. Die aktualisierte Clus-
terung übernimmt möglichst viele Teile der vorherigen und garantiert so eine gewisse
Ähnlichkeit zur vorangegangenen Clusterung. Ein kleines Experiment bestätigt ab-
schließend die theoretisch hergeleiteten Vorteile und Verhaltensweisen des neuen
Ansatzes zum Clustern dynamischer Graphen mit Gütegarantie.

Contents

1 Introduction 1

2 Contradicting Barna Saha and Pabitra Mitra 5

2.1 Review of the Cut-Clustering Algorithm 5

2.2 Detecting a Methodical Error . 6

2.3 Discussion of Inconsistencies . 10

2.3.1 The Merging Lemma and CASE 2 10

2.3.2 The Unaffect Lemma and CASE 3 20

2.4 Summary . 22

3 Basics Regarding Cuts and Min-Cut Trees 25

3.1 Some Basic Lemmas . 25

3.1.1 Canonically Induced Cuts . 26

3.1.2 Canonically Induced Cuts in Modified Graphs 28

3.1.3 Canonically Induced Min-Cuts in Modified Graphs 29

3.2 The Gomory-Hu Method . 31

3.2.1 Gomory-Hu Algorithm for Min-Cut Trees 32

3.2.2 Definitions and Resulting Remarks 34

4 Dynamically Updating Min-Cut Trees 39

4.1 Dynamic Changes of Min-Cut Trees 39

4.1.1 Execution Theorem and Corollaries 39

4.1.2 Algorithm Ideas for Updating Min-Cut Trees 42

4.2 Simple Implementation of Update-Algorithms 47

4.2.1 Realizing the Node Splitting (Phase 1) 48

4.2.2 Realizing the Subtree Reconnection (Phase 2) 48

4.2.3 Specification of Algorithm Ideas 51

4.3 Algorithm Engineering . 54

4.3.1 Edge-Induced Cuts as Minimum Separating Cuts 54

4.3.2 New Minimum Separating Cuts for Given Vertices 56

4.3.3 Improving the Algorithms . 62

i

ii CONTENTS

5 Dynamically Updating Minimum u-v-Cuts 71

5.1 Adjusting Residual Graphs . 71

5.1.1 Flows in Undirected Weighted Graphs 72

5.1.2 The Method of Kohli and Torr 73

5.1.3 Using Dynamic Flows for Updating Min-Cut Trees 77

5.2 Updating a Set of All Minimum u-v-Cuts 78

5.2.1 Representation of All Minimum u-v-Cuts 79

5.2.2 Updating the DAG-Representation 80

5.2.3 Using DAG-Representations for Min-Cut Trees 83

6 Updating Clusterings Based on Min-Cut Trees 89

6.1 Abbreviating the Cut-Clustering Method 89

6.2 Updating Algorithms for Edge Deletions 91

6.2.1 Inter-Cluster Edge Deletion 91

6.2.2 Intra-Cluster Edge Deletion 95

6.3 Updating Algorithms for Edge Additions 100

6.3.1 Intra-Cluster Edge Addition 100

6.3.2 Inter-Cluster Edge Addition 101

6.3.3 Bow to the Approach of Saha and Mitra 105

7 Experimental Analysis 109

7.1 Zachary’s Friendship Network . 110

7.1.1 Exemplary Inter-Cluster Edge Additions 111

7.1.2 Exemplary Intra-Cluster Edge Deletions 112

7.1.3 Exemplary Inter-Cluster Edge Deletion 113

7.2 Real World E-Mail Graph . 114

8 Conclusion 119

List of Algorithms

1 Cut-Clustering . 6

2 Inter-Edge-Add . 7

3 Gomory-Hu . 33

4 Tree-EdgeAdd-1 . 45

5 Tree-NoBridgeDel . 45

6 Tree-BridgeDel . 45

7 Tree-EdgeDel-1 . 46

8 Central-Tree . 53

9 Tree-EdgeAdd-2 . 53

10 Tree-EdgeDel-2 . 54

11 Tree-EdgeDel-3 . 63

12 Central-TreeDel . 65

13 SplitAndReconnect . 66

14 Tree-EdgeAdd-3 . 69

15 ResidualUpdate . 75

16 UpdateDAG . 81

17 Inter-Cluster Edge Deletion . 92

18 Central-Clus . 94

19 Intra-Cluster Edge Deletion . 97

20 Best Cut . 98

21 Intra-Cluster Edge Addition . 100

22 Inter-Cluster Edge Addition . 103

23 Cut-Clustering Heuristic . 109

iii

iv LIST OF ALGORITHMS

Chapter 1

Introduction

Graphs can be found almost everywhere in our everyday life. Basically each kind
of network is a graph. The Internet for example naturally induces a graph with
webpages corresponding to vertices and links between pages representing edges. In
the Internet webpages with a related content are characterized by a strong connec-
tivity, while pages with disparate contents only share a few or even no links. The
idea of clustering graphs now is to somehow find groups of related objects in such
a given instance. The strength of the relation between two object is often given by
an additional weight of the according edge. So a clustering basically decomposes
a set of objects into groups regarding some “natural characteristics” depending on
the underlying network.

Formally a clustering ζ(G) of an undirected, weighted graph G = (V, E, c()) is a
partitioning of the set V of vertices of the graph G. However, the idea of a clustering,
in contrast to a partitioning in general, is to bunch those vertices to groups that
are highly connected and at the same time to assign weakly connected vertices to
different groups. The groups are then called clusters. The trade-off coming up
with this idea is described by the paradigm of intra-cluster density versus inter-
cluster sparsity: The stricter we choose the condition on which vertices lie in the
same cluster the weaker becomes the condition on which vertices are separated into
different clusters and vice versa.

Apart from this simple idea of what a clustering intuitively constitutes, there
exist further, very sophisticated and specialized formal definitions of clusterings.
For an overview of clustering theory see [BE05], Chapter 8. In this work we simply
assume the weighted edges in a graph G to represent relations between vertices
and say a clustering algorithm tries to find clusters of highly related vertices, while
vertices in different clusters have little in common.

Clusterings defined in these terms are used in many different applications. A
very common application are recommendation engines used by online stores. Such
an engine searches and then recommends products similar to the one a customer is
currently interested in. In this application the similarity of products is given by a
function c({product A,product B})→ R, and therefore, modeled as weighted edges
between vertices representing the products. How the similarity between products is
defined and measured depends on the application. In the case of recommendation
engines it is popular to use, roughly spoken, the likelihood of two products being
bought by the same customer.

1

2 CHAPTER 1. INTRODUCTION

There exist many different approaches and algorithms to find clusterings in
graphs. However, only very few of these algorithms guarantee a measurable qual-
ity of the resulting clustering. Furthermore, measuring the quality of a clustering
is quite involved. For a detailed description of quality measurements see [BE05],
Section 8.1. In this work we consider a specific clustering algorithm, namely the
cut-clustering method introduced by Flake et al. [FTT04], which guarantees a clus-
tering quality depending on a parameter α. This guarantee results from properties
of the structure of minimum-cut trees which the algorithm bases on. The qual-
ity measurement of the cut-clustering method is similar to conductance described
in [BE05]. It is thus a measurement of bottlenecks within and between clusters.
Although it considerably differs from purely density-based measures, such as cov-
erage or performance [BE05], and from measures based on statistical significance
such as modularity [GGW07, NG04], it is also based on the general paradigm of
intra-cluster density and inter cluster sparsity.

The aim of this work is to develop a fully dynamic method for updating cluster-
ings with a guaranteed clustering quality. The elementary modifications allowed in
this context in the underlying graph are the addition or deletion of an edge as well
as the insertion or removal of a vertex. Note, that a vertex is only removable if it is
unconnected, i.e., if all incident edges are removed first. The intention of updating
a clustering, instead of recalculating a new clustering for the modified graph, is on
the one hand to save effort, and on the other hand, we assume an elementary local
modification in the underlying graph not to change the clustering too much. So
we are looking for an updated clustering as similar as possible to the previous one,
which is more difficult to control in the case of a recomputation. The paper of Saha
and Mitra [SM06] gives a first proposal how an algorithm for updating clusterings
with quality preservation might look like. Unfortunately their approach turns out
to be unfeasible. Nevertheless, as their try bases on the cut-clustering method of
Flake et al. [FTT04] this work also concentrates on this special algorithm and in
parts corrects some inconsistencies of the approach of Saha and Mitra.

Our work can be split into two parts. The first part concentrates on the analysis
and disproval of the updating approach given by Saha and Mitra [SM06] and covers
Chapter 2. The second part involves the remaining Chapters 3 to 7. In Chap-
ter 3 we start with some basic lemmas and corollaries concerning cuts in graphs
which are dynamically modified. Then a method for constructing minimum-cut
trees by Gomory and Hu [GH61] is introduced, which facilitates an even better
understanding of minimum-cut trees. In Chapter 4 we develop at first, on several
levels of detail, an approach for dynamically updating complete minimum-cut trees,
as they constitute the basis of the cut-clustering method. Chapter 5 is an additional
analysis of the possibilities of dynamically updating minimum separating cuts re-
garding two fixed vertices. This subject seems to be interesting in the context of
updating minimum-cut trees, as it might be reasonable to update the minimum
cuts represented in a minimum-cut tree individually. To this end we concentrate
on an approach of Kohli and Torr [KT07] combined with some inspirations given
by a paper of Fleischer [Fle99]. From the algorithms developed so far we finally
deduce in Chapter 6 new correct and feasible algorithms for updating clusterings
resulting from the cut-clustering method given by Flake et al. [FTT04]. Chapter 7
additionally summarizes some experiments which affirm the theoretically predicted
behavior of our newly developed algorithms.

Preliminaries

A graph constitutes a finite set of objects, also called vertices, together with a set
of pairs of such vertices. Each pair defines an edge between its vertices. This work

3

only considers undirected graphs. The edges of undirected graphs are represented
by dual-element sets.

Definition 1 Let V denote a set of vertices, E denotes the related set of edges
defined on V. With E ⊆

(
V
2

)
the sets V and E define an undirected graph G =

Definition:
Undirected
graph(V, E), while

(
V
2

)
denotes the set of all subsets of V exactly containing two elements.

The set {u, v} ∈ E represents an undirected edge.

The cardinality of the set of vertices, and the set of edges respectively, is denoted
by n := |V| and m := |E|. Two vertices u and v defining an edge {u, v} are called
adjacent to each other. The edge {u, v} is called incident with vertex u and vertex v.

Apart from the direction of an edge, which we ignore, also the weight of an edge
is a common property. Edges are commonly weighted by a cost function.

Definition 2 A graph G = (V, E, c()) with a cost function c : E → X ⊆ R is called
Definition:
Weighted
grapha weighted graph. The weight of an edge e ∈ E is given by c(e) ∈ X.

This work only considers positively weighted graphs, i.e., it holds that X = R>0.
Furthermore, the number of edges in a graph can be regarded as a property of
the whole graph. In this context complete graphs play an exceptional role. An
undirected graph G = (V, E) is said to be complete if it holds that |E| =

(
V
2

)
.

Definition:
Complete
graphAs this work only considers undirected graphs we omit the definition of complete

graphs regarding other graph families. Complete graphs as defined above have
m = |E| =

(
n
2

)
= n(n − 1)/2 ∈ Θ(n2) edges. This is, each vertex is adjacent to all

other vertices.

However, in general two arbitrary vertices are not connected by an edge. In
some graphs two arbitrary vertices are not even connected by a path of several
edges. Such a graph is called unconnected. A path is defined as a sequence
{p0, p1}, . . . , {pi−1, pi}, {pi, pi+1}, . . . , {pk−1, pk} of edges in a graph G. Two ver-
tices u and v are said to be connected by a path if there exists such a sequence
with u = p1 and v = pk. Other graphs are connected, but only that weak that there
exists an edge whose deletion would again disconnect the graph. Such edges are
called bridges. Finally the trees also play an exceptional role. In a tree each pair of
vertices is connected by a unique path of edges.

Definition 3 A graph G = (V, E) is connected if each pair of vertices is connected
by at least one path. A graph T = (VT , ET) is a tree if each pair of vertices is

Definition:
Connected
graph, tree
and bridgeconnected by exactly one path. A forest just denotes a set of trees. An edge e ∈ E

is a bridge in a graph if its deletion disconnects the graph.

Each edge in a tree is a bridge. Therefore, a tree T has m = |E| = n− 1 edges. A
subtree of a tree T = (VT , ET) is defined by a subset V ′

T ⊆ VT and a valid subset
E′

T ⊆ ET such that both subsets again define a connected graph Tsub = (V ′
T , E′

T).
A tree Ts = (V, E′) defined by all vertices of a graph G = (V, E) and a valid subset

Definition:
Vertex and
edge
contractionE′ ⊆ E is called a spanning tree of G. Each spanning tree further constitutes a

subgraph of the graph G. The contraction of subgraphs is a common technique
used in many algorithms. In this work we distinguish the contraction of edges and
the contraction of vertices: Two vertices u and v in a graph G are contracted by
merging both to a new node ω. Each edge in graph G previously incident with u
or v becomes incident with the new node ω instead. Any resulting parallel edges
between a vertex g /∈ {u, v} and ω get merged to one edge of the totaled weight. In
case of contracting adjacent vertices, the edge in between is just ignored. A vertex

4 CHAPTER 1. INTRODUCTION

contraction can be regarded as a surjective map from V to V◦, with V◦ being the set
of nodes in the graph G◦ resulting from G by the contraction. This map identifies
u and v with the new node ω and is the identity for those vertices that are not
contracted. The contraction of an edge e = {u, v} is equivalent to the contraction
of the two adjacent vertices u and v.

In each kind of graph we can further define cuts. In this work we only consider
cuts in undirected, positively weighted graphs. A cut decomposes the set of vertices
into two parts. The weight of a cut is given by the totaled weight of all edges
crossing the cut.

Definition 4 A cut θ := (U, V \U) in an undirected, weighted graph G = (V, E, c())
is defined by the decomposition of the set V in exactly two parts U and V \ U (the

Definition:
Crossing
cuts and
clusterings sides of the cut). The weight of a cut θ = (U, V \ U) is defined by

c(θ) =
∑

{u,v}∈E
u∈U,v∈(V \U)

c({u, v}).

Two cuts θ1 := (U1, V \ U1) and θ2 := (U2, V \ U2) cross each other if none of the
four sets U1 ∩ U2, U1 ∩ (V \ U2), U2 ∩ (V \ U1) and (V \ U1) ∩ (V \ U2) is empty.

A clustering ζ(G) of an undirected, weighted graph G = (V, E, c()) can be regarded
as a generalization of a cut in G. A clustering is a partitioning of the set V not into
exactly two, but into an arbitrary number of partitions or clusters. Edges between
vertices within a single cluster are called intra-cluster edges, edges between vertices
in different clusters are called inter-cluster edges. The clusterings considered in this
work have an additional quality feature which is introduced in Section 2.1.

According to the definition of the weight of a cut, we can further consider global
minimum cuts as well as minimum u-v-cuts concerning two fixed vertices u and v.

Definition 5 A cut θ := (U, V \ U) is a u-v-cut if it separates the vertices u and
v, i.e., if it holds that u ∈ U, v ∈ (V \ U) or v ∈ U, u ∈ (V \ U). A u-v-cut is a

Definition:
Minimum
u-v-cuts minimum u-v-cut in a graph G if there exists no cheaper u-v-cut in G.

Analogously to the latter definition we call a non-trivial cut in a graph G a global
minimum cut if there exists no cheaper non-trivial cut in G. A cut is said to be
trivial if one of the partitions U or V \ U is empty. Furthermore, there exists a
correspondence between minimum u-v-cuts and maximum u-v-flows. Maximum u-
v-flows and their correspondence to minimum u-v-cuts are introduced in Chapter 5,
as well as the related expression of the residual graph.

Finally, we present a short description of minimum-cut trees and edge-induced
cuts in an undirected, weighted graph G = (V, E, c()). For each undirected graph
exists at least one minimum-cut tree (or simply min-cut tree). A min-cut tree
of a graph G is a weighted tree T (G) defined on V. Note, that T (G) does not
need to be a spanning tree. For each pair of vertices {u, v} ⊆ V the min-cut tree

Definition:
Minimum-cut
tree and
edge-induced
cuts

T (G) represents a minimum u-v-cut in G. We can find this minimum u-v-cut by
inspecting the path that connects u and v in T (G). The edge of minimum weight on
this path induces the minimum cut, as its removal splits T (G), and G respectively,
into two sets of vertices that correspond to the cut sides. The minimum u-v-cut,
therefore, is edge-induced and has the same weight as the inducing edge. Gomory
and Hu [GH61] describe min-cut trees in more detail and provide an algorithm for
the calculation.

Chapter 2

Contradicting Barna Saha
and Pabitra Mitra

As this work is aimed at exploring how a clustering with a guaranteed clustering
quality can be efficiently realized for dynamic graphs, the paper of Saha and Mi-
tra [SM06], which gives a proposal how an algorithm for dynamic clustering might
look like, seems well worth being read. The idea of Saha and Mitra is based on
a work of Flake et al. [FTT04] that introduces a static clustering method with a
guaranteed clustering quality depending on a parameter α. Thereby, the guarantee
of the clustering quality results from properties of the min-cut tree constructed as
a preliminary structure. Flake et al. call their method cut-clustering algorithm.

Unfortunately a closer look at the paper of Saha and Mitra [SM06] yields a bunch
of questions. On the one hand a massive methodical error can be detected, on the
other hand, even if we ignore this methodical failure, there are still inconsistencies
in some proofs and assertions.

Saha and Mitra [SM06] distinguish four elementary modifications of the graph
the current clustering is based on. For each modification they separately develop
an updating algorithm. The distinguished modifications are the addition of an edge
within a single cluster, the addition of an edge between two different clusters, the
deletion of an edge between two different clusters, and finally the deletion of an edge
within a single cluster. The removal or insertion of an isolated vertex is considered
as the removal or insertion of a single cluster.

In this section we first give a short review of the cut-clustering algorithm of
Flake et al. [FTT04] and their definition of clustering quality. Then a description
of the methodical error in the approach of Saha and Mitra [SM06] follows. At the
end we will point out and in parts correct the inconsistencies of some proofs and
assertions given by Saha and Mitra.

2.1 Review of the Cut-Clustering Algorithm

In this section the cut-clustering algorithm, which is proposed by Flake et al. [FTT04]
for clustering an edge-weighted graph G = (V, E, c()) with a guaranteed clustering
quality, is referred to as Algorithm 1. The cut-clustering algorithm adds an artificial
sink t to graph G and connects t to each vertex in V by an edge with weight α.
For the resulting graph Gα a min-cut tree T (Gα) is calculated. This min-cut tree

5

6 CHAPTER 2. CONTRADICTING BARNA SAHA AND PABITRA MITRA

Algorithm 1: Cut-Clustering

Input: Graph G = (V, E, c()), parameter α of clustering quality
Output: Clustering ζ(G) with clustering quality depending on α
Vα ← V ∪ {t} %add artifical sink t1

Eα ← E ∪ {{t, v}|v ∈ V} %connect t to each vertex v in V2

∀e ∈ E : cα(e)← c(e)3

∀v ∈ V : cα({t, v})← α %each edge incident with t gets weight α4

Calculate a min-cut tree T (Gα) of Gα = (Vα, Eα, cα())5

Remove t from T (Gα)6

ζ(G)← set of connected components resulting from the removal of sink t7

return ζ(G)8

decomposes into several connected components after removing the sink t. The re-
sulting set of connected components forms a clustering ζ(G) of G. The clustering
ζ(G) of G is said to be induced by the min-cut tree T (Gα).

Furthermore, Flake et al. [FTT04] define a clustering quality that is guaranteed
for any clustering ζ(G) resulting from Algorithm 1. This clustering quality consists
of two aspects: The inter-cluster quality of a single cluster C is high if the connec-
tivity c(C, V \ C) to the remaining vertices is low. By contrast, the intra-cluster
quality of C is high if the minimum weight c(P,C \ P) over all subsets P ⊆ C is
high. A clustering ζ(G) of a graph G respects the clustering quality concerning a

Definition:
Clustering
quality fixed parameter α if for all clusters C ∈ ζ(G) holds that

(inter-cluster quality) c(C, V \ C) ≤ α |V \ C| and
(intra-cluster quality) c(P,C \ P) ≥ α min{|P |, |C \ P |}, ∀P ⊂ C.

2.2 Detecting a Methodical Error

We describe the methodical error in the approach of Saha and Mitra [SM06] by
means of the inter-cluster edge addition algorithm (or simply inter-edge-add algo-
rithm) on page four in [SM06]. The inter-edge-add algorithm of Saha and Mitra is
referred to as Algorithm 2 in this section. Note, that we give a slightly more de-
tailed formulation of the algorithm using a notation consistent with the remainder
of this work. The inter-edge-add algorithm is meant to be used if a dynamic graph
G = (V, E, c()) is modified by the addition of a weighted edge e⊕ = {b, d} between
different clusters Cb 3 b and Cd 3 d of the current clustering ζ(G). For the input
clustering ζ(G) a clustering quality as given by Flake et al. [FTT04] is assumed.
The algorithm then distinguishes three different cases. The result in each case is
thought to be a clustering ζ(G⊕) of the modified graph G⊕ = (V, E ∪ {e⊕}, c⊕())
still respecting the clustering quality. For the modified cost-function c⊕() holds
that c⊕(e) = c(e), ∀e ∈ E, and c⊕(e⊕) := ∆. The following fact now constitutes the
kernel of the methodical error in the approach of Saha and Mitra.

Fact 1 Some lemmas used by Saha and Mitra [SM06] to prove the correctness of
the inter-edge-add algorithm implicitly assume (we will illustrate this in Subsec-
tion 2.3.1) that the input clustering ζ(G) results from the cut-clustering method of
Flake et al. [FTT04], i.e., that there exists a min-cut tree T (Gα) such that the re-

Fact:
Implicit
algorithm
invariant moval of the artificial sink t yields ζ(G). Note, that Saha and Mitra consider the

correctness of the inter-edge-add algorithm achieved if the algorithm maintains the
clustering quality.

2.2. DETECTING A METHODICAL ERROR 7

Algorithm 2: Inter-Edge-Add

Input: Graph G = (V, E, c()), clustering ζ(G) of graph G, parameter α of
clustering quality

Output: Clustering ζ(G⊕) of G⊕ = (V, E ∪ {e⊕}, c⊕()) complying with
clustering quality

%---------- notation ----------
e⊕ = {b, d} new edge added to E with weight ∆1

Cb 3 b, Cd 3 d clusters affected by the inter-cluster edge addition2

%---------- algorithm ----------
E⊕ ← E ∪ {e⊕} %add new weighted edge3

Update inter-cluster connectivity c⊕(Cb, V \ Cb) of Cb4

Update inter-cluster connectivity c⊕(Cd, V \ Cd) of Cd5

%(inter-cluster connectivity of unaffected clusters does not
change due to edge addition)
%(intra-cluster connectivity does not change due to edge
addition)
%---CASE 1

if c⊕(Cb, V \ Cb) ≤ α |V \ Cb| and c⊕(Cd, V \ Cd) ≤ α |V \ Cd| then6

%(i.e., inter-cluster quality of affected clusters is not
violated)

return clustering ζ(G⊕) = ζ(G)7

else8

%---CASE 2

if 2 c(Cb,Cd)
|V | ≥ α then9

Cluster C̄ ← Merge (Cb, Cd)10

return clustering ζ(G⊕) = (ζ(G) \ {Cb, Cd}) ∪ {C̄}11

else12

%---CASE 3

%(Note that the formulation of this case, taken from Saha
and Mitra, is quite inscrutable)

Node ω ← Contract (V \ (Cb ∪ Cd)) in G⊕13

Vα ← V ∪ {t} %add artificial sink14

∀u ∈ (Cb ∪ Cd): connect t to u by an edge of weight α15

Connect t to ω by an edge of weight α |V \ (Cb ∪ Cd)|16

%Call the resulting graph G′
α

Tree T (G′
α)← Min-Cut Tree (G′

α)17

Remove t from T (G′
α)18

%The resulting connected components which consist of
vertices included in (Cb ∪ Cd) are called C1, . . . Cz

return clustering ζ(G⊕) = (ζ(G) \ {Cb, Cd}) ∪ {C1, . . . Cz}19

8 CHAPTER 2. CONTRADICTING BARNA SAHA AND PABITRA MITRA

In a dynamic context the inter-edge-add algorithm and all other updating algorithms
developed for the remaining modifications are thought to be applied recursively in
an arbitrary order. So for this algorithms Fact 1 describes an invariant. Due to this
invariant the returned clustering ζ(G⊕) does not only need to respect the clustering
quality, but result from the cut-clustering method of Flake et al. [FTT04]. For

Methodical
error made
by Saha
and Mitra the correctness of the inter-edge-add algorithm it is hence necessary to prove the

invariant for all distinguished cases. However, Saha and Mitra [SM06] only prove
the maintenance of the clustering quality, which is not sufficient as the example in
Figure 2.1 will show.

4 5

6

3

12

1
4 α1

2 α

100 α

(1
2 + 1

4) α 1
2 α (1

2 + 1
4) α

100 α

(a) Graph G0 with clustering ζ(G0) resulting from the
cut-clustering method

4 5

6

3

12

3 1
4 α

2 1
4 α

101 1
2 α

3 1
4 α

2 1
4 α

101 3
4 α

t

(b) Min-cut tree T (G0
α) inducing the clustering ζ(G0)

shown above

4 5

6

3

12

1
4 α

2 3
4 α

1
2 α

100 α

(1
2 + 1

4) α 1
2 α (1

2 + 1
4) α

100 α

(c) Graph G1 with clustering ζ(G1) = ζ(G0) resulting
from CASE 1 of the inter-edge-add algorithm

4 5

6

3

12

1
4 α

2 3
4 α

α

1
2 α

100 α

(1
2 + 1

4) α
1
2 α (1

2 + 1
4) α

100 α

(d) Graph G2 with merged cluster C̄ resulting from
CASE 2 of the inter-edge-add algorithm and vio-
lating intra-cluster quality

Figure 2.1: A clustering violating the clustering quality.

Figure 2.1a considers a weighted graph G0 with a parametric cost function and a
clustering ζ(G0) = {{1, 2, 3}, {4, 5, 6}} resulting from the cut-clustering method of
Flake et al. [FTT04]. For all graphs in Figure 2.1 the parametric weights are assigned

2.2. DETECTING A METHODICAL ERROR 9

to the edges. Figure 2.1b shows a min-cut tree T (G0
α) related to graph G0 as it

induces the clustering ζ(G0) shown in Figure 2.1a. The clustering ζ(G0), therefore,
provides the properties that constitute the implicit invariant. In Figure 2.1c a new
weighted edge e⊕ = {1, 6} is added to G0 forming the illustrated graph G1. As
the new inter-cluster edge {1, 6} does not cause any violation of the inter-cluster
quality in ζ(G0), the inter-edge-add algorithm applied to this edge addition ends
up in CASE 1 (see Algorithm 2, Line 6) and terminates without any changes to the
clustering ζ(G0) = ζ(G1). Graph G0 is just updated to graph G1. Obviously the
new clustering ζ(G1) still respects the clustering quality. However, the clustering
ζ(G1) is not necessarily induced by a min-cut tree of G1

α anymore. So at this point
the implicit invariant may be violated.

If we assume the invariant to still be met, as Saha and Mitra [SM06] implicitly
do, we again can apply the algorithm to the clustering ζ(G1) regarding a further
addition of edge e⊕ = {3, 4}. Figure 2.1d illustrates graph G2 resulting from this
edge addition. A closer look at the inter-cluster weights in the previous clustering
ζ(G1) shows that the additional weight of the new edge e⊕ = {3, 4} causes a violation
of the inter-cluster quality in ζ(G1): The inter-cluster weight of each cluster C ∈
ζ(G1) after the edge addition is 4 α, which is greater than 3α = α |V \ C|. So for
the addition of edge e⊕ = {3, 4} the inter-edge-add algorithm will skip CASE 1 and
end up in CASE 2 instead (see Algorithm 2, Line 9), as in graph G1 it holds that
c({1, 2, 3}, {4, 5, 6}) = 3 α ≥ α |V |/2. Then CASE 2 finally returns a clustering
ζ(G2) of graph G2 arising out of the clustering ζ(G1) of the previous graph by
merging the clusters {1, 2, 3} and {4, 5, 6} (see Figure 2.1d).

If the inter-edge-add algorithm by Saha and Mitra [SM06] was correct in the
sense that each returned clustering respects the clustering quality, also the clustering
ζ(G2) in Figure 2.1d would respect the clustering quality. However, by considering
the cut drawn as dashed line in Figure 2.1d we realize that the new cluster C̄ =
{1, 2, 3, 4, 5, 6}, which results from merging {1, 2, 3} and {4, 5, 6}, violates the intra-
cluster quality in ζ(G2). This cut (P, C̄ \ P) := ({3, 4, 5}, {1, 2, 6}) has weight
c(P, C̄ \ P) = 11 α/4, which is cheaper than 3α = α min{|P |, |C̄ \ P |}.

It follows that either CASE 2 does not maintain the clustering quality in general
or the clustering returned by CASE 1 does not meet the conditions required by
CASE 2 for returning a correct result or even both. We further see that neither

Maintenance
of clustering
quality is not
sufficientCASE 2 does return a correct result in general nor is the maintenance of cluster

quality sufficient for the correctness of CASE 2. Remember that in our example the
clustering ζ(G1), which serves as input clustering for CASE 2, respects the clustering
quality. The following fact now states a sufficient condition for the correctness of
CASE 2.

Fact 2 If the input clustering ζ(G) results from the cut-clustering method of Flake
et al. [FTT04], i.e., if ζ(G) provides the properties that constitute the implicit invari-
ant described in Fact 1, CASE 2 of the inter-edge-add algorithm (see Algorithm 2,

Fact:
Implicit
invariant is
sufficient for
the correctness
of CASE 2

Line 9) returns a clustering ζ(G⊕) that still respects the clustering quality. Note,
that this fact does not state anything about the question whether CASE 2 respects
the implicit invariant.

The proof of Fact 2 will be given in Section 2.3.1. There may be even weaker
conditions than the implicit invariant on which CASE 2 returns a correct result.
Nevertheless, due to the lack of knowledge concerning such conditions, and because
Saha and Mitra [SM06] base their ideas on the cut-clustering method of Flake et
al. [FTT04] (see Fact 1), we regard the invariant as necessary for the correctness
of CASE 2, and the inter-edge-add algorithm respectively. In the following we

10 CHAPTER 2. CONTRADICTING BARNA SAHA AND PABITRA MITRA

hence explore whether the three cases distinguished by the inter-edge-add algorithm
respect the invariant, although Saha and Mitra ignore its need.

The assumption that CASE 1 (see Algorithm 2, Line 6) respects the implicit
invariant is already disproven by the previous example shown in Figure 2.1: As the

CASE 1 does
not respect
the invariant clustering ζ(G2) returned by CASE 2 is not correct, i.e., ζ(G2) does not respect

the clustering quality, it follows that none of the conditions for a correct result of
CASE 2 are met. In particular, by Fact 2, there exists no min-cut tree of graph
G1

α that induces the previous clustering ζ(G1). Hence the invariant is violated by
CASE 1. In Section 2.3.1 we will see that CASE 2 (see Algorithm 2, Line 9) respects
the invariant, but implies a very strict property of the input clustering. Therefore,
CASE 2 will turn out to be quite unlikely. Finally CASE 3 (see Algorithm 2,
Line 28), will be proven to be not feasible in general and even for feasible instances
it still will not respect the invariant, as illustrated in Section 2.3.2.

In this section we showed that the maintenance of clustering quality is not equiv-
alent to the assertion of the invariant described in Fact 1, which is even stronger. Al-
though Saha and Mitra implicitly assume the invariant to be met by their proposed
algorithms, for all algorithms they fail to prove this invariant, which constitutes a
massive methodical error through the whole argumentation in their paper. With
CASE 1 they even distinguish a case in their inter-edge-add algorithm for which
the invariant can be explicitly disproven. Note further, that the intra-cluster edge
addition algorithm (or simply intra-edge-add algorithm) on page three in [SM06]
is feasible despite of the methodical error made by Saha and Mitra [SM06]. In
Chapter 6, Subsection 6.3.3, we will see that this algorithm, nevertheless, respects
the invariant formulated in Fact 1. A detailed description of the edge deletion algo-
rithms, however, is omitted in [SM06].

2.3 Discussion of Inconsistencies

Aside from the methodical error described in the previous section, in this section
we discuss further inconsistencies in the approach of Saha and Mitra [SM06], which
again regard the inter-edge-add algorithm (see Algorithm 2). The first inconsistency
concerns a lemma, namely Lemma 2 in [SM06], which CASE 2 (see Line 9) of the
inter-edge-add algorithm is based on. We will call this lemma merging lemma and
refer to it as Lemma 1. A second inconsistency necessarily being discussed con-
cerns the formulation of CASE 3 of the inter-edge-add algorithm (see Algorithm 2,
Line 28). This inconsistency further involves a lemma, namely Lemma 4 in [SM06],
used by Saha and Mitra to prove the correctness of CASE 3. We will call the latter
unaffect lemma and refer to it as Lemma 6.

2.3.1 The Merging Lemma and CASE 2

First of all we introduce the merging lemma as Lemma 1 and explain the used
notation. Furthermore, we review two lemmas which are used by Saha and Mitra
to prove the merging lemma. From these lemmas we will later deduce the proof
of Fact 1 (see the previous Section 2.2). Before proving Fact 1 we spend a closer
look at the proof of the merging lemma given by Saha and Mitra [SM06] and show
that this proof is not complete at all. Therefore, we will round off the proof and
finally conclude that the implicit invariant described in Fact 1 constitutes a sufficient
condition for the correctness of CASE 2. As this is the assertion of Fact 2 (see the
previous Section 2.2), this fact will be proven true, too.

2.3. DISCUSSION OF INCONSISTENCIES 11

Lemma 1 (Merging lemma) If it holds that Lemma:
Merging
lemma

2 c(C1, C2)
|V |

≥ α,

then merging cluster C1 and C2 maintains the clustering quality.

Lemma 1 considers a given clustering ζ(G) of a graph G = (V, E, c()) for which
the clustering quality defined by Flake et al. [FTT04] holds. The notation of C1

and C2 denotes two arbitrary clusters in ζ(G), and the parameter α results from
the definition of the clustering quality (see Section 2.1). The merging lemma says
that on condition that 2 c(C1, C2)/|V | ≥ α holds for a pair of clusters C1 and
C2 in a clustering ζ(G) which achieves inter- and intra-cluster quality regarding a
fixed parameter α, the new clustering ζ̄(G) resulting from merging C1 and C2 also
achieves inter- and intra-cluster quality regarding the same parameter α. Note, that
the fact that graph G is supposed to be dynamic does not appear in the assertion
of the merging lemma. Nevertheless CASE 2 of the inter-edge-add algorithm (see
Algorithm 2, Line 9) bases on the merging lemma: Adding a new edge e⊕ = {b, d}
in a merged cluster C̄ = Cb ∪Cd does not affect the clustering quality on condition
that C̄ already respects the intra- and inter-cluster quality before the edge addition.
For the proof of the merging lemma Saha and Mitra [SM06] use a lemma which we
state as Lemma 2 and call helping lemma.

Lemma 2 (Helping lemma) Let T (Gα) denote a min-cut tree of a graph G after
adding the artificial sink t, i.e., T (Gα) denotes a min-cut tree of graph Gα. Then

Lemma:
Helping
lemmafor each nontrivial cut (P,C \ P) in a connected component C of T (Gα) (after

removing the sink t) it holds that

c(W, C \ P) ≤ c(P,C \ P), with W := {t} ∪ (V \ C) in Gα.

t

C W

PC \ P

Figure 2.2: Situation described in the helping lemma.

Figure 2.2 illustrates the situation described in the helping lemma. Note, that in
the helping lemma Saha and Mitra [SM06] mention objects introduced by Flake
et al. [FTT04]; for example the enlarged graph Gα and the min-cut tree T (Gα).
As the helping lemma serves to prove the merging lemma, this formulation already
allows a guess that Saha and Mitra implicitly assume the clustering ζ(G) in the
merging lemma to result from the cut-clustering method of Flake et al. So this
already indicates Fact 1. Furthermore, Saha and Mitra deduce their helping lemma
directly from Lemma 3, page 391 in [FTT04], which we call basic lemma. In the
following we refer to the basic lemma as Lemma 3.

12 CHAPTER 2. CONTRADICTING BARNA SAHA AND PABITRA MITRA

Lemma 3 (Basic lemma) Let T (G) be a min-cut tree of a graph G = (V, E, c()),
and let {u, v} be an edge of T (G). The edge {u, v} induces a cut (U, V \ U) in G,
with u ∈ U, v ∈ V \ U. Now take any cut (P,U \ P) of U such that P and (U \ P)
are nonempty, u ∈ P , P ∪ (U \ P) = U and P ∩ (U \ P) = ∅. Then it holds that

Lemma:
Basic
lemma

c(V \ U,U \ P) ≤ c(P,U \ P).

v

UV \ U
P

U \ P

u

Figure 2.3: Situation described in the basic lemma.

The situation described in the basic lemma is shown in Figure 2.3. The helping
lemma (see Lemma 2) follows from the basic lemma (see Lemma 3) by regarding
the graph Gα with the artificial sink t included as graph G in Lemma 3. The
min-cut tree T (Gα) in Lemma 2 corresponds to T in Lemma 3 and the sink t is
implicitly identified with v. Let y denote the vertex in Lemma 2 which links the

Helping lemma
follows from
basic lemma subtree C to t in T (Gα) via the edge {t, y}. Then y is related to u in Lemma 3.

With C 3 y corresponding to U 3 u and W 3 t corresponding to (V \ U) 3 v, the
cut (P,C \ P) of C in Lemma 2 finally can be identified with the cut (P,U \ P)
of U in Lemma 3. However, the assertion as formulated in Lemma 2 only follows
from Lemma 3 if we assume the set P in Lemma 2 to include y, and therefore, to
correspond to P 3 u in Lemma 3. Otherwise P and C \ P in Lemma 2 swap their
roles. As this observation will become important later for understanding why the
given proof of the merging lemma by Saha and Mitra [SM06] is not complete, we
state it here as Observation 1.

Observation 1 The assertion of the helping lemma (see Lemma 2) only follows
from the basic lemma (see Lemma 3) if we assume the set P in Lemma 2 to include y,
and therefore, to correspond to P 3 u in Lemma 3. Otherwise P and C \ P in

Observation:
Feasible
deduction
of helping
lemma

Lemma 2 swap their roles.

Altogether we remark that the helping lemma considers a special case of the basic
lemma, as it regards the special graph Gα and reduces the assertion on edges incident
with the sink t in T (Gα).

A closer look at the proof given by Flake et al. [FTT04], page 391, for the basic
lemma (see Lemma 3) shows that the condition of (U, V \ U) being a minimum
u-v-cut for two arbitrary vertices u, v ∈ V already is sufficient. The existence of
a specially shaped min-cut tree T (G) of G is not needed as long as we apply the
basic lemma on a single minimum u-v-cut. In the situation of the helping lemma
(see Lemma 2) this weaker condition says that it suffices if there exists a vertex y
in the considered component C such that (C, Vα \ C) is a minimum y-t-cut in
Gα = (Vα, Eα, cα()). Again the existence of a specially shaped min-cut tree T (Gα)

2.3. DISCUSSION OF INCONSISTENCIES 13

of Gα is not needed as long as we apply the helping lemma on a single component
C defined by a minimum y-t-cut. It further follows that the helping lemma only
can be applied on components of a given clustering ζ(G) that are induced by a
minimum y-t-cut in the enlarged graph Gα, with t denoting the designated sink
and y a vertex in the component. We will see in Chapter 6 that this condition
required simultaneously for each cluster of a given clustering ζ(G), however, is
equivalent to the existence of a parameter α and a specially shaped min-cut tree
T (Gα) that induces the clustering ζ(G) (see Observation 3, Subsection 6.3.3). So Proof of

Fact 1
Saha and Mitra [SM06] must assume the clustering ζ(G) in the merging lemma
(see Lemma 1) to result from the cut-clustering method, i.e., they must assume the
existence of a min-cut tree T (Gα) inducing ζ(G), as for their proof of the merging
lemma they apply the helping lemma on each cluster in ζ(G). So Fact 1 given
in Section 2.2 is proven true, as the merging lemma legitimates CASE 2 of the
inter-edge-add algorithm.

A Closer Look at the Proof of the Merging Lemma

We now take a closer look at the proof of the merging lemma (see Lemma 1) given
by Saha and Mitra [SM06] and show, why this proof suffers from incompleteness. To
this end we assume the clustering ζ(G) of graph G to result from the cut-clustering
method, as Saha and Mitra do.

The proof of the merging lemma is divided into one part considering the main-
tenance of inter-cluster quality after merging two arbitrary clusters C1 and C2 in a
clustering ζ(G) and another part related to the intra-cluster quality of all clusters in
the new clustering ζ̄(G) and the new cluster C̄ = C1 ∪C2 in particular. Both parts
of the proof given in [SM06] are correct but suffer from imprecise explanation. The
part related to the intra-cluster quality additionally suffers from incompleteness. In
the following we illustrate why the proof given by Saha and Mitra [SM06] is not
complete and try to give a more understandable formulation of this proof.

The first part, which considers the maintenance of inter-cluster quality in ζ̄(G)
after merging C1 and C2, is proven by Saha and Mitra very quickly as follows:

Proof of
inter-cluster
quality

Proof. (Maintenance of inter-cluster quality) Let C̄ = C1 ∪ C2 denote the result
of merging C1 and C2. After merging C1 and C2 the inter-cluster connectivity
c(C, V \C) obviously remains unchanged for all clusters C ∈ ζ(G) \ {C1, C2}. Note
that there is no dynamic effect, i.e., no addition or deletion of edges or vertices,
considered yet. As the clustering ζ(G) in the merging lemma (see Lemma 1) is
thought to respect the clustering quality, it holds for the inter-cluster quality of C1

and C2 that

c(C1, V \ C1) ≤ α|V \ C1| and (2.1)
c(C2, V \ C2) ≤ α|V \ C2|. (2.2)

For the new cluster C̄ = C1 ∪ C2 we get

c(C̄, V \ C̄) = c(C1, V \ C1) + c(C2, V \ C2)− 2 c(C1, C2)
≤ α|V \ C1|+ α |V \ C2| − 2 c(C1, C2) by (2.1) and (2.2)
= α |V \ C̄|+ α |V | − 2 c(C1, C2).

The condition that 2 c(C1, C2)/|V | ≥ α yields

α |V | − 2 c(C1, C2) ≤ 0, (2.3)

14 CHAPTER 2. CONTRADICTING BARNA SAHA AND PABITRA MITRA

and therefore, it holds that

c(C̄, V \ C̄) ≤ α |V \ C̄|+ α |V | − 2 c(C1, C2)︸ ︷︷ ︸
≤0 , by (2.3)

≤ α |V \ C̄|.

The proof of the second part, which considers the intra-cluster quality in ζ̄(G)
after merging C1 and C2, is trivial for all clusters not affected by the addition of
e⊕, i.e., for all clusters apart from C̄ = C1 ∪C2. The intra-cluster quality for C̄ can
be proven as follows:

Proof of
intra-cluster
quality

Proof. The condition that 2 c(C1, C2)/|V | ≥ α yields

c(C1, C2) ≥
|V |
2

α

≥ α min{|C1|, |C2|} (2.4)

So the cut (C1, C2) in C̄ does not violate the intra-cluster quality of C̄. As the
definition of the intra-cluster quality (see Section 2.1) involves all nontrivial cuts in
C̄, we still need to prove that also an arbitrary nontrivial cut (P, C̄ \P) 6= (C1, C2)
does not violate the intra-cluster quality of C̄, i.e., we need to show that it holds
that (P, C̄ \ P) ≥ α min{|P |, |C̄ \ P |}.

To this end let (P, C̄ \ P) 6= (C1, C2) be a nontrivial cut in C̄ = C1 ∪ C2.
For a better readability we temporarily rename the set C̄ \ P =: Q. So in the
following we consider a cut (P,Q) in C̄. The two sets P and Q can be decomposed
into P = P1 ∪̇ P2 and Q = Q1 ∪̇Q2, where P1, Q1 ⊆ C1 and P2, Q2 ⊆ C2, i.e.,
P1 ∪̇Q1 = C1 and P2 ∪̇Q2 = C2. The union of disjoint sets is represented from
now on by the operator “+” in this proof. Figure 2.4 illustrates the decomposition
of C̄ = C1 ∪ C2 into P1, P2, Q1, Q2. Without loss of generality we assume the

P1 P2

Q1 Q2

P

Q

C1 C2

C̄

Figure 2.4: Decomposition of C̄ = C1 ∪ C2 into P1, P2, Q1, Q2.

sets P1 and P2 to be not empty. This assumption is feasible due to the following
consideration: There is at least one of the sets P1 and P2 not empty, as P1 ∪P2 = ∅
would yield a trivial cut. If we assume P2 to be empty, it follows that both sets
Q1 and Q2 are not empty, as P2 ∪ Q1 = ∅ would yield the cut (C1, C2), and
P2 ∪Q2 = C2 = ∅ is not feasible. So in the case of P2 being empty we can choose
Q1 and Q2 as nonempty sets instead of P1 and P2. A symmetric argumentation
holds for the assumption of P1 being empty.

2.3. DISCUSSION OF INCONSISTENCIES 15

With P1 and P2 being not empty it holds for the intra-cluster connectivity
c(P,Q), according to Saha and Mitra [SM06], that

c(P,Q) = c(P1 + P2, Q1 + Q2)
= c(P1, Q1) + c(P1, Q2) + c(P2, Q1) + c(P2, Q2)
≥ c(P1, Q1) + c(P2, Q2) (2.5)
≥ c(W1, Q1) + c(W2, Q2) (2.6)
≥ α|Q1|+ α|Q2| (2.7)
= α|Q| (2.8)
≥ α min{|P |, |Q|}. (2.9)

Equation (2.6) can be deduced piecewise from Equation (2.5) with the aid of the
helping lemma (see Lemma 2), as (P1, Q1) is a nontrivial cut in the connected
component C1, and (P2, Q2) is a nontrivial cut in the connected component C2.
Remember that we assumed the clustering ζ(G) to result from the cut-clustering
method and the sets P1 and P2 to be not empty. The notation of W1 in Equa-
tion (2.6) denotes the union of {t} and V \ C1, analogously W2 denotes the union
of {t} and V \ C2.

At this point Saha and Mitra [SM06] consider the merging lemma proven. How-
ever, they ignore the small detail mentioned in Observation 1. The conclusion from

Omission
by Saha
and MitraEquation (2.5) to Equation (2.6) with the aid of the helping lemma (see Lemma 2)

only is feasible if we require y1 to be included in P1 and y2 to be included in P2, with
y1 denoting the vertex connecting the subtree C1 to t in T (Gα) via the edge {t, y1},
and analogously y2 denoting the connecting vertex of subtree C2. Figure 2.5a shows
a cut (P,Q) that meets this requirement. In the case of Q1 including y1 and Q2

including y2 the conclusion is also feasible, however, the sets Q1 and P1 as well as
Q2 and P2 swap their roles in the whole proof, by Observation 1. By contrast, if

P2

Q1

P

Q

C1 C2
C̄

y1

y2

P1

(a) (P, Q) does not separate y1 and y2, with
y1, y2 ∈ P , Q2 is empty

P1 P2

Q1 Q2

P

Q

C1 C2
C̄

y1

y2

(b) (P, Q) separates y1 and y2, with y1 ∈ P
and y2 ∈ Q, no empty set

Figure 2.5: Different positions of y1 and y2.

only one pair of sets, either P1 and Q1 or P2 and Q2, swaps the roles, i.e., if y1

and y2 do not lie in the same set P or Q, i.e., if the cut (P,Q) separates y1 and
y2, then the conclusion fails. Figure 2.5b shows such an example. In the illustrated
situation only P2 and Q2 swap their roles, as y2 lies in Q2. As the sets P2 and
Q2 are fixed by the cut (P,Q), a simple renaming is impossible. So Equation (2.6)
deduced piecewise from Equation (2.5) with the aid of the helping lemma looks as
follows:

c(P1, Q1) + c(P2, Q2) ≥ c(W1, Q1) + c(P2,W2).

16 CHAPTER 2. CONTRADICTING BARNA SAHA AND PABITRA MITRA

The next conclusion (see Equation (2.7)) results from the construction of Gα and the
fact that the artificial sink t lies in W1 or rather W2. In the situation of Figure 2.5b
this conclusion yields the following assertion:

c(W1, Q1) + c(P2,W2) ≥ α|Q1|+ α|P2|.

Now it becomes obvious that merging |Q1| and |P2| to |Q| or |P | as in Equation (2.8)
is not possible anymore. So the line of estimation breaks here without a reasonable
result in the case of (P,Q) separating y1 and y2. As Saha and Mitra [SM06] miss
to explore these separating cuts, apart from the cut (C1, C2), their proof given for
the merging lemma is not complete. Remember that the cut (C1, C2) separates
y1 and y2, but respects the intra-cluster quality of C̄ due to the condition that
2 c(C1, C2)/|V | ≥ α (see Equation (2.4)).

Completion of the Proof of the Merging Lemma

In the following we will complete the proof of the merging lemma (see Lemma 1).
As illustrated in the previous paragraphs, the proof of the merging lemma given
by Saha and Mitra [SM06] is not complete, because in the part concerning the
maintenance of intra-cluster quality Saha and Mitra miss to explore the behavior
of cuts that separate y1 and y2. We will show now that also these separating cuts
do not violate the intra-cluster quality of C̄ = C1 ∪ C2.

To this end we demonstrate that the condition that 2 c(C1, C2)/|V | ≥ α in G
required by the merging lemma (see Lemma 1) forces any arbitrary y1-y2-cut in
C̄ = C1 ∪ C2 to maintain the intra-cluster quality of C̄. More precisely, we prove
that on this condition for an arbitrary cut (P,Q) 6= (C1, C2) that separates y1 and y2

in C̄ it holds that c(P,Q) ≥ α min{|P |, |Q|}. Again we assume the initial clustering
ζ(G) 3 C1, C2 to result from the cut-clustering method of Flake et al. [FTT04].

The idea of the following proof is to show that, on condition that 2 c(C1, C2)/|V | ≥
α in G, any y1-y2-cut (P,Q) in C̄ which does not respects the intra-cluster quality
would induce a y1-t-cut or a y2-t-cut in Gα which is cheaper than the previous min-
imum y1-t-cut, or the previous minimum y2-t-cut respectively, represented by the
min-cut tree T (Gα) of Gα, with T (Gα) inducing the clustering ζ(G) 3 C1, C2. This
contradicts the min-cut tree properties. It follows that such a cut does not exist,

Idea of
completing
the proof and vice versa, that each y1-y2-cut (P,Q) in C̄ respects the intra-cluster quality on

condition that 2 c(C1, C2)/|V | ≥ α in G.

The notation of the following proof adheres to the situation illustrated in Fig-
ure 2.6. Figure 2.6 shows the two clusters C1 and C2 in a stylized graph Gα. The
minimum y1-t-cut and the minimum y2-t-cut represented in the min-cut tree T (Gα)
are marked as dotted lines. The dashed line represents a cut (P,Q) 6= (C1, C2) in
C̄ separating y1 and y2.

Completion
of the proof of
intra-cluster
quality Proof. Let Gα = (Vα, Eα, cα()) denote the graph resulting from G by adding the

artificial sink t. For the definition of Vα, Eα and cα() see Algorithm 1. The sets P
and Q are decomposed as before. We now consider a y1-y2-cut (P,Q) 6= (C1, C2) in
C̄ which does not respects the intra-cluster quality. This is, for (P,Q) it holds that

c(P,Q) < α min{|P |, |Q|}. (2.10)

We want to show that such a y1-y2-cut (P,Q) induces a y1-t-cut or a y2-t-cut
in Gα cheaper than the minimum y1-t-cut, or the minimum y2-t-cut respectively,
represented by the min-cut tree T (Gα) (see the dotted lines in Figure 2.6). To this
end consider the y1-t-cut θ1 := (P1, Vα \ P1) and the y2-t-cut θ2 := (Q2, Vα \ Q2)

2.3. DISCUSSION OF INCONSISTENCIES 17

y1

y2

P1 P2

Q1 Q2

P

Q

C1 C2

min y2-t-cutmin y1-t-cut
t

Figure 2.6: Cut (P, Q) separates y1 and y2, with y1 ∈ P and y2 ∈ Q.

in Gα, which are defined by (P,Q). Let θmin(1) and θmin(2) denote the minimum
y1-t-cut and the minimum y2-t-cut represented by the min-cut tree T (Gα). For the
weights in Gα we will show in the following that it holds that cα(θ1) + cα(θ2) <
cα(θmin(1)) + cα(θmin(2)). So at least one of the minimum cuts θmin(1) or θmin(2)
can be replaced by a cheaper y1-t-cut, or y2-t-cut respectively. For cα(θ1) + cα(θ2)
we get

cα(θ1) = α |P1|+ c(P1, Q1) + c(P1, P2) + c(P1, Q2) + c(P1, V \ (C1 ∪ C2))
cα(θ2) = α |Q2|+ c(P2, Q2) + c(Q1, Q2) + c(P1, Q2) + c(Q2, V \ (C1 ∪ C2))

cα(θ1) + cα(θ2) = α (|P1|+ |Q2|) + c(P1, Q1) + c(P2, Q2)

+
{

c(P1, P2) + c(Q1, Q2) + 2 c(P1, Q2) +
c(P1, V \ (C1 ∪ C2)) + c(Q2, V \ (C1 ∪ C2))

}
:= B

For cα(θmin(1)) + cα(θmin(2)) we get

cα(θmin(1)) = α |C1|+ c(P1, P2) + c(P1, Q2) + c(Q1, Q2) + c(Q1, P2)
+ c(P1, V \ (C1 ∪ C2)) + c(Q1, V \ (C1 ∪ C2))

cα(θmin(2)) = α |C2|+ c(P2, P1) + c(P2, Q1) + c(Q2, Q1) + c(Q2, P1)
+ c(Q2, V \ (C1 ∪ C2)) + c(P2, V \ (C1 ∪ C2))

cα(θmin(1)) + cα(θmin(2)) = α (|C1|+ |C2|) + c(P1, P2) + c(Q1, Q2)
+ 2 c(P2, Q1) + c(P2, V \ (C1 ∪ C2)) + c(Q1, V \ (C1 ∪ C2))

+
{

c(P1, P2) + c(Q1, Q2) + 2 c(P1, Q2) +
c(P1, V \ (C1 ∪ C2)) + c(Q2, V \ (C1 ∪ C2))

}
= B

For the final conclusion we need the aid of the following equation:

c(P,Q) = c(P1, Q1) + c(P2, Q2) + c(P1, Q2) + c(P2, Q1)︸ ︷︷ ︸
:=A

< α min{|P |, |Q|} by (2.10)

≤ |V |
2

α

≤ c(C1, C2) by (2.4)
= c(P1, P2) + c(Q1, Q2) + c(P1, Q2) + c(P2, Q1)︸ ︷︷ ︸

=A

So we get

c(P1, Q1) + c(P2, Q2) < c(P1, P2) + c(Q1, Q2). (2.11)

18 CHAPTER 2. CONTRADICTING BARNA SAHA AND PABITRA MITRA

Now the assertion that cα(θ1) + cα(θ2) < cα(θmin(1)) + cα(θmin(2)) can be proven
as follows:

cα(θ1) + cα(θ2) = α (|P1|+ |Q2|) + c(P1, Q1) + c(P2, Q2) + B

< α (|P1|+ |Q2|) + c(P1, P2) + c(Q1, Q2) + B by (2.11)
≤ α (|C1|+ |C2|) + c(P1, P2) + c(Q1, Q2) + B

≤ α (|C1|+ |C2|) + c(P1, P2) + c(Q1, Q2) + B

+2 c(P2, Q1) + c(P2, V \ (C1 ∪ C2)) + c(Q1, V \ (C1 ∪ C2))
= cα(θmin(1)) + cα(θmin(2)).

Therefore, at least one of the minimum cuts θmin(1) or θmin(2) represented by the
min-cut tree T (Gα) can be replaced by a cheaper cut. This contradicts the min-cut
tree properties. It follows that there exists no cut (P, C̄ \ P) in C̄ that separates
y1 and y2 and simultaneously violates the intra-cluster quality, i.e., meets condi-
tion (2.10). So each y1-y2-cut (P, C̄ \ P) does respect the intra-cluster quality of
C̄ = C1 ∪ C2 on condition that 2 c(C1, C2)/|V | ≥ α, which constitutes the prereq-
uisite of CASE 2.

Now the merging lemma (see Lemma 1), and the correctness of CASE 2 respec-
tively, is completely proven, as we showed that on condition that 2 c(C1, C2)/|V | ≥ α
all nontrivial cuts (P, C̄ \ P) in the merged cluster C̄ = C1 ∪ C2 respect the intra-
cluster quality of C̄. Saha and Mitra [SM06] only showed this assertion for cuts
(P, C̄ \ P) that do not separate the vertices y1 ∈ C1 and y2 ∈ C2 (see the first part
of Section 2.3.1). We completed the proof given by Saha and Mitra by also show-
ing the assertion for y1-y2-cuts (P, C̄ \ P) in C̄. We see that the whole proof only
requires the considered clustering ζ(G) to result from the cut-clustering method of
Flake et al. [FTT04], which constitutes the implicit invariant given in Fact 1. TheProof of

Fact 2
implicit invariant, therefore, turns out to be a sufficient condition for the correctness
of the merging lemma, and CASE 2 respectively. Hence, Fact 2 in Section 2.2 is
proven true.

Remember that there may be even weaker conditions than the implicit invariant
on which CASE 2 returns a correct result, i.e., on which the merging lemma holds.
It is not feasible to simply deduce the invariant to be necessary from the previous
example in Section 2.2 (see Figure 2.1), although in this example it seems that
CASE 2 returns an invalid result because the clustering ζ(G1) considered before
does not provide the properties representing the invariant, i.e., is not induced by a
min-cut tree of G1

α. However, this interrelation does not necessarily exist. There
Recap on the
necessity of
the invariant also may be other initial clusterings detectable which do not provide the required

properties, but meet some weaker conditions not met by ζ(G1) such that CASE 2
returns a correct result. The existence of such an initial clustering would disprove
the necessity of the invariant regarding the correctness of CASE 2, and the merging
lemma respectively.

Strict clustering property required by CASE 2

In the previous paragraph we gave a proper proof of the merging lemma (see
Lemma 1), which legitimates CASE 2 of the inter-edge-add algorithm (see Algo-
rithm 2, Line 9), but we still do not know if CASE 2 respects the implicit invariant
given in Fact 1 in Section 2.2. However, before answering this final question we first
discuss a further aspect of CASE 2. In the following we illustrate that the prerequi-
site of CASE 2 actually implies a very strict property of the input clustering ζ(G)
which probably makes CASE 2 occurring very rarely. This is, CASE 2 turns out
to be quite unlikely.

2.3. DISCUSSION OF INCONSISTENCIES 19

We explore how an input clustering ζ(G) ending up in CASE 2 in the inter-edge-
add algorithm does look like. To meet a sufficient condition for the correctness
of CASE 2, by Fact 2, we assume the input clustering ζ(G) to result from the
cut-clustering method of Flake et al. [FTT04]. Therefore, the clustering ζ(G) in
particular respects the clustering quality defined by Flake et al. (see Section 2.1).
The clusters Cb and Cd of the input clustering ζ(G), which are affected by the
inter-cluster addition of the new edge e⊕ = {b, d}, are shown in a stylized graph Gα

in Figure 2.7. As the prerequisite of CASE 2 (see Algorithm 2, Line 9) considers
the input clustering ζ(G) before the edge addition, the edge e⊕ = {b, d} is indicated
by a dashed line in Figure 2.7.

yb

yd

Cb Cd

θmin(d)θmin(b)
t θ

b

d

Figure 2.7: Overview of different cuts in graph Gα.

As the inter-edge-add algorithm is supposed to end up in CASE 2, for the input
clustering ζ(G) it must hold that 2 c(Cb, Cd)/|V | ≥ α which is equivalent to

c(Cb, Cd) ≥
|V |
2

α. (2.12)

The following lemma now states the strict property of the input clustering ζ(G)
required by CASE 2 due to condition (2.12).

Lemma 4 Let θ(b,d) := (Cb ∪ Cd, Vα \ (Cb ∪ Cd)) denote the cut that separates the
merged cluster C̄ = Cb ∪ Cd from the remaining vertices in graph Gα. Further let

Lemma:
Strict property
required by
CASE 2θmin(b) := (Cb, Vα \ Cb) and θmin(d) := (Cd, Vα \ Cd) denote the cuts that separate

the single clusters Cb and Cd from the rest (see Figure 2.7). Then condition (2.12)
implies that for the weights in Gα it holds that

cα(θ(b,d)) = cα(θmin(b)) = cα(θmin(d)).

Proof. Consider the cut θmin(b) = (Cb, Vα \Cb) in Gα, which is a minimum yb-t-cut
for a vertex yb ∈ Cb, as the input clustering ζ(G) is supposed to be induced by a
min-cut tree T (Gα). For this cut we get

cα(θmin(b)) = α |Cb|+ c(Cb, V \ (Cb ∪ Cd)) + c(Cb, Cd)︸ ︷︷ ︸
≥ |V |

2 α, by (2.12)

(2.13)

The cut θ := ({t}, Vα \ {t}) (see Figure 2.7) also separates yb and t and has weight

cα(θ) = α |V |. (2.14)

20 CHAPTER 2. CONTRADICTING BARNA SAHA AND PABITRA MITRA

From Equation (2.13) and (2.14) it follows that

α |Cb|+ c(Cb, V \ (Cb ∪ Cd)) ≤
|V |
2

α ≤ c(Cb, Cd), (2.15)

as otherwise θ would be a cheaper yb-t-cut than θmin(b) in Gα. By making use
of Equation (2.15) we now compare cut θ(b,d) = (Cb ∪ Cd, Vα \ (Cb ∪ Cd)), which
separates C̄ from the remaining vertices of Gα, with cut θmin(d) = (Cd, Vα \ Cd),
which just cuts off Cd. Thereby cut θ(b,d) turns out to be cheaper than or of the
same weight as cut θmin(d).

cα(θ(b,d)) = α |Cd|+ c(Cd, V \ (Cb ∪ Cd)) + α |Cb|+ c(Cb, V \ (Cb ∪ Cd))︸ ︷︷ ︸
≤c(Cb,Cd), by (2.15)

≤ α |Cd|+ c(Cd, V \ (Cb ∪ Cd)) + c(Cb, Cd)
= cα(θmin(d))

As θmin(d) is a minimum yd-t-cut in Gα for a vertex yd ∈ Cd, and cut θ(b,d) also
separates yd and t, the cut θ(b,d) can not be cheaper than θmin(d). A symmetric
argumentation holds for the comparison of θ(b,d) and θmin(b). Altogether condi-
tion (2.12) of CASE 2, hence, implies that

cα(θmin(d)) = cα(θb,d) = cα(θmin(d)) (2.16)

Replacing now condition (2.12) in the merging lemma (see Lemma 1), which
founds CASE 2 in the inter-edge-add algorithm, by the new condition (2.16) yields
the following new merging lemma.

Lemma 5 (New merging lemma) On the new condition (2.16) merging cluster Cb

and Cd of the input clustering ζ(G) yields a clustering ζ(G⊕) of the modified graph
Lemma:
New merging
lemma G⊕ that again results from the cut-clustering method, and therefore, also respects

the clustering quality.

The proof of this new merging lemma will be given later in Chapter 6, Subsec-
tion 6.3.3, as for this proof we need some lemmas not stated yet. We will see that
Lemma 5 can be proven much shorter than the previous merging lemma.

As the new condition (2.16) is implicated by the previous condition (2.12) of
CASE 2, by the new merging lemma it follows that CASE 2 also respects the
implicit invariant given in Fact 1. Furthermore, the reverse implication, i.e., the

CASE 2
respects
the implicit
invariant implication of condition (2.12) by condition (2.16), is easy to see. So both conditions

turn out to be equivalent.

This paragraph demonstrated that CASE 2 developed by Saha and Mitra [SM06]
can be replaced by a new CASE 2’ founded by the new merging lemma, which is
much easier to prove. Moreover, we realized that the condition of CASE 2 is very
strict. Therefore, CASE 2 is not expected to occur very often, and hence, to cause
a significant saving of time and effort in a dynamic application of the inter-edge-add
algorithm.

2.3.2 The Unaffect Lemma and CASE 3

In this section we introduce the unaffect lemma which is stated by Saha and Mi-
tra [SM06] to prove the correctness of CASE 3 of the inter-edge-add algorithm (see

2.3. DISCUSSION OF INCONSISTENCIES 21

Algorithm 2, Line 28). However, before we review the unaffect lemma, which we
refer to as Lemma 6, we give a detailed description of what the algorithm does in
CASE 3 according to the formulation given by Saha and Mitra. We will further
point out the inconsistencies appearing in the unaffect lemma and finally disprove
the correctness of CASE 3.

The first two cases of the inter-edge-add algorithm are discussed in Section 2.2
and Subsection 2.3.1. The last case, namely CASE 3, serves as default case if none
of the previous cases occurs. As before, ζ(G) denotes the input clustering in the
algorithm complying with clustering quality. The input graph G = (V, E, c()) is
enlarged by adding an edge e⊕ = {b, d} between two clusters Cb and Cd in ζ(G).
The modified graph is called G⊕ = (V, E ∪ {e⊕}, c⊕()). Again the inter-edge-add
algorithm in CASE 3 is thought to return a clustering ζ(G⊕) of the modified graph
G⊕ which still respects the clustering quality.

To this end CASE 3 adds an artificial sink t to G⊕ as described in the cut-
clustering method of Flake et al. [FTT04] and then contracts all vertices not included
in the clusters Cb and Cd of graph G (see Line 14 to Line 16). The resulting graph
is denoted by G′

α. Note, that this graph does not result from G⊕ by just adding
a sink t as in the cut-clustering method. In this context the construction of G′

α

requires an additional contraction. So graph G′
α consists of the vertices included in

Cb ∪Cd and a node ω resulting from this contraction. Now a min-cut tree T (G′
α) is

calculated for G′
α (see Line 17). After removing the artificial sink t from T (G′

α) the
tree decomposes into several connected components (see Line 18). At this point the
formulation of CASE 3 given by Saha and Mitra [SM06] mentions new components
C1, . . . , Cz consisting of vertices included in Cb∪Cd and finally constructs an output
clustering ζ(G⊕) which assumes that the set Cb∪Cd decomposes in these components
while the node ω forms a singleton after the removal of sink t from T (G′

α). However,
this assumption can be disproven, as we will see later in this section. So returning
the new clustering ζ(G⊕) as defined in Line 19 is not possible in general.

As the correctness of CASE 3 can be disproven, there must exist some inconsis-
tencies in the proof given by Saha and Mitra [SM06] for this case. Saha and Mitra
state the following lemma to prove the correctness of CASE 3.

Lemma 6 (Unaffect lemma) Let Cb and Cd be two clusters in a clustering ζ(G)
resulting from the cut-clustering method of Flake et al. [FTT04]. If there are some

Lemma:
Unaffect
lemmainsertions and deletions of edges across and within the clusters Cb and Cd of the

dynamic graph G, then all clusters in ζ(G) \ {Cb, Cd} remain unaffected.

The inconsistency related to the unaffect lemma concerns the meaning of the expres-
sion “remain unaffected” in the context of clusters. This expression is not defined
in [SM06]. We can only guess by the formulation of CASE 3 in Algorithm 2 what the
authors deduce from Lemma 6, as they intend to prove the correctness of CASE 3
with the aid of this lemma. The given proof of the unaffect lemma by Saha and
Mitra is meaningless, as it omits a definition of this expression, too. We will not
consider this proof any further. However, we will see in Chaper 6, Subsection 6.3.3,
that, nevertheless, a reasonable interpretation of the unaffect lemma can be given.
Of course this interpretation does not allow the deduction of the approach described
in CASE 3 (which is provably wrong), but of a slightly different approach which is
correct, respects the implicit invariant given in Fact 1, and finally reduces the effort
of the clustering calculation.

22 CHAPTER 2. CONTRADICTING BARNA SAHA AND PABITRA MITRA

Disproving the correctness of CASE 3

We disprove the correctness of CASE 3 formulated in the inter-edge-add algorithm
(see Algorithm 2) with the aid of the following counter-example. Figure 2.8a il-
lustrates a weighted graph G with a parametric cost function and four clusters
resulting from the cut-clustering method of Flake et al. [FTT04]. For all graphs in
Figure 2.8 the parametric weights are assigned to the edges. A min-cut tree T (Gα)
inducing the illustrated clustering ζ(G) is shown in Figure 2.8b. The dashed line in
Figure 2.8a indicates the edge e⊕ = {2, 12}, which will be added by the algorithm,
but does not belong to graph G yet.

Now we apply Algorithm 2 to graph G. Thereby the new edge e⊕ = {2, 12} with
weight 4.5 α is inserted between the clusters {1, 2, 3, 4} and {10, 11, 12} constructing
the modified graph G⊕. Then the three cases are checked: CASE 1 is skipped, as
c⊕({1, 2, 3, 4}, V \ {1, 2, 3, 4}) = 8.5 α > 8 α = α |V \ {1, 2, 3, 4}| holds. CASE 2 also
does not occur due to c({1, 2, 3, 4}, {10, 11, 12}) = 1 α < 6 α = α |V |/2. Therefore,
the algorithm ends up in CASE 3. This case adds an artificial sink t to graph
G⊕ and contracts the vertices of the clusters {5, 6} and {7, 8, 9} to a node called
ω. The resulting graph G′

α is shown in Figure 2.8c. Finally a min-cut tree of G′
α

is calculated. The tree T (G′
α) given by Figure 2.8d constitutes a valid min-cut

tree of graph G′
α as it might result from this operation. However, in this tree the

node ω obviously does not form a singleton after removing the sink t, and the set
{1, 2, 3, 4} ∪ {10, 11, 12} does not decompose in disjoint components. Hence, the
inter-edge-add algorithm would throw an exception in Line 19.

CASE 3 neither
respects
invariant nor
maintains
quality If we modified the algorithm such that it returns the clustering ζ̄(G⊕) induced by

the newly calculated min-cut tree T (G′
α) instead of throwing an exception (compare

to Figure 2.8d), the returned clustering would not even guarantee the clustering
quality. In our example the clustering ζ̄(G⊕) consists of a single cluster containing all
vertices of G⊕. In this cluster for example the cut ({7, 8, 9}, V \{7, 8, 9}) violates the
intra-cluster quality, as c⊕({7, 8, 9}, V \{7, 8, 9}) = 2 α < 3 α = α min{|{7, 8, 9}|, |V \
{7, 8, 9}|} holds. This violation is rooted in the construction of the graph G′

α in
CASE 3. At first sight the approach in CASE 3 seems very similar to the cut-
clustering method (see Algorithm 1) indeed, as in CASE 3 the graph G⊕ is also
enlarged by an artificial sink t and a min-cut tree in calculated. Therefore, one
might expect the clustering quality being preserved. However, a closer look shows
that in CASE 3 the sink t in graph G′

α is no more connected to the remaining
vertices with the same weight α. This is caused by contracting several vertices after
the sink t was inserted. In our example the edge {ω, t} in graph G′

α has weight
5 α. The graph G′

α constructed in CASE 3 hence does not provide the properties
required by the cut-clustering method before calculating the min-cut tree.

2.4 Summary

In this chapter we stated an invariant (see Fact 1 in Section 2.2) that Saha and
Mitra [SM06] implicitly assume for their updating algorithms, but miss to prove.
Therefore, we studied whether the three cases distinguished by the inter-edge-add
algorithm of Saha and Mitra (see Algorithm 2) do respect this invariant. In doing so
the example given in Section 2.2 showed that CASE 1 does not meet the invariant.
By contrast, on condition that the input clustering already provides the necessary
properties, in Subsection 2.3.1 CASE 2 (see Line 9) turned out to maintain those
clustering properties defining the invariant. At the same time we showed that the
occurrence of CASE 2 is very unlikely. Furthermore, we proved the invariant to

2.4. SUMMARY 23

7

5 6

3

12 100 α

1 α

4

8

9

12 10

11

100 α 100 α

100 α

100 α

100 α

100 α

100 α

100 α

1 α
1 α

3 α
3 α

4 1
2 α

100 α 100 α

(a) Graph G with clustering ζ(G) resulting from the
cut-clustering method

7

5 6

3

12

4

8

9

12 10

11

201 α

201 α
201 α

101 α

201 α

201 α

201 α

201 α

t
8 α

5 α8 α

9 α

(b) Min-cut tree T (Gα) inducing the clustering ζ(G)
shown above

4 1
2 α 7

5 6

3

12 100 α

1 α

4

8

912 10

11

100 α 100 α

100 α

100 α

100 α 100 α

t

4 α

5 α

4 α ω

(c) Graph G′
α, resulting from G⊕ by adding the sink t

and contracting the vertices in {5, 6} ∪ {7, 8, 9}

7

5 6

3

12 201 α

4

8

912 10

11

201 α
201 α

201 α

201 α

t

13 α

12 α

12 1
2 α

ω

(d) Min-cut tree T (G′
α) of graph G′

α

Figure 2.8: Counter-example for the correctness of CASE 3.

24 CHAPTER 2. CONTRADICTING BARNA SAHA AND PABITRA MITRA

be sufficient for the correctness of CASE 2, but it is still open whether it also
constitutes a necessary condition. Nevertheless, we know at least one example of
an input clustering that does not provide the properties required by the invariant
and consequently yields an invalid result by applying CASE 2. The default case
in Section 2.3.2, namely CASE 3 (see Line 28), not even maintains the clustering
quality, although, the approach given in CASE 3 can be modified such that it yields
a correct algorithm which can be proven to meet the invariant.

Chapter 3

Basics Regarding Cuts and
Min-Cut Trees

In Chapter 2 we showed that the approach of Saha and Mitra [SM06] for dynamically
updating a given clustering with a guaranteed clustering quality is not feasible.
Nevertheless, the idea of using the cut-clustering method of Flake et al. [FTT04]
(see Algorithm 1, Section 2.1), which guarantees a clustering quality depending on
a parameter α, seems to be reasonable for a dynamic extension. So, as the cut-
clustering method in based on the calculation of a min-cut tree, in Chapter 4 we
will at first explore, independently from any clusterings, how a min-cut tree T (G)
gets affected by a dynamic modification of the considered graph G. To this end it
is not necessary to distinguish dynamic inter- and intra-cluster modifications. In
Chapter 4 we will just analyze the four elementary modifications of adding and
deleting an edge and inserting and removing a vertex.

However, to get familiar with the min-cut tree as the mainly considered structure
in the following, this chapter afore states some basic lemmas about the impact of
dynamic modifications on cuts and describes the method of Gomory and Hu [GH61]
to construct a min-cut tree.

3.1 Some Basic Lemmas

This section defines canonically induced cuts (see Subsection 3.1.1) and gives a
collection of lemmas and corollaries about such cuts in differently modified graphs
(see Subsection 3.1.2 and 3.1.3). The modifications considered in this section are
the addition and deletion of an edge.

Note, that the addition and deletion of an edge in an undirected, positively
weighted graph G = (V, E, c()) can be regarded as a special case of increasing
and decreasing weights of edges in the related undirected, non-negatively weighted,
complete graph Gc = (V, Ec, cc()), with Ec = E ∪ {{u, v} ⊆ V |{u, v} /∈ E} and
cc({u, v}) = c({u, v}) if {u, v} ∈ E, and cc({u, v}) = 0 otherwise. Adding a new
positively weighted edge {b, d} to E then corresponds to increasing the weight of
edge {b, d} in Ec from zero to the new weight of {b, d} in G. Analogously the

Definition:
Modified
verticesdeletion of an edge {b, d} from E corresponds to the reduction of the weight of edge

{b, d} in Ec to zero. Therefore, it is reasonable to call the vertices b and d which
are incident with an added or deleted edge modified vertices.

25

26 CHAPTER 3. BASICS REGARDING CUTS AND MIN-CUT TREES

In the remainder of this work we mostly talk about the addition and deletion of
edges, instead of increasing and decreasing weights. Hoever, note that all assertions
made in this context will also be feasible if we regard the addition and deletion
of edges as a special case of increasing and decreasing weights. If nothing else
is mentioned we consider undirected, positively weighted, connected graphs and
nontrivial cuts, i.e, cuts with positive weights.

3.1.1 Canonically Induced Cuts

In this subsection we define and explore canonically induced cuts in general. Sub-
section 3.1.2 and 3.1.3 then will state some assertions about the impact of dynamic
modifications on the weight of canonically induced cuts and the maintenance of
minimality.

Definition 6 Let G1 = (V1, E1, c1()) and G2 = (V2, E2, c2()) denote two undi-
rected, weighted graphs. Let Φ : V1 −→ V2 denote a surjective map. Further let

Definition:
Canonically
induced cuts (U1, V1 \ U1) denote a cut in G1 and (U2, V2 \ U2) a cut in G2. Cut (U1, V1 \ U1)

canonically induces cut (U2, V2 \ U2) (under map Φ) if it holds that

Φ−1(W) ⊆ U1 ∀W ⊆ U2 and
Φ−1(W) ⊆ (V1 \ U1) ∀W ⊆ (V2 \ U2).

Vice versa, cut (U1, V1 \U1) is said to be re-induced by cut (U2, V2 \U2) if it induces
cut (U2, V2 \ U2).

The only maps considered in this work in the context of canonically induced cuts are
the identity and the vertex contraction defined in the Preliminaries. The following
lemma considers canonically induced cuts under vertex contraction. Assertion and
proof of this lemma are quite intuitive.

Lemma 7 Let G = (V, E, c()) denote an undirected, weighted graph. The graph
formed by contracting W ⊆ V is called G◦ = (V◦, E◦, c◦()). Let ω ∈ V◦ denote the
contraction of W.

Lemma:
Canonically
induced cuts
under vertex
contraction Then each cut (U, V \ U) in G with W ⊆ (V \ U) canonically induces a cut

(U, V◦ \ U) in G◦, while it holds that c◦(U, V◦ \ U) = c(U, V \ U).

Vice versa, each cut (U, V◦ \U) in G◦ with ω ∈ (V◦ \U) is canonically induced by
(or re-induces) a cut (U, V \U) in G, while it holds that c(U, V \U) = c◦(U, V◦ \U).

Proof. Let Φ : V −→ V◦ denote the surjective map defined by the vertex contrac-
tion, this is, Φ(u) = u, ∀u ∈ (V \W), and Φ(v) = ω, ∀v ∈W. Now consider an arbi-
trary cut (U, V \U) in G with W ⊆ (V \U). So, as the contracted set W is supposed
to be a subset of (V \U), i.e., the cut (U, V \U) in G does not separate any vertices in
W, the cut (U, V◦ \U) is well defined in G◦ and it holds that Φ−1(D) ⊆ U, ∀D ⊆ U,
as Φ|U is the identity. It holds further that Φ−1(D) ⊆ (V \ U), ∀D ⊆ (V◦ \ U), be-
cause otherwise there would exist an x ∈ (V◦\U) with Φ−1(x) ∈ U which contradicts
the assumption that Φ|U is the identity.

Vice versa, considering an arbitrary cut (U, V◦ \ U) with ω ∈ (V◦ \ U) the cut
(U, V \ U) is well defined in G and does not separate any vertices in W. Therefore
(U, V \ U) canonically induces (U, V◦ \ U) (as just shown above). So we just have

3.1. SOME BASIC LEMMAS 27

to prove that it holds that c◦(U, V◦ \ U) = c(U, V \ U):

c◦(U, V◦ \ U) =
∑

{u,v}∈E◦
u∈U,v∈(V◦\U)

c◦({u, v})

=
∑

{u,v}∈E◦
u∈U,v∈V◦\(U∪{ω})

c◦({u, v}) +
∑

{u,ω}∈E◦
u∈U

c◦({u, ω})

=
∑

{u,v}∈E
u∈U,v∈V \(U∪W)

c({u, v}) +
∑

{u,v}∈E
u∈U,v∈W

c({u, v})

=
∑

{u,v}∈E
u∈U,v∈(V \U)

c({u, v}) = c(U, V \ U)

Remark 1 In Lemma 7 the map Φ is defined by a vertex contraction. As a vertex
contraction causes a reduction of the set V of graph G, the map Φ : V −→ V◦ is
only surjective, never injective. So under a map Φ defined by a vertex contraction
each cut in G◦ is canonically induced by a unique cut in G, but there exist cuts
in G (namely all cuts that separate some vertices in W) which do not canonically
induce a cut in G◦. If now we consider the identity, instead of map Φ defined by

Remark:
Canonically
induced cuts
under identitythe vertex contraction, the set V of graph G is not changed, and hence the assertion

of Lemma 7 becomes trivial. Under the identity (as a bijective map Φ between sets
of vertices of two graphs G1 and G2) each cut in G1 canonically induces a unique
cut in G2 and each cut in G2 is canonically induced by a unique cut in G1.

We consider such cuts, which canonically induce and re-induce one another under
vertex contraction or identity, to be equivalent. Hence, we address such cuts as
only one cut in different graphs (with either a vertex contraction or the identity
implicitly assumed as map Φ between these graphs). In contrast to Lemma 7, we
will see in Section 3.1.2 that cuts which are equivalent in this terms, however, may
have different weights if we assume graph G to be modified by the addition or
deletion of an edge.

However, at first we extend the assertion of Lemma 7 concerning several contrac-
tions. The next corollary considers an undirected, weighted graph G = (V, E, c())
and mutually disjoint contraction sets W1, . . . ,Wk ⊆ V in G. The graph formed by
contracting each subset Wj (j = 1, . . . , k) in G is called G◦ = (V◦, E◦, c◦()). Let
ωj ∈ V◦ denote the contraction of Wj . Then the corollaries assertion follows by in-
duction on the sets W1, . . . ,Wk and Lemma 7. Figure 3.1 illustrates the corollaries
assertion.

Corollary 1 Each cut (U, V \U) in G which does not separate any vertices {u, v} ⊆
Wj (j = 1, . . . , k) canonically induces a cut (U◦, V◦ \ U◦) in G◦ of the same weight,
with U◦ = Φ(U) regarding the map Φ defined by the vertex contractions.

Corollary:
Canonically
induced cuts
under several
vertex
contractions

Vice versa, each cut (U◦, V◦ \U◦) in G◦ is canonically induced by (or re-induces)
a cut (U, V \ U) in G of the same weight, with U = Φ−1(U◦) regarding the map Φ
defined by the vertex contractions. The re-induced cut (U, V \ U) does not separate
any vertices {u, v} ⊆Wj (j = 1, . . . , k).

28 CHAPTER 3. BASICS REGARDING CUTS AND MIN-CUT TREES

UV \ U

W1
W2

W3
W4

(a) Graph G with cut (U, V \ U)

U◦V◦ \ U◦

w1
w2

w3

w4

(b) Graph G◦ with cut (U◦, V◦ \ U◦)

Figure 3.1: Canonically induced cuts under several vertex contractions.

3.1.2 Canonically Induced Cuts in Modified Graphs

This section states some assertions about weights of canonically induced (or equiva-
lent) cuts changing in modified graphs. The considered modifications in this subsec-
tion are the addition and deletion of an edge. The following corollaries result from
the coherences explored in the previous Section and the definition of the weight of
a cut given in the preliminaries.

In the first corollary we consider the same situation as in Corollary 1, but addi-
tionally assume the graph G◦ to be enlarged (reduced) by the addition (deletion) of
an edge {b, d}, with weight ∆ > 0. Note, that the vertices b and d are regarded as
vertices in V, which may also be contracted. Then, by Corollary 1, a cut (U, V \U)
in G which does not separate any vertices {u, v} ⊆ Wj (j = 1, . . . , k) canonically
induces a cut (U◦, V◦ \ U◦) in G◦, with U◦ = Φ(U).

Corollary 2 The induced cut (U◦, V◦ \U◦) in G◦ is of the same weight if (U, V \U)
does not separate b and d, and has weight

c◦(U◦, V◦ \ U◦) = c(U, V \ U)±∆

otherwise. Vice versa, each cut (U◦, V◦ \ U◦) in G◦ is canonically induced by (or

Corollary:
Canonically
induced cuts
under several
vertex
contractions

re-induces) a cut (U, V \U) in G, with U = Φ−1(U◦). The re-induced cut (U, V \U)
is of the same weight if (U◦, V◦ \ U◦) does not separate b and d, and otherwise has
weight

c(U, V \ U) = c◦(U◦, V◦ \ U◦)∓∆.

We can state the same assertion for canonically induced cuts under the identity,
instead of map Φ defined by the vertex contraction. Again G = (V, E, c()) denotes
an undirected, weighted graph and G⊕() = (V, E⊕(), c⊕()()) the graph enlarged
(reduced) by the addition (deletion) of an edge e⊕() = {b, d}, with weight ∆ > 0.
Then, by Remark 1, a cut (U, V \ U) in G canonically induces a cut (U, V \ U) in
graph G⊕().

Corollary 3 The induced cut (U, V \U) in G⊕() is of the same weight if (U, V \U)
in G does not separate b and d, and has weight

c⊕()(U, V \ U) = c(U, V \ U)±∆

otherwise. Vice versa, each cut (U, V \ U) in G⊕() is canonically induced by (or
Corollary:
Canonically
induced cuts
under identity re-induces) a cut (U, V \U) in G. The re-induced cut (U, V \U) in G is of the same

weight if (U, V \ U) in G⊕() does not separate b and d, and otherwise has weight

c(U, V \ U) = c⊕()(U, V \ U)∓∆.

3.1. SOME BASIC LEMMAS 29

Note, that in Corollary 3 the modification that points from G	 to G constitutes
an edge addition, while the modification that points from G⊕ to G corresponds to
an edge deletion. Due to this observation Lemma 8 and Lemma 9 in the following
subsection consider the modifications in only one direction.

In this section we have seen that cuts which are equivalent in the sense that they
canonically induce and re-induce one another under vertex contraction or identity,
however, may have different weights in a graph G modified by the addition or
deletion of an edge.

3.1.3 Canonically Induced Min-Cuts in Modified Graphs

In this section we additionally suppose the considered cuts to be minimum u-v-
cuts for a pair of vertices {u, v}. The following lemmas then explore whether the
equivalent cuts in modified graphs are also minimum u-v-cuts concerning the same
pair {u, v}. The considered modifications in this subsection are again the addition
and deletion of an edge. In the context of edge deletion we additionally consider the
special case when the deletion yields a disconnected graph, i.e., when the deleted
edge was a bridge in G.

The lemmas of this section are also quite intuitive but we will need them in later
proofs. That is why we sum them here. The first lemma considers the identity as
map Φ and an undirected, weighted graph G = (V, E, c()) modified by the addition
of an edge e⊕ = {b, d}, with weight ∆ > 0. The resulting graph we denote by
G⊕ = (V, E∪{e⊕}, c⊕()). Let u, v ∈ V denote two arbitrary vertices of G. Then, by
Remark 1, a minimum u-v-cut θmin := (U, V \U) in G canonically induces a u-v-cut
(U, V \ U) in G⊕.

Lemma 8 If the cut θmin in G does not separate b and d, the induced cut (U, V \U)

(A1) is of the same weight (by Corollary 3) and

(A2) is also a minimum u-v-cut in G⊕ (not proven yet).
Lemma:
Canonically
induced
min-cuts under
identity and
edge addition

Otherwise, if θmin in G separates b and d, the induced cut (U, V \ U)

(A3) has weight c⊕(U, V \ U) = c(θmin) + ∆ (by Corollary 3), and

(A4) may be a minimum u-v-cut in G⊕ on several conditions (not proven yet):

• It is no minimum u-v-cut in G⊕ if there exists a u-v-cut in G that does
not separate b and d and is cheaper than c(θmin) + ∆.

• It is a minimum u-v-cut in G⊕ if all u-v-cuts in G that do not separate
b and d are at least of weight c(θmin) + ∆.

Proof. By Corollary 3, cuts that separate b and d in G become more expensive
in G⊕ by addition of the weight ∆ > 0, and cuts that do not separate b and d
in G are of the same weight in G⊕. It follows that the weight lb := c(θmin) of a
minimum u-v-cut θmin in G constitutes a lower bound for the weight of a minimum
u-v-cut in G⊕. Proof of (A2): By (A1), it follows that each minimum u-v-cut in
G that does not separate b and d meets this lower bound and, therefore, is also a
minimum u-v-cut in G⊕. Proof of (A4-1): Furthermore, if there exists a u-v-cut
that is cheaper than lb + ∆ in G and does not separate b and d (i.e., is of the same
weight in G⊕ by Corollary 3), then a minimum u-v-cut in G that separates b and

30 CHAPTER 3. BASICS REGARDING CUTS AND MIN-CUT TREES

d is never a minimum u-v-cut in G⊕, as it has weight lb + ∆ in G⊕ by (A3). Proof
of (A4-2): If otherwise all u-v-cuts that do not separate b and d (i.e., that do not
become more expensive in G⊕) are at least of weight lb + ∆ in G, then a minimum
u-v-cut in G that separates b and d (and therefore, has weight lb + ∆ in G⊕ by
(A3)) is also a minimum u-v-cut in G⊕.

The next lemma again considers the identity as map Φ, but a graph G =
(V, E, c()) modified by the deletion of an edge e	 = {b, d} which is no bridge in
G and has weight {b, d} > 0. The resulting graph we call G	 = (V, E \ {e	}, c	()).
Let u, v ∈ V denote two arbitrary vertices of G. Then, by Remark 1, a minimum
u-v-cut θmin := (U, V \ U) in G canonically induces a u-v-cut (U, V \ U) in G	.

Lemma 9 If the cut θmin in G does not separate b and d, the induced cut (U, V \U)

(A1) is of the same weight (by Corollary 3) and

(A2) may be a minimum u-v-cut in G	 on several conditions:

• It is no minimum u-v-cut in G	 if there exists a u-v-cut in G that sep-
arates b and d and is cheaper than c(θmin) + ∆ (not proven yet).

• It is a minimum u-v-cut in G	 if all u-v-cuts in G that separate b and
d are at least of weight c(θmin) + ∆ (not proven yet).

Lemma:
Canonically
induced
min-cuts under
identity and
edge deletion

Otherwise, if θmin in G separates b and d, the induced cut (U, V \ U)

(A3) has weight c	(U, V \ U) = c(θmin)−∆ (by Corollary 3), and

(A4) is also a minimum u-v-cut in G	 (not proven yet).

Proof. By Corollary 3, cuts that separate b and d in G become cheaper in G	 by
subtraction of the weight ∆ > 0, and cuts that do not separate b and d in G are
of the same weight in G	. It follows that the weight lb := c(θmin) −∆, with θmin

a minimum u-v-cut in G, constitutes a lower bound for the weight of a minimum
u-v-cut in G	. Proof of (A4): By (A3) it follows that each minimum u-v-cut in G
that separates b and d meets this lower bound and, therefore, is also a minimum u-
v-cut in G	. Proof of (A2-1): Furthermore, if there exists a u-v-cut that is cheaper
than c(θmin) + ∆ in G and separates b and d (i.e., whose weight is reduced by ∆ in
G	 by Corollary 3), then a minimum u-v-cut that does not separate b and d in G
is never a minimum u-v-cut in G	, as it has weight c(θmin) in G	 by (A1). Proof
of (A2-2): If otherwise all u-v-cuts that separate b and d (i.e., that become cheaper
in G) are at least of weight c(θmin) + ∆ in G, then a minimum u-v-cut that does
not separate b and d in G (and therefore, has weight c(θmin) in G	 by (A1)) is also
a minimum u-v-cut in G	.

Now we additionally consider the case when the edge e	 = {b, d}, with weight
∆ > 0, deleted from graph G was a bridge in G, i.e., when the deletion yields
a disconnected graph G	. The two connected components of G	 we call Gb =
(Vb, Eb, cb()) and Gd = (Vd, Ed, cd()), with Vb ∪ Vd = V and Eb ∪ Ed = E \ {e	}.
Let u, v ∈ Vj (j ∈ {b, d}) denote two arbitrary vertices of Gj . Then, by Remark 1

Lemma:
Canonically
induced
min-cuts under
identity and
bridge deletion

and Corollary 3, each minimum u-v-cut θmin := (U, V \U) in G canonically induces
a u-v-cut (Uj , Vj \ Uj) in Gj , with Uj = Vj ∩ U and weight c(θmin) (−∆ if θmin

separates b and d).

Lemma 10 The induced cut (Uj , Vj \ Uj) in Gj is a minimum u-v-cut in Gj.

3.2. THE GOMORY-HU METHOD 31

Proof. An arbitrary minimum u-v-cut θmin := (U, V \U) = (Ub∪Ud, V \ (Ub∪Ud))
in G has weight c(θmin) = cb(Ub, Vb \ Ub) + cd(Ud, Vd \ Ud) (+∆ if θmin separates b
and d), because there exist no edges (apart from e) between Vb and Vd in G.

If there existed a u-v-cut (Uc, Vj \ Uc) cheaper than cj(Uj , Vj \ Uj) in Gj , with
j ∈ (Vj\Uc) (i := {b, d}\{j}), then cut θc := (Uc∪Ui, V \(Uc∪Ui)) does not separate
b and d and therefore, would have weight c(θc) = cj(Uc, Vj \ Uc) + ci(Ui, Vi \ Ui) in
G. So cut θc would be cheaper than θmin. As cut θc also separates u and v, this
contradicts the assumption that θmin is a minimum u-v-cut in G.

The last lemma states an assertion similar to the assertions of Lemma 8 and 9
for canonically induced minimum u-v-cuts under vertex contraction. As the map
Φ defined by a vertex contraction is not injective, the question whether equivalent
cuts are also minimum u-v-cuts in a contracted graph G◦ already appears in the
absence of additional modifications. So we consider minimum u-v-cuts in the graphs
G and G◦, without any additions or deletions of edges (similar to the situation in
Corollary 1).

Then, by Corollary 1, each minimum u-v-cut θmin := (U, V \ U) in G which
does not separate any vertices {g, h} ⊆ Wj (j = 1, . . . , k) canonically induces a cut
(U◦, V◦ \ U◦) in G◦ of the same weight c(θmin), with U◦ = Φ(U). Vice versa, by
Corollary 1, each minimum u-v-cut θmin := (U◦, V◦ \ U◦) in G◦ (with u, v ∈ V◦)
is canonically induced by (or re-induces) a cut (U, V \ U) in G of the same weight
c◦(θmin), with U = Φ−1(U◦).

Lemma:
Canonically
induced
min-cuts under
vertex
contractions

Lemma 11 The induced cut (U◦, V◦ \U◦) is also a minimum u-v-cut in G◦. How-
ever, the re-induced cut (U, V \U) is not necessarily a minimum u-v-cut in G. It is
a minimum u-v-cut in G if and only if all u-v-cuts in G that separate any vertices
{g, h} ⊆Wj (j = 1, . . . , k) are at least of weight c◦(θmin).

Proof. By Corollary 1 each cut that does not separate any vertices {g, h} ⊆Wj (j =
1, . . . , k) in G is well defined in G◦ with the same weight, and each cut in G◦ is
well defined in G with the same weight and does not separate any vertices {g, h} ⊆
Wj (j = 1, . . . , k). Proof of (A): Therefore, the existence of a u-v-cut in G◦ cheaper
than the one canonically induced by a minimum u-v-cut θmin in G (which does
not separate any vertices {g, h} ⊆ Wj (j = 1, . . . , k)) contradicts the assumption
that θmin is a minimum u-v-cut in G. Proof of (B): Consider a minimum u-v-cut
θmin in G◦. If θmin is also a minimum u-v-cut in G, it follows that there exists no
u-v-cut in G cheaper than c◦(θmin), in particular there exists no u-v-cut cheaper
than c◦(θmin) that separates any vertices {g, h} ⊆ Wj (j = 1, . . . , k) in G. Vice
versa, if all u-v-cuts in G that separate any vertices {g, h} ⊆ Wj (j = 1, . . . , k) are
at least of weight c◦(θmin), there exists no other u-v-cut in G cheaper than c◦(θmin),
as all remaining u-v-cuts in G (namely those which do not separate any vertices
{g, h} ⊆ Wj (j = 1, . . . , k)) are u-v-cuts in G◦ with the same weight. Therefore,
those remaining u-v-cuts are at least of weight c◦(θmin) already.

3.2 The Gomory-Hu Method

The Gomory-Hu method, which was first introduced by Gomory and Hu [GH61],
describes an algorithm to construct a min-cut tree T (G) of an undirected, positively
weighted, connected graph G = (V, E, c()) by calculating n − 1 pairwise noncross-
ing minimum u-v-cuts. Note, that the Gomory-Hu method explicitly requires the
calculated minimum u-v-cuts to be noncrossing. As a consequence the method uses
operations of vertex contraction to meet the noncrossing condition. Due to these

32 CHAPTER 3. BASICS REGARDING CUTS AND MIN-CUT TREES

vertex contractions it becomes fairly involved and nontrivial to implement. Gus-
field [Gus90] shows that it is possible to modify the Gomory-Hu method such that
vertex contractions are not necessary anymore, as also crossing cuts can be used to
construct a min-cut tree. We will explain and use this method later in Chapter 4,
Section 4.2. The discussion of the Gomory-Hu method in this section aims at a
better understanding of the structure of min-cut trees. For a more detailed analysis
of this method see [GH61].

3.2.1 Gomory-Hu Algorithm for Min-Cut Trees

The following description of the Gomory-Hu method is based for the most part
on the one given in [Gus90]. Algorithm 3 additionally gives a more compact il-
lustration. The Gomory-Hu method takes an undirected, positively weighted, con-
nected graph G = (V, E, c()) as input, with |V | = n, and returns a min-cut tree
T (G) = (V, ET , cT()) of G. Note, that the cuts calculated in this method are
nontrivial, as G is supposed to be connected, i.e., the cuts are positively weighted.

The Gomory-Hu algorithm is an iterative method, which adjusts step by step
an intermediate min-cut tree T?(G) = (V?, E?, c?()) to get the min-cut tree T (G) =
(V, ET , cT()) in the end. Figure 3.2 shows an exemplary iteration.

Start: Define V? := {V } to be the single node containing all vertices of G. Then
iterate the following step until each node S ∈ V? contains only one vertex g
of G. Identify each singleton S with the vertex g ∈ V it consists of and call
the resulting tree T (G) = (V, ET , cT()).

Iteration: Pick a node S ∈ V? (called split node) containing more than one vertex
Definition:
Split node
and
step pair of G, and pick two vertices u, v ∈ S, called step pair. Note, that a single

vertex may appear in different step pairs. Find all connected components
of T?(G) after removing the current node S. These components correspond
to all subtrees of S in T?(G). So let N(j) ⊆ V denote the set of vertices
contained in the j-th subtree Nj of S. Let further S̄j ∈ V? denote the node
in the j-th subtree Nj which is effectively connected to S in T?(G). Now
successively contract the vertices in each set N(j) in G (call the contraction
ηj), and let G(S) denote the resulting graph. Note that the vertices in S are
not contracted, i.e., the graph G◦(S) has vertices V (S) = {η1, . . . , ηz} ∪ S.

Phase 1: Compute a minimum u-v-cut (U(S), V (S) \ U(S)) in G(S), with
u ∈ U(S), called split cut. The split cut has weight c(U(S), V (S) \ U(S))Definition:

Split cut
in G(S) as well as in G, by Corollary 1. Define Su := S ∩ U(S) and Sv :=
S∩(V (S)\U(S)). Modify T?(G) by replacing node S by Su and Sv connected
by an edge e = {Su, Sv} of weight c?(e) = c(U(S), V (S) \ U(S)) (This edge e
is said to be created by the step pair {u, v}).

Node splitting
and subtree
reconnecting

Phase 2: Each edge ej = {S, S̄j} ∈ E? which connects the subtree Nj to S in
T?(G), is moved to be incident with Su (instead of S) if the contraction ηj in
G◦(S) is a node in U(S), and is moved to be incident with Sv (instead of S)
if the contraction ηj in G(S) is a node in (V (S) \U(S)). We call such an edge
ej = {S, S̄j}, which connects the subtree Nj to S, the connection edge of Nj .
The weights of all edges in T?(G) remain unchanged in this phase, including

Definition:
Connection
edge those edges which were moved.

Figure 3.2 illustrates Phase 1 and Phase 2 of an exemplary iteration of the
Gomory-Hu algorithm. Figure 3.2a shows an intermediate min-cut tree T?(G) with
eleven nodes (displayed as ovals). The current split node S ∈ V? has five subtrees

3.2. THE GOMORY-HU METHOD 33

Algorithm 3: Gomory-Hu

Input: Graph G = (V, E, c())
Output: Min-cut tree T (G) = (V, ET , cT()) of G
%---------- notation ----------
T?(G) = (V?, E?, c?()) intermediate min-cut tree1

S ∈ V? node in intermediate min-cut tree, split node2

Nj j-th subtree of node S in intermediate min-cut tree3

N(j) ⊆ V set of vertices in j-th subtree of node S4

S̄j ∈ V? node in j-th subtree connected to node S in intermediate min-cut tree5

G(S) result from the contraction of subtrees in G6

V (S) set of vertices of G(S)7

ηj ∈ V (S) contraction of j-th subtree of S in G8

%---------- algorithm ----------
Initialize V? ← {V } and E? ← ∅ and c?() accordingly9

Initialize ET ← ∅ and cT() accordingly10

while ∃S ∈ V? with |S| > 1 do11

{u, v} ← arbitrary pair of different vertices in S12

Calculate set {N1, . . . , Nz} of subtrees of S in T?(G)13

Calculate G(S) by contracting in G the vertices of each subtree14

%---Phase 1

(U(S), V (S) \ U(S))← minimum u-v-cut in G(S), u ∈ U(S)15

∆← weight of cut (U(S), V (S) \ U(S))16

Su ← S ∩ U(S)17

Sv ← S ∩ (V (S) \ U(S))18

V? ← (V? \ {S}) ∪ {Su, Sv}19

e← {Su, Sv}20

E? ← E? ∪ {e}21

Update cost function c?() by c?(e)← ∆22

%---Phase 2

forall edges ej = {S, S̄j} ∈ E? incident with S in T?(G) do23

if ηj ∈ U(S) then24

ej ← {Su, S̄j}25

else26

ej ← {Sv, S̄j}27

forall edges e = {{g}, {h}} ∈ E? do28

∆← c?(e)29

e← {g, h}30

ET ← ET ∪ {e}31

Update cost function cT() by cT(e)← ∆32

return T (G) = (V, ET , cT())33

34 CHAPTER 3. BASICS REGARDING CUTS AND MIN-CUT TREES

N1, . . . , N5 (bordered by dotted lines) in T?(G). The nodes S̄1, . . . , S̄5, which are
effectively connected to S are accordingly labeled. The vertices of the contracted
graph G(S) hence add up to V (S) = {η1, . . . , η5} ∪ S. The vertices of the step pair
u, v ∈ S are displayed as light gray bullets. The split cut (U(S), V (S)\U(S)) in G(S)
calculated in Phase 1, with u ∈ U(S), is shown as a dashed line. In Figure 3.2bPhase 1

u

v

S

N1

N5

N2

N3

N4

S̄1

S̄2

S̄3

S̄4

S̄5

U(S) V (S) \ U(S)

(a) Intermediate min-cut tree T?(G) with step pair {u, v} and related split cut (dashed)

u

v
Su

N1

N5

N2

N3

N4

Sv

S̄1

S̄2

S̄3

S̄4

S̄5

(b) Step pair {u, v} splits S into Su and Sv connected by a new edge (dashed) in T?(G)

Figure 3.2: Splitting node S by step pair {u, v}.

Phase 1 is continued. The node S gets split by the split cut (U(S), V (S) \U(S)) in
G(S). The newly defined nodes Su := S ∪ U(S) and Sv := S ∪ (V (S) \ U(S)) are
accordingly labeled and S is replaced in the intermediate min-cut tree T?(G) by Su

and Sv connected by a new edge.

Furthermore, the connection edges e1, . . . , e5 of the five subtrees N1, . . . , N5 of S
are reconnected as described in Phase 2. The contracted sets η1, η2 and η5 (whichPhase 2

correspond to the subtrees N1, N2 and N5) are included in U(S). So the connection
edges e1 = {S, S̄1}, e2 = {S, S̄2} and e5 = {S, S̄5} are reconnected to Su instead of
S. The contracted sets η3 and η4 (which correspond to the subtrees N3 and N4) are
included in (V (S) \ U(S)). So the connection edges e3 = {S, S̄3} and e4 = {S, S̄4}
are reconnected to Sv instead of S.

3.2.2 Definitions and Resulting Remarks

The following definitions, lemmas and remarks explore the structure of min-cut
trees with the aid of the Gomory-Hu algorithm as constructional method.

3.2. THE GOMORY-HU METHOD 35

Remark 2 A step pair {u, v} is explicitly defined during an execution of the
Gomory-Hu algorithm. As the final min-cut tree T (G) of G is a tree that con-
nects all vertices of G (by definition), T (G) has exactly n − 1 edges. In each

Remark:
Number of
step pairsiteration the Gomory-Hu algorithm defines a new step pair and adds a new edge to

the intermediate min-cut tree T?(G) (see Phase 1). So an entire execution of the
Gomory-Hu algorithm defines n− 1 step pairs and related split cuts.

Definition 7 A specific execution of the Gomory-Hu algorithm is characterized by
the considered graph G, a specific sequence F of n − 1 step pairs and a related
sequence K of split cuts. So a specific Gomory-Hu execution GH is denoted by

Definition:
Gomory-Hu
executionGH = (G, F,K).

In addition to step pairs we define cut pairs as follows:

Definition 8 A pair of vertices {u, v} ⊆ V of graph G is called a cut pair regarding
an edge e of an intermediate min-cut tree T?(G) if the cut induced in G by the edge Definition:

Cut pair
e is a minimum u-v-cut in G.

The following Lemma 12 we took from [Gus90] where it is referred to as Lemma 4.
Originally this lemma is stated and proven by Gomory and Hu [GH61].

Lemma 12 considers an intermediate min-cut tree T?(G) produced by the Go-
mory-Hu algorithm with ej = {S, S̄j} an edge in E?. If we assume S to be split
next, the edge ej constitutes the connection edge of the subtree Nj of S containing
S̄j . Let {x, y} ⊆ V be a cut pair regarding the edge ej , with x ∈ S and y ∈ S̄j . Let
u and v be any vertices in S (serving as next step pair), and let (U(S), V (S)\U(S))
denote a minimum u-v-cut in the contracted graph G(S) (serving as next split
cut). Let Su and Sv denote the new nodes created from S by splitting (compare to
Figure 3.3).

Lemma 12 The step pair {u, v} ⊆ V is a cut pair regarding the newly created edge
e = {Su, Sv} in the intermediate min-cut tree T?(G) after splitting the node S.
Assume x ∈ U(S) (the case when x ∈ (V (S) \ U(S)) is symmetric).

Lemma:
Step pairs
remain
cut pairsIf the connection edge ej of subtree Nj of S containing S̄j is reconnected to

Su after splitting S, i.e., if {S̄j , Su} is an edge in the intermediate min-cut tree
T?(G) after splitting S, then {x, y} is still a cut pair regarding the reconnected edge
ej = {S̄j , Su}.

Otherwise, if {S̄j , Sv} is an edge in the intermediate min-cut tree T?(G) after
splitting S, then {v, y} is a cut pair (additionally to {x, y}) regarding the reconnected
edge ej = {S̄j , Sv}.

The following simpler version of Lemma 12 we also took from [Gus90]. It follows
by induction on the iterations of the Gomory-Hu algorithm.

Corollary 4 Consider an arbitrary intermediate min-cut tree T?(G) during a Go-
mory-Hu execution. Let e = {S, S̄} denote an edge of the tree T?(G). Then there

Corollary:
Cut pairs
regarding
intermediate
tree edges

exists at least one pair of vertices {u, v} ⊆ V in G, with u ∈ S and v ∈ S̄, such that
{u, v} is a cut pair regarding the edge e = {S, S̄}.

With Corollary 4 calling the intermediate tree T?(G) in the Gomory-Hu algorithm
”‘min-cut tree”’ becomes reasonable, as in fact each edge e = {S, S̄} in T?(G)
induces a minimum S-S̄-cut in G. Otherwise, a cheaper S-S̄-cut in G would also
constitute a cheaper separating cut for the vertices {u, v} of the cut pair mentioned
in Corollary 4. By induction on the iterations the correctness of the Gomory-Hu
algorithm finally follows.

36 CHAPTER 3. BASICS REGARDING CUTS AND MIN-CUT TREES

Step Pairs, Hidden Step Pairs and Cut Pairs

The last paragraph in this section is due to illustrate the difference between a
step pair and a cut pair. To this end Figure 3.3 shows a situation as described
in the context of Lemma 12. The situation in Figure 3.3a is actually the same as
in Figure 3.2b, but with {u, v} renamed as {x, y} and the previous node Su now
regarded as the next split node S. Therefore, the new split node S now has tree
subtrees N3, N4 and N6 (bordered by dotted lines), with subtree N6 consisting of
the previous subtrees N1, N2 and N5 and the previous node Sv in Figure 3.2b, which
now constitutes node S̄6 (connected to S by the connection edge e6 of subtree N6).
By Lemma 12 the pair {x, y} in Figure 3.3a previously introduced as step pair

x

y
S

N3

N4

N6

u v
S̄3

S̄6

S̄4

U(S)V (S) \ U(S)

(a) Minimum u-v-cut in G◦(S) also separates x and y

x

y

Su

N3

N4

N6

u v
Sv

S̄3

S̄4

S̄6

(b) Previous step pair {x, y} gets hidden

Figure 3.3: About step pairs, cut pairs and hidden step pairs.

{u, v} in Figure 3.2b is a cut pair regarding the edge e6 = {S, S̄6}, with x ∈ S and
y ∈ S̄6. The vertices {u, v} ⊆ S serve as next step pair with the related split cut
(U(S), V (S) \ U(S)) (dashed line). In Figure 3.3b the node S is already split and
replaced by Su and Sv connected by a new edge e = {Su, Sv}. The vertex x now lies
in (V (S) \U(S)) (and in Sv particularly), but the connection edge e6 of subtree N6

of S containing S̄6 is reconnected to Su after splitting S, i.e., {S̄6, Su} is an edge in
the intermediate min-cut tree T?(G) after splitting S. So by Lemma 12 the vertices
{u, y} constitute a cut pair (additionally to {x, y}) regarding the reconnected edge
e6 = {S̄6, Su}.

Definition:
Nearest
cut pair

Definition 9 We call such a cut pair that occurs last of all cut pairs regarding an
edge ej in an intermediate min-cut tree as just described and that corresponds either

3.2. THE GOMORY-HU METHOD 37

to the step pair that creates the edge ej or consists of vertices from two different
step pairs, as the pair {u, y} does, the nearest cut pair regarding the edge ej.

In the resulting intermediate min-cut tree T?(G) in Figure 3.3b the nodes Sv

and S̄6 which contain x and y are not adjacent anymore. So the step pair {x, y}
does not define an edge in T?(G) anymore. We call such a step pair hidden step
pair. As a hidden step pair never gets visible again, once hidden the step pair {x, y}

Definition:
Hidden
step pairdoes not define an edge in the final min-cut tree T (G). However, the hidden step

pair {x, y} still is a cut pair for the edge e6 = {S̄6, Su} originally created the step
pair {x, y}.

The step pair {x, y} in Figure 3.3a gets hidden, because the edge e6 = {S, S̄6},
which was originally created by {x, y}, is reconnected to Su after splitting S in
Figure 3.3b. So e6 then connects nodes which do not both contain either x or y
anymore (as x lies in Sv). This corresponds to the case in Lemma 12 which defines
an additional cut pair for the reconnected edge. This case only occurs if there occurs
a split cut that separates the node S̄6 containing y from the cut side containing x.
This yields the following observation.

Observation 2 A step pair {u, v} in a Gomory-Hu execution only gets hidden if
there occurs a split cut that separates u and v. Note, that such a split cut may

Observation:
Condition
for hidden
step pairsonly occur by splitting one of the nodes containing u or v. Otherwise, if the current

split node S contains neither u nor v (we assume {u, v} not to be hidden yet), both
vertices u and v belong to the same subtree Nj of the current split node S, and
therefore, are contracted in ηj in G(S).

According to Lemma 12 and based on the structure of min-cut trees we can state
three further remarks, which we will use later.

Remark 3 Each step pair of a Gomory-Hu execution is also a cut pair regarding at
least one edge in the final min-cut tree T (G), namely the edge which is created by
the step pair. By contrast, there may exist cut pairs regarding some edges in T (G)

Remark:
Step pairs and
cut pairswhich never served as step pairs. For each edge e in T (G) there exists at least one

cut pair regarding this edge e, namely the step pair which created e. Furthermore,
the vertices u and v incident with e always constitute a cut pair regarding e, as they
form the nearest cut pair regarding e.

Remark 4 A cut in an undirected, weighted G = (V, E, c()) induced by an edge
e of a min-cut tree T (G) separates the vertices u and v in V if and only if e is an

Remark:
Separation
properties of
edge-induced
cuts

edge on the unique path γ from u to v in T (G).

Remark 5 Let {u, v} ∈ E denote a bridge in graph G = (V, E, c()) and Gu =
(Vu, Eu, cu()) and Gv = (Vv, Ev, cv()) the two connected components induced by
{u, v}, with u ∈ Vu and v ∈ Vv. Then the cut (Vu, Vv) is the only minimum u-v-cut

Remark:
Bridges in
min-cut treesin G, as each u-v-cut at least crosses the bridge {u, v}. Therefore, in each min-cut

tree T (G) of G there exists an edge e that induces the cut (Vu, Vv). Removing e from
T (G) then yields a disconnected tree with connected components Tu = T (G)|Gu

and Tv = T (G)|Gv
(min-cut tree T (G) reduced to component Gv).

38 CHAPTER 3. BASICS REGARDING CUTS AND MIN-CUT TREES

Chapter 4

Dynamically Updating
Min-Cut Trees

As the cut-clustering method of Flake et al. [FTT04] bases on the calculation of
a min-cut tree, in the previous Chapter 3 we stated some basic lemmas about the
impact of dynamic modifications on cuts and described the method of Gomory and
Hu [GH61] to construct a min-cut tree. In this Chapter now we explore, indepen-
dently from any clusterings, how a min-cut tree T (G) is affected by a dynamic
modification of the considered graph G. To this end it is not necessary to dis-
tinguish dynamic inter- and intra-cluster modifications. We just analyze the two
general modifications of addition and deletion of an edge and develop an idea for
an algorithm which dynamically updates an initial min-cut tree. An approach for
the addition and deletion of a vertex will also be described.

4.1 Dynamic Changes of Min-Cut Trees

To get an idea how a min-cut tree can be updated dynamically, we explore how a
min-cut tree T (G) is affected by a dynamic modification of the graph G. To this
end we consider the construction of min-cut trees as described in the Gomory-Hu
method (see Algorithm 3). The following theorem and the additional corollaries
base on this method.

4.1.1 Execution Theorem and Corollaries

The following theorem constitutes the base of all further conclusions in this section.
It allows us to construct a Gomory-Hu execution GH = (G, F,K) where a specific
intermediate min-cut tree T?(G) occurs in. Thus, we call it execution theorem.
Note, that the execution theorem does not consider any dynamic modification of
the graph G yet.

Theorem 1 (Execution theorem) Let T (G) = (V, ET , cT()) denote a min-cut tree
of an undirected, weighted graph G = (V, E, c()). Consider further a set M ⊆ ET

of edges in T (G) and let T◦(G) = (V◦,M, c◦()) denote the tree that results from
contracting the edges of ET \M in the min-cut tree T (G).

Theorem:
Constructing
Gomory-Hu
execution from
min-cut treeWith f an arbitrary sequence of all edges in M and f ′ an arbitrary sequence of

all edges in ET \M and k and k′ the related sequences of edge-induced cuts in G,

39

40 CHAPTER 4. DYNAMICALLY UPDATING MIN-CUT TREES

the Gomory-Hu execution GH = (G, f ·f ′, k ·k′) has T◦(G) as intermediate min-cut
tree (after the application of sequence f). The notation f ·f ′, and k ·k′ respectively,
describes the concatenation.

Proof. We prove Theorem 1 by induction on the n − 1 edges in f · f ′. The edges
are regarded as step pairs in a Gomory-Hu execution GH . The set M ′ denotes the
step pairs already applied in the execution.

Induction base case: The algorithm starts with a single node S containing allInduction
base case

vertices of G, i.e., for the intermediate min-cut tree T?(G) it holds at the beginning
that V? = {V } and E? = ∅. The contracted graph G(S) corresponds to G. There-
fore, the current intermediate min-cut tree T?(G) corresponds to T◦(G) formed by
contracting all edges of ET \M ′ in T (G), with M ′ = ∅ (as there was no step pair
applied yet). Now take the first pair {u, v}1 in f · f ′ as step pair for the algorithm.
As it holds that S = V, {u, v}1 is a valid step pair in the current split node S. At
the same time {u, v}1 represents an edge in T (G) and therefore, induces a mini-
mum u-v-cut (U, V \ U) in G = G(S) as a valid split cut, with u ∈ U. By splitting
and replacing S = V by Su = U and Sv = V \ U connected with a new edge, we
get an intermediate min-cut tree T?(G) with V? = {Su, Sv} = {U, (V \ U)} and
E? = {{Su, Sv}}. The only edge in E?, created by the step pair {u, v}1, has weight
cT({u, v}1) = c(U, V \ U). So after one iteration the intermediate min-cut tree
T?(G) corresponds to T◦(G) formed by contracting all edges of ET \M ′ in T (G),
with M ′ = {{u, v}1}. Note, that the step pair {u, v}1 is not hidden until now.

Induction hypothesis: We now assume the pairs {u, v}2, . . . , {u, v}z in f · f ′ toInduction
hypothesis

be valid step pairs regarding the various split nodes S in z − 1 further iterations
and the related edge-induced cuts in G to be valid split cuts regarding the various
contracted graphs G(V). The current intermediate min-cut tree T?(G) after z
iterations is supposed to correspond to T◦(G) formed by contracting all edges of
ET \M ′, with M ′ = {{u, v}1, . . . , {u, v}z} being the set of the first z step pairs in
f · f ′. This implies that none of the step pairs in M ′ is hidden until now.

Induction step: By the induction hypothesis the edge represented by the nextInduction
step

pair {u, v}z+1 in f · f ′ is still contracted in the previous intermediate min-cut tree
T?(G), i.e., in the intermediate min-cut tree after z iterations. So the vertices u and
v lie in the same node S of T?(G) and {u, v}z+1 is a valid step pair in the current
iteration regarding S as current split node. The related cut (U, V \ U) induced by
the edge {u, v}z+1 in G, with u ∈ U, is supposed to serve as the current split cut.
So we need show, that this cut is also a minimum u-v-cut in the current contracted
graph G(S).

Let N(j) denote the set of vertices in a subtree Nj of the current split node S.
Then the current contracted graph G(S) results from G by contracting the set N(j)
in G for all subtrees of S. The cut (U, V \ U) induced by the edge {u, v}z+1 in G
is a minimum u-v-cut in G. Moreover, cut (U, V \ U) does not separate any two
vertices g and h lying in the same set N(j), as otherwise the edge {u, v}z+1 would
lie on the unique path γ from g to h in T (G) (by Remark 4). This contradicts the
assumption that g and h belong to the same subtree Nj of S while it holds that
{u, v} ⊆ S. So, by Lemma 11, the cut (U, V \ U) is also a minimum u-v-cut in the
contracted graph G(S) and hence is a valid split cut for the (z + 1)-th iteration.

We finally have to prove that after splitting and replacing the current split
node S and after reconnecting the subtrees of S the resulting intermediate min-
cut tree T?(G), i.e., the intermediate min-cut tree after z + 1 iterations, again
corresponds to T◦(G) formed by contracting all edges of ET \M ′ in T (G), with
M ′ = {{u, v}1, . . . , {u, v}z+1} being the set of the first z + 1 step pairs in f · f ′.

4.1. DYNAMIC CHANGES OF MIN-CUT TREES 41

To this end we show that none of the step pairs {u, v}1, . . . , {u, v}z, which created
the edges of the previous intermediate min-cut tree, gets hidden by the splitting
of S. To get hidden, by Observation 2 a previous step pair needs to be separated
by the current split cut in the contracted graph G(S). This further implies the
separation of this step pair in G (by Corollary 1). However, it follows directly from
the tree structure of T (G) that no edge in T (G) gets separated by a cut induced by
another edge of T (G) in G. As the new edge {Su, Sv} in T?(G) is created by the
step pair {u, v}z+1, which represents an edge in T (G), and as all other step pairs
in M ′ = {{u, v}1, . . . , {u, v}z} also represent edges in T (G) as well as in T?(G) (by
the induction hypothesis), none of the step pairs {u, v}1, . . . , {u, v}z gets separated
by the split cut related to {u, v}z+1. Therefore, after z + 1 iterations, the new
intermediate min-cut tree T?(G) corresponds to T◦(G) formed by contracting all
edges of ET \M ′ in T (G), with M ′ = {{u, v}1, . . . , {u, v}z+1} being the set of the
first z + 1 step pairs in f · f ′. The assertion of Theorem 1 follows with M ′ = M.

In addition to Theorem 1 we state a corollary which, in contrast to the former,
considers a dynamic modification of graph G. With the aid of Remark 4 this
corollary restricts the assertions of Lemma 8 (A2) and Lemma 9 (A4) to cuts induced
by edges of a min-cut tree T (G). As we identify edge-induced cuts with their
inducing edges, we can say that Corollary 5 describes which cut {u, v} ∈ ET remains
a minimum u-v-cut in G after a dynamic modification of G. Let G = (V, E, c())
denote an undirected, weighted graph and T (G) = (V, ET , cT()) a min-cut tree
of G. The graph enlarged by the addition of an edge e⊕ = {b, d} is called G⊕ =
(V, E∪{e⊕}, c⊕()). The graph reduced by the deletion of an edge e	 = {b, d} (which
is no bridge in G) is called G	 = (V, E \ {e	}, c	()).

Corollary 5 By Remark 3, each cut {u, v} ∈ ET is a minimum u-v-cut in G. Let γ
denote the unique path from b to d in T (G).

Corollary:
Canonically
edge-induced
min-cuts after
edge addition
and edge
deletionEdge addition: Each cut {u, v} ∈ ET that does not lie on path γ remains a

minimum u-v-cuts in G⊕, by Remark 4 and Lemma 8 (A2). A cut {u, v} ∈ ET

that lies on path γ may be a minimum u-v-cut in G⊕ on several conditions
given in Lemma 8 (A4).

Edge deletion: Each cut {u, v} ∈ ET that lies on path γ remains a minimum
u-v-cut in G	, by Remark 4 and Lemma 9 (A4). A cut {u, v} ∈ ET that does
not lie on path γ may be a minimum u-v-cut in G	 on several conditions given
in Lemma 9 (A2).

We further deduce Corollary 6, which considers the special case when a bridge
is deleted. The two connected components induced by the deletion of a bridge
e	 = {b, d} in G are called Gb = (Vb, Eb, cb()) and Gd = (Vd, Ed, cd()), with b ∈ Vb

and d ∈ Vd. Then, by Remark 5, the min-cut tree T (G) decomposes into two
connected components Tb = T (G)|Gb

and Td = T (G)|Gd
.

Corollary 6 The component Tb is a min-cut tree of Gb and the component Td is a
Corollary:
Reduced
min-cut
treesmin-cut tree of Gd.

Corollary 6 is correct as each pair {u, v} ⊆ Vb (the case when {u, v} ⊆ Vd is
symmetric) is a cut pair regarding the cheapest edge e on the path from u to v in
T (G), and in Tb respectively by Lemma 10. Note, that, vice versa, the addition of
a bridge between two components not connected yet is equivalent to the insertion
of a vertex, which is described in the following subsection.

42 CHAPTER 4. DYNAMICALLY UPDATING MIN-CUT TREES

4.1.2 Algorithm Ideas for Updating Min-Cut Trees

In this subsection we introduce a first idea of an algorithm dynamically updating
min-cut trees. The idea results from Corollary 5, Corollary 6 and the execution
theorem (see Theorem 1). We firstly analyze the modification of an edge and af-
terwards shortly describe an approach for the insertion and removal of a vertex,
too. Again let G = (V, E, c()) denote a connected, undirected, weighted graph and
T (G) = (V, ET , cT()) a min-cut tree of G. Let {b, d} ∈ E denote the modified edge
in G. The graph resulting from G by increasing the weight of {b, d} is denoted by
G⊕, and G	 denotes the graph resulting from G by decreasing the weight of {b, d}
to zero. Remember that G	 becomes disconnected if {b, d} is a bridge in G. The
unique path from b to d in T (G) is called γ, and the set of all cuts, and edges
respectively, on the path is called Γ.

Updating After Edge Addition and Edge Deletion

By Corollary 5 we know some edges {u, v} in T (G) which remain minimum u-v-cuts
for sure due to the modification of G. The residual edges may only remain minimum
u-v-cuts on several conditions which are as costly to check as the calculation of a
new minimum u-v-cut. So the rough idea for updating min-cut trees is to omit at
least the calculation of the minimum u-v-cuts that we already know as they remain
the same for sure.Illustration of

the basic idea

To this end let T◦(G) denote the tree formed by contracting all edges {u, v} in
T (G) for which it is doubtful whether they remain minimum u-v-cuts due to the
modification of G. This is, the tree T◦(G) is formed by contracting all edges of Γ
(by Corollary 5) in the case of edge addition, i.e., weight increasing. In the case of
edge deletion, i.e., weight decreasing, with {b, d} no bridge in G, the tree T◦(G) is
formed by contracting all edges of ET \ Γ. Figure 4.1 shows a min-cut tree T (G)
and the related tree T◦(G) in both cases. In the case of edge deletion, with {b, d} a
bridge in G, there are no edges contracted in T (G). Instead, by Corollary 6 the tree
T (G) decomposes into two min-cut trees T (Gb) = T (G)|Gb

and T (Gd) = T (G)|Gd

of the components Gb and Gd induced by the bridge {b, d} in G. So in this case we
already know a min-cut tree T (G) of the disconnected graph G	.

Therefore, in the following we only consider the two cases not concerning bridges.
The idea resulting from the execution theorem is now to show that the contracted
tree T◦(G) can be taken as an initial intermediate min-cut tree for the Gomory-Hu
algorithm applied to the enlarged graph G⊕, and the reduced graph G	 respectively.
With this approach, to get an entire min-cut tree of G⊕, and G	 respectively, we
only need to process the iterations indicated by step pairs that are still contracted
in nodes of T◦(G). So in the case of edge deletion (when the edges on γ induce
minimum u-v-cuts) there are still (n− 1)− |γ| iterations to process, as the number
of edges in each min-cut tree corresponds to the number of iterations of a Gomory-
Hu execution (by Remark 2). In the case of edge addition (when the edges off γ
induce minimum u-v-cuts) there are |γ| iterations left. So the effort for updating an
initial min-cut tree T (G) with this approach in both cases depends on the length
of path γ.

To prove this approach of an updating algorithm to be feasible, we state and
prove the following lemma with the aid of the execution theorem (see Theorem 1).
Thereby we consider both cases, edge addition and edge deletion, at the same time,
so in the following the tree T◦(G) results from contracting all edges of either Γ or
ET \ Γ in T (G). In the formulation of Theorem 1 this means that it either holds
that M = ET \ Γ or M = Γ. Let f again denote an arbitrary sequence of all

4.1. DYNAMIC CHANGES OF MIN-CUT TREES 43

. . .

b dp2 p3 pz−1

(a) Min-cut tree T (G) of G with path γ = (b, p2, . . . , pz−1, d)

. . .b dp2 p3 pz−1

(b) Tree T◦(G) formed by contracting all edges of Γ in T (G)

. . .

b dp2 p3 pz−1

(c) Tree T◦(G) formed by contracting all edges of ET \ Γ in T (G)

Figure 4.1: Min-cut tree T (G) and related tree T◦(G) in both cases.

edges in M and f ′ an arbitrary sequence of all edges in ET \M and k and k′ the
related sequences of edge-induced cuts in G. Then, by Theorem 1, the Gomory-Hu
execution GH = (G, f · f ′, k · k′) reaches T◦(G) as intermediate min-cut tree after
the application of f. We still need to show that there also exists a Gomory-Hu
execution regarding the modified graph G⊕, or G	 respectively, that has T◦(G) as
intermediate min-cut tree.

Lemma 13 In the situation described above the Gomory-Hu execution GH ⊕() =
(G⊕(), f ·f⊕(), k ·k⊕()) is feasible regarding the graph G⊕ (or G	 respectively) and

Lemma:
Gomory-Hu
execution
for modified
graphs

has T◦(G) as intermediate min-cut tree. The sequence f⊕() denotes an arbitrary
feasible sequence of step pairs remaining after the application of f, and k⊕() denotes
a feasible sequence of related split cuts.

Proof. The Gomory-Hu execution GH ⊕(), by definition, uses the same sequence
k of split cuts as execution GH does, which considers the graph G and reaches
T◦(G) as intermediate min-cut tree after the application of k. Therefore, execution
GH ⊕() also has T◦(G) as intermediate min-cut tree on condition that k represents
a feasible sequence of split cuts concerning the modified graph G⊕(). This then
implies f to be a feasible sequence of step pairs. Similar to the proof of Theorem 1,
this proof uses induction on the split cuts in k.

Induction base case: The execution GH ⊕() starts with the first split cut induced Induction
base case

by the first edge {u, v}1 in f. As the first split cut is applied to the contracted graph
G⊕()(S) = G⊕(), and {u, v}1 ∈ M induces a minimum u-v-cut in G⊕() (by the
choice of M and Corollary 5), the first split cut is feasible.

44 CHAPTER 4. DYNAMICALLY UPDATING MIN-CUT TREES

Induction hypothesis: We now assume the split cuts induced by the edgesInduction
hypothesis

{u, v}2, . . . , {u, v}z in f to be feasible regarding the various contracted graphs
G⊕()(S) in z − 1 further iterations.

Induction step: Consider the next split cut induced by the edge {u, v}z+1 inInduction
step

f, which constitutes the step pair in the current split node S. For the following
argumentation we need to distinguish the cases of edge addition and edge deletion.

Edge addition (M = ET \ Γ): If it holds for the modified vertices b and d that
{b, d} * S, it follows that G⊕()(S) = G(S) in this iteration, as the modified
edge {b, d} then is contracted (Note, that b and d never lie in different subtrees
of S, as the edges on γ, which correspond to the cuts that separate b and d, are
not included in M, and f respectively). With G⊕()(S) = G(S) the current
split cut is feasible.

If it holds that {b, d} ⊆ S, the contracted graph G⊕()(S) results from G(S)
by the addition of the edge e⊕ = {b, d} and, as the edge {u, v}z+1 does not
lie on the path γ, by Remark 4, the current split cut does not separate b and
d. So, as the current split cut is a minimum u-v-cut in G(S), by Lemma 8
the current split cut also represents a minimum u-v-cut in G⊕(S) and hence
is feasible.

Edge deletion (M = Γ): As all split cuts considered so far separate the mod-
ified vertices b and d, the current intermediate min-cut tree is a path of nodes
with b included in the first and d included in the last node. So if the current
split node S includes b (the case when it includes d is symmetric), then S
has only one subtree, which includes d. If S includes neither b nor d, then
S has exactly two subtrees, with b and d in different subtrees. In both cases
the graph G	(S) results from G(S) by the deletion of the edge e	 = {b, d}.
Furthermore, by Remark 4 the current split cut separates b and d, as the edge
{u, v}z+1 lies on path γ. So, as the current split cut is a minimum u-v-cut in
G(S), by Lemma 9 the current split cut also represents a minimum u-v-cut
in G	(S) and hence is feasible.

As the remaining step pairs and split cuts in f⊕() and k⊕() are defined as arbitrary
valid sequences, and as such sequences always exist, the assertion of Lemma 13 is
proven.

The following roughly formulated algorithms finally sum up the ideas for dy-
namically updating initial min-cut trees introduced in this section. Algorithm 4Summary of

algorithms
considers the modification by addition of an edge, Algorithm 5 regards the edge
deletion (not concerning bridges), and Algorithm 6 describes the case of deleting a
bridge.

A question still open is how to recognize a bridge in graph G. A very involved
approach would be the use of an algorithm as introduced in [Tar74] concerning the
connectivity problem and to check if the modified edge {b, d} connects two bridge-
connected components. An easier way is to calculate a minimum b-d-cut, as one
can show that the edge {b, d} is a bridge if and only if the minimum b-d-cut is of
the same weight as the edge {b, d} in G. However, we already know a min-cut tree
T (G) of G which allows us to check the modified edge {b, d} along the way, by the
following lemma.

Lemma 14 Let G = (V, E, c()) denote an undirected, weighted graph with T (G) =
(V, ET , cT()) a min-cut tree of G. An edge {b, d} ∈ E, with weight ∆, is a bridge in

Lemma:
Bridge
detection G if and only if {b, d} also constitutes an edge in T (G) with cT({b, d}) = ∆.

4.1. DYNAMIC CHANGES OF MIN-CUT TREES 45

Algorithm 4: Tree-EdgeAdd-1

Input: Min-cut tree T (G) of G = (V, E, c()), enlarged graph
G⊕ = (V, E ∪ {{b, d}}, c⊕()) with modified vertices b and d

Output: Min-cut tree T (G⊕)
Calculate path γ from b to d in T (G)1

if path γ spans V then2

return Gomory-Hu (G⊕)3

else4

Calculate tree T◦(G) by contracting all edges lying on path γ in T (G)5

Initialize Gomory-Hu algorithm with T◦(G) as intermediate min-cut tree6

%instead of T?(G⊕) = ({V }, ∅, c?())
Iterate Gomory-Hu algorithm until it stops7

%i.e., until no more step pairs exist
return result of this Gomory-Hu execution8

Algorithm 5: Tree-NoBridgeDel

Input: Min-cut tree T (G) of G = (V, E, c()), reduced graph
G	 = (V, E \ {{b, d}}, c	()) with modified vertices b and d
(inducing no bridge in G)

Output: Min-cut tree T (G)
Calculate path γ from b to d in T (G)1

if path γ spans V then2

return path γ3

else4

Calculate tree T◦(G) by contracting all edges not lying on path γ in T (G)5

Initialize Gomory-Hu algorithm with T◦(G) as intermediate min-cut tree6

%instead of T?(G) = ({V }, ∅, c?())
Iterate Gomory-Hu algorithm until it stops7

%i.e., until no more step pairs exist
return result of this Gomory-Hu execution8

Algorithm 6: Tree-BridgeDel

Input: Min-cut tree T (G) of G = (V, E, c()), reduced graph
G	 = (V, E \ {{b, d}}, c	()) with modified vertices b and d
(inducing a bridge in G)

Output: Min-cut tree T (G)
Calculate path γ from b to d in T (G)1

Find cheapest edge e on γ inducing minimum b-d-cut2

Remove e from T (G)3

return resulting components T (G)|Gb
and T (G)|Gd

4

Proof. (⇒): Let Gb = (Vb, Eb, cb()) and Gd = (Vd, Ed, cd()) denote the two con-
nected components induced by the bridge {b, d} in G, with b ∈ Vb and d ∈ Vd. By
Remark 5 there exists an edge e in T (G) that induces the unique minimum b-d-cut
(Vb, Vd) in G and hence has weight ∆. This edge e lies on path γ, by Remark 4. If,
however, path γ was longer than just edge e, then, by Remark 5, there would exist
an edge e′ = {u, v} (with {u, v} 6= {b, d} and {u, v} ⊆ Vj (j ∈ {b, d})) that induces
a minimum u-v-cut (U, V \ U) with weight cT(e′) in G, which also separates b and
d. So, by Lemma 10, the cut (Uj , Vj \ Uj), with Uj = Vj ∩ U, would be a mini-

46 CHAPTER 4. DYNAMICALLY UPDATING MIN-CUT TREES

mum u-v-cut in Gj , with weight cT(e′) −∆ (as e′ separates b and d). We assume
j ∈ Vj \ Uj (the case when j ∈ Uj is symmetric). Then the cut θ := (Uj , V \ Uj)
in G would also have weight cT(e′) − ∆, because there are no edges (apart from
the bridge {b, d}) between Vb and Vd in G, and θ does not separate b and d. As
cut θ separates u and v and would be cheaper than the cut induced by e′ = {u, v},
this contradicts the assumption that cut e′ is a minimum u-v-cut in G. Finally it
follows that the path γ only consists of the edge e = {b, d} with weight ∆.

(⇐): Assume the edge {b, d} to be an edge in G with weight ∆ and also to
constitute an edge e = {b, d} of the min-cut tree T (G) with weight cT(e) = ∆. By
Remark 3, the edge e induces a minimum b-d-cut (Vb, Vd) in G, with b ∈ Vb and
d ∈ Vd. As it holds that this minimum b-d-cut has exactly the same weight as the
edge {b, d} in G, it follows that there are no more edges (apart from {b, d}) between
Vb and Vd. Therefore, {b, d} is a bridge between Vb and Vd in G.

With the aid of Lemma 14 we can join the Algorithms 5 and 6 to a new updating
Algorithm 7 in the case of deleting an edge.

Algorithm 7: Tree-EdgeDel-1

Input: Min-cut tree T (G) of G = (V, E, c()), reduced graph
G	 = (V, E \ {{b, d}}, c	()), modified edge {b, d} with weight ∆

Output: Min-cut tree T (G)
Calculate path γ from b to d in T (G)1

if γ = {b, d} and cT({b, d}) = ∆ then2

Remove edge {b, d} from T (G)3

return resulting components T (G)|Gb
and T (G)|Gd

4

else5

if path γ spans V then6

return path γ7

else8

Calculate tree T◦(G) by contracting all edges9

not lying on path γ in T (G)
Initialize Gomory-Hu algorithm with T◦(G) as10

intermediate min-cut tree
%instead of T?(G) = ({V }, ∅, c?())
Iterate Gomory-Hu algorithm until it stops11

%i.e., until no more step pairs exist
return result of this Gomory-Hu execution12

Updating After Vertex Insertion and Vertex Removal

For the sake of completeness we further describe two short algorithms regarding
the modifications of inserting and removing a single vertex. A vertex d ∈ V is only
removable from graph G = (V, E, c()) if it is unconnected, i.e., if all incident edges
were removed first. A new vertex d is at first inserted as unconnected vertex, before
the edges incident with d are successively added. So the following algorithms base
on the updating algorithms regarding edge addition and edge deletion.

We first consider the removal of a vertex. With Algorithm 7 the approach for
updating a min-cut tree after the removal of a vertex d form G is very simple.
We just apply Algorithm 7 to all edges incident with vertex d until the currentApproach for

vertex removal
modified graph G	 decomposes into two connected components G1 = ({d}, ∅, ∅)

4.2. SIMPLE IMPLEMENTATION OF UPDATE-ALGORITHMS 47

and G2 = (V \ {d}, E	, c	()). Then Algorithm 7 returns two min-cut trees T (G1)
and T (G2). We just delete G1 and the related min-cut tree and keep G2 and T (G2)
as result.

After inserting a vertex d in graph G the modified graph G⊕ = (V ∪ {d}, E, c())
firstly is disconnected. However, to apply Algorithm 4 we need a connected initial Approach for

vertex insertion
graph and a related min-cut tree. Therefore, we additionally add an edge {b, d} to
graph G⊕ which has weight ∆ and is incident with b. At the same time we enlarge
the min-cut tree T (G) of G by the vertex d and an edge e = {b, d} with the same
weight ∆. We call the resulting tree T⊕. As {b, d} in G⊕ is a bridge, the cut ({d}, V)
is the unique minimum b-d-cut in G⊕ and has weight ∆. So the edge e = {b, d} in
T⊕ induces a minimum b-d-cut in G⊕. Furthermore, the edge e = {b, d} in does not
affect any path between vertices of V in T (G), and T⊕ respectively. So T⊕ turns out
to be a min-cut tree of the connected graph G⊕. Any further edges incident with d
can now be added with the aid of Algorithm 4.

4.2 Simple Implementation of Update-Algorithms

In the previous section we introduced an approach for dynamically updating min-
cut trees concerning the elementary modifications of adding and deleting an edge.
This approach bases on the idea of using parts of the initial min-cut tree of a graph
to abbreviate the Gomory-Hu execution that calculates a new min-cut tree of the
modified graph.

As the Gomory-Hu method explicitly requires non-crossing minimum u-v-cuts
and, to meet this non-crossing condition, uses operations of vertex contraction, it
is fairly involved and nontrivial to implement. Gusfield [Gus90] shows that it is
possible to modify the Gomory-Hu method such that vertex contractions are not
necessary anymore, as also crossing cuts can be used to construct a min-cut tree.
More precisely, Gusfield introduces some ideas which makes the implementation of
the Gomory-Hu method much easier by avoiding the calculation of the contracted
graph G(S) in the iterations.

In this subsection we will explore how the ideas of Gusfield [Gus90] are adaptable
to our approach for dynamically updating min-cut trees. Unfortunately Gusfield’s
ideas can not be applied in a natural way, as his proofs and conclusions require a
“closed form”of the Gomory-Hu execution. This is, the step pairs are not arbitrarily
selectable during the execution, but the sequence of step pairs is required to be of a
special shape. However, our updating algorithms (see Algorithm 4 and 7) initialize Adaptability of

Gusfield’s ideas
the Gomory-Hu algorithm with an intermediate min-cut tree T◦(G) resulting from
a sequence of step pairs that might not meet the required shape. There is no
guarantee that there even exists a validly shaped sequence of step pairs which yields
the initial intermediate min-cut tree T◦(G) used in our algorithms. So we need to
adjust Gusfield’s ideas to the situation given in our approach.

Gusfield [Gus90] considers the two phases of the Gomory-Hu method (see Al-
gorithm 3) separately. His idea of a simplier realization of Phase 1 we can adopt
without any changes. Remember, Phase 1 splits and replaces the current split node
S by Su and Sv, with {u, v} the related step pair in S. Phase 2 decides how to
reconnect the subtrees of S to the new nodes Su and Sv. However, to simplify the
implementation of this second phase, we need to prove one of the theorems intro-
duced by Gusfield in a more general situation. We start with a review of Gusfield’s
idea concerning the splitting of the current node S.

48 CHAPTER 4. DYNAMICALLY UPDATING MIN-CUT TREES

4.2.1 Realizing the Node Splitting (Phase 1)

In the first phase of an iteration of the Gomory-Hu algorithm the current node S is
split by a minimum u-v-cut (the split cut) in the contracted graph G(S) concerning
the step pair {u, v} in S. Gusfield’s idea now bases on the following theorem, which
is Theorem 2 in [Gus90] and allows us to use any minimum u-v-cut in G, instead
of G(S), to split S.

Theorem 2 Let {u, v} denote the step pair in the current split node S of an in-
termediate min-cut tree T?(G) during a Gomory-Hu execution. If (U, V \ U) is

Theorem:
Splitting
current node any minimum u-v-cut in G = (V, E, c()), then there exists a minimum u-v-cut

(U(S), V (S) \ U(S)) in the contracted graph G(S) such that S ∩ U = S ∩ U(S) and
S ∩ (V \ U) = S ∩ (V (S) \ U(S)) and such that the weights of the two cuts are the
same.

Theorem 2 says that there always exists a minimum u-v-cut in G(S) that splits S the
same way as (U, V \U) does. It is proven in [Gus90] and in this work later together
with Theorem 3. The proof of Theorem 3 will further illustrate the construction of
cut (U(S), V (S) \ U(S)) in G(S) based on cut (U, V \ U) in G. However, to realize
the splitting of node S, for the present we just keep in mind that there exists a
minimum u-v-cut in G(S) that splits S exactly the same way as the cut (U, V \ U)
in G does.

4.2.2 Realizing the Subtree Reconnection (Phase 2)

As long as we do not know how to construct cut (U(S), V (S)\U(S)) in G(S) based
on (U, V \ U) in G, the problem that comes with splitting S by Theorem 2 is that
we do also not know how to reconnect the subtrees of S after the splitting. Note,
that the minimum u-v-cut (U, V \ U) in G may, beside the current split node S,
also split the sets N(j) corresponding to the subtrees Nj of S. By contrast, in G(S)
the subtrees Nj are contracted to nodes ηj and therefore, can not get split by the
cut (U(S), V (S) \ U(S)). So what we need is a rule that allows us to decide by
the knowledge of (U, V \ U) in G on which side of (U(S), V (S) \ U(S)) in G(S) a
contracted subtree ηj lies.

Gusfield [Gus90] shows, in his Theorem 3 and Corollary 5, that if for an arbi-
trary graph G the step pairs are chosen in a special order, what also influences the
development of the subtrees, a designated vertex of each subtree Nj lies in U ⊆ V
if and only if the contracted node ηj lies in U(S) ⊆ V (S). However, this designated

Gusfield’s
assertions
concerning a
“closed form” vertices, Gusfield calls them representatives, and the special sequence of step pairs

are defined iteratively what causes the “closed form” of the Gomory-Hu method
required by Gusfield’s appoach.

In this subsection we show that even in an arbitrary intermediate min-cut tree
T?(G) there exist representatives which tell us how to reconnect the subtrees. To
this end we need to reformulate and prove Gusfield’s Theorem 3 for this general
situation. In the following reformulation, which is referred to as Theorem 3, let S

Our assertions
concerning a
general
situation denote the current split node in an intermediate min-cut tree T?(G) of graph G.

Let further ej = {S, S̄j} denote the connection edge of a subtree Nj of S, and the
nearest cut pair regarding the edge ej = {S, S̄j}, as defined in Definition 9, is called
{xj , yj}, with xj ∈ S and yj ∈ S̄j . An example of such an situation is shown in
Figure 4.2. Now suppose {u, v} to be the next step pair in S with an arbitrary
minimum u-v-cut (U, V \ U) in G as split cut.

4.2. SIMPLE IMPLEMENTATION OF UPDATE-ALGORITHMS 49

y1

y2

y3

y5

y6

x1,2

x3 x4

x5

x6

N1

N2

N3
N4

N5

N6

u v

UV \ U

S
y4

(a)

Figure 4.2: Intermediate min-cut tree T?(G) with subtrees N1, . . . , N6 and nearest cut
pairs {x2, y1}, . . . , {x6, y6}.

Theorem 3 A subtree contracted to a node ηj lies in U(S) ⊆ V (S) if and only
if the vertex yj lies in U ⊆ V. Note, that this assertion does not depend on the

Theorem:
Reconnecting
subtreesvertex xj.

Theorem 3 constitutes the key for reconnecting subtrees after splitting the current
node S with the aid of an arbitrary minimum u-v-cut in G as split cut, concerning
a step pair {u, v}.

Proof of Theorem 3, and Theorem 2

Our proof of Theorem 3 is similiar to Gusfield’s proof of his Theorem 3, which
considers a special case of the situation in our theorem. So for our proof of Theo-
rem 3 we also use Lemma 1 in [Gus90], which here is reviewed as Lemma 15, and
Corollary 1 in [Gus90], which is referred to as Corollary 7.

Lemma 15 Let (Y,V \Y) denote a minimum y-x-cut in G, with y ∈ Y and x ∈ V \Y.
Let u and v denote two vertices in V \Y. Now consider an arbitrary minimum u-v-

Lemma:
New minimum
u-v-cutcut in G and let H denote the side including y. Then the cut (Y∪H, (V \Y)∩(V \H))

is also a minimum u-v-cut in G.

Note, that by Lemma 15 the related sides of the previous u-v-cut and the new u-
v-cut only differ in the set Y, i.e., H \ Y = (Y ∪ H) \ Y = H and (V \ H) \ Y =
((V \ Y) ∩ (V \H)) \ Y = (V \ Y) ∩ (V \H).

Corollary 7 Consider the cuts (Y, V \ Y) and (Y ∪ U, (V \ Y) ∩ (V \ H)) from
Lemma 15. Then the minimum u-v-cut (Y ∪ U, (V \ Y) ∩ (V \ H)) does not cross

Corollary:
Non-crossing
minimum
u-v-cuts(Y, V \ Y), but splits V \ Y exactly the same way as the previous arbitrary minimum

u-v-cut did.

Now the proof of Theorem 2 and Theorem 3 follows. It uses induction on the sub-
trees of a split node S in an intermediate min-cut tree T?(G) and shows construc-
tively that there always exists a split cut (U(S), V (S) \U(S)) in G(S) as described
in Theorem 2, which is by the way also a minimum u-v-cut in G and does not split Proof of

Theorem 3
any subtree of S. Furthermore, the proof shows that the two sides of this split cut
pick the subtrees as describes by Theorem 3.

50 CHAPTER 4. DYNAMICALLY UPDATING MIN-CUT TREES

Proof. We consider a situation as described for Theorem 3. For each subtree Nj of
the split node S the connection edge ej = {S, S̄j} induces the minimum yj-xj-cut
θj := (N(j), V \N(j)) in G, with yj ∈ Y. As it holds that S ⊂ V \N(j), for each
subtree Nj the step pair {u, v} lies on the V \N(j)-side of the minimum yj-xj-cut
θj induced by the connection edge ej = {S, S̄j} (see Figure 4.2). Now let (U, V \U)
denote an arbitrary minimum u-v-cut in G, with u ∈ U.

Induction base case: We apply Lemma 15 to θ1 and (U, V \U) and get a minimum
u-v-cut (U1, V \ U1), with u ∈ U1, that does not separate any vertices in N(1) and
splits V \N(1) the same way as (U, V \U) does, by Corollary 7. So, as it holds thatInduction

base case
S ⊆ V \N(1), also S gets split the same way, and we get

S ∩ U1 = S ∩ U

and S ∩ V \ U1 = S ∩ V \ U.

With y1 ∈ N(1), by Lemma 15, we further get

N(1) ∪ U = U1 if y1 ∈ U and
N(1) ∪ (V \ U) = V \ U1 otherwise, i.e., if y1 ∈ V \ U,

and therefore, it holds that N(1) ⊆ U1 if and only if y1 ∈ U. By the remark to
Lemma 15 this induces that the related sides of (U1, V \ U1) and (U, V \ U) only
differ in N(1), i.e., U1 \N(1) = U \N(1) and (V \ U1) \N(1) = (V \ U) \N(1).

Induction hypothesis: We now assume the cut (Uz, V \ Uz) to be a minimum
u-v-cut in G, with u ∈ Uz, that does not separate any vertices in any subtree Nj ,
j = 1, . . . , z, and splits V the same way as (U, V \ U) does. More precisely, weInduction

hypothesis
assume that it holds that

S ∩ Uz = S ∩ U

and S ∩ V \ Uz = S ∩ V \ U.

and that N(j) ⊆ Uz if and only if yj ∈ U for j = 1, . . . , z, while the related sides of
(Uz, V \Uz) and (U, V \U) only differ in the sets N(j), j = 1, . . . , z. More formally,
this is,

Uz \ {N(j)|j = 1, . . . , z} = U \ {N(j)|j = 1, . . . , z} and
(V \ U1) \ {N(j)|j = 1, . . . , z} = (V \ U) \ {N(j)|j = 1, . . . , z}.

Induction step: We apply Lemma 15 to cut θz+1 = (N(z + 1), V \ N(z + 1)),
which is induces by the connection edge ez+1 = {S, S̄z+1} of subtree Nz+1, and cut
(Uz, V \ Uz). So we get a minimum u-v-cut (Uz+1, V \ Uz+1), with u ∈ Uz+1, thatInduction

step
does not separate any vertices in N(z + 1) and splits V \N(z + 1) the same way as
(Uz, V \Uz) does, by Corollary 7. So, as it holds that S ⊆ V \N(z + 1), also S gets
split the same way, and we get

S ∩ Uz+1 = S ∩ Uz =
induction hypothesis

S ∩ U

and S ∩ V \ Uz+1 = S ∩ V \ Uz =
induction hypothesis

S ∩ V \ U.
(4.1)

With yz+1 ∈ N(z + 1), by Lemma 15, we further get

N(z + 1) ∪ Uz = Uz+1 if yz+1 ∈ Uz and
N(z + 1) ∪ (V \ Uz) = V \ Uz+1 otherwise, i.e., if yz+1 ∈ V \ Uz,

and therefore, it holds that N(z + 1) ⊆ Uz+1 if and only if yz+1 ∈ Uz. As, by
induction hypothesis, the related sides of (Uz, V \ Uz) and (U, V \ U) do not differ

4.2. SIMPLE IMPLEMENTATION OF UPDATE-ALGORITHMS 51

in N(z +1), if follows that yz+1 ∈ Uz if and only if yz+1 ∈ U, and therefore, it holds
that

N(z + 1) ⊆ Uz+1 if and only if yz+1 ∈ U. (4.2)

Furthermore, by the remark to Lemma 15 it holds that the related sides of
(Uz+1, V \ Uz+1) and (Uz, V \ Uz) only differ in N(z + 1), i.e., Uz+1 \ N(z + 1) =
U \N(z + 1) and (V \Uz+1) \N(z + 1) = (V \Uz) \N(z + 1). So for all sets N(j),
j = 1, . . . , z, it follows that N(j) ⊆ Uz+1 if and only if N(j) ⊆ Uz. By induction
hypothesis and (4.2) we finally get for j = 1, . . . , z + 1

N(j) ⊆ Uz+1 if and only if yj ∈ U. (4.3)

So with Assertion (4.1) and Assertion (4.3) we finally proved the existence of a
minimum u-v-cut in G that splits S the same way as (U, V \U) does, and that does
not separate any vertices of any subtree of S. By Lemma 11, such a minimum u-v-
cut is also a minimum u-v-cut in graph G(S), which results from G by contracting
all subtrees of S. So Theorem 2 and Theorem 3 are both proven true.

4.2.3 Specification of Algorithm Ideas

In the previous subsections we showed that it is possible to adopt Gusfield’s idea
of considering split cuts not in the contracted graph G(S), but just in graph G
instead, to our approach, although our approach initializes the Gomory-Hu method
with the special intermediate min-cut tree T◦(G), and therefore, does not provide
the closed form originally required in Gusfield’s paper. With the aid of Gusfield’s
idea we now specify Algorithm 4 and 7 introduced in Subsection 4.1.2 such that
the implementation becomes more easy by omitting the calculation of vertex con-
tractions. Furthermore, considering split cuts just in graph G will make several
argumentations and conclusions less involved in the remainder of this work.

For the specification of our algorithms according to Gusfield [Gus90], we define
representatives of the nodes in the intermediate min-cut trees during a Gomory-Hu
execution. These allow us to decide how to reconnect the subtrees of the current
split node S. We distinguish the definition of representatives in the special initial
intermediate min-cut tree T◦(G) and the iterative definition of representatives of
newly occurring nodes during an execution.

Different
definitions for
representatives

The definition of representatives in the initial intermediate min-cut tree T◦(G)
again distinguishes the cases of edge addition and edge deletion, as the initial in-
termediate min-cut tree differs in structure depending on these cases. So we first
consider the initial intermediate min-cut tree T◦(G) in the case of the addition of
an edge e⊕ = {b, d} in graph G. Remember that this intermediate min-cut tree
results from an entire min-cut tree T (G) of G by contracting all edges lying on the
unique path γ from b to d in T (G) (compare to Lemma 13). So in this case the
intermediate min-cut tree T◦(G) has only one node, namely the contraction of path
γ, that is no singleton. All other nodes in T◦(G) consist of exactly one vertex g ∈ V
of G. Furthermore, the contraction of path γ is the node in T◦(G) that is considered
by the first iteration of the Gomory-Hu execution in Algorithm 4. So the first step
pair chosen by Algorithm 4 lies in this node. The representatives in T◦(G), in the
case of edge addition, are now defined as follows:

Definition 10 (Representatives in the case of edge addition) For each singleton
S = {g} in T◦(G) the vertex g is defined as representative r(S). For the contraction

Definition:
Representatives
regarding edge
additionof path γ, which is no singleton in T◦(G), we choose one of the vertices of the first

step pair {u, v} as representative.

52 CHAPTER 4. DYNAMICALLY UPDATING MIN-CUT TREES

In contrast, the initial intermediate min-cut tree T◦(G) in the case of the deletion
of an edge e	 = {b, d} which is no bridge in G results from contracting all edges
not lying on the unique path γ from b to d in T (G) (compare to Lemma 13). So in
this case the intermediate min-cut tree T◦(G) can be regarded as a path of nodes,
while each node consists of exactly one vertex g ∈ V that lies on path γ and several
vertices of G not lying on γ. The representatives in T◦(G) are then defined as
follows:

Definition 11 (Representatives in the case of edge deletion) For each node S in
T◦(G) the unique vertex g included in S that lies on path γ is defined as represen-

Definition:
Representatives
regarding edge
deletion tative r(S).

According to Definition 10 and 11 each node of the initial intermediate min-cut tree
T◦(G) has a representative. We now illustrate that this representatives correctly
decide how to reconnect the subtrees of a split node S.

In the case of edge addition the contraction of path γ constitutes the split node S
in the first iteration of the Gomory-Hu execution in Algorithm 4, and each subtree
Nj of S in T◦(G) is connected to S by its connection edge ej = {S, S̄j}. As ej

Correctness of
representatives
regarding edge
addition corresponds to an edge in the entire min-cut tree T (G) of G with S̄j a singleton,

the vertex yj in S̄j belongs to the nearest cut pair of ej regarding the Gomory-Hu
execution introduced in Lemma 13. So by Theorem 3 the representative r(S̄j) :=
yj correctly decides how to reconnect the subtree Nj . Note, that singletons that
belong to connection edges of subtrees of other singletons are never considered as
representatives, as singletons do not get split any further.

In the case of edge deletion the first split node S in Algorithm 7 is just one of
the nodes of T◦(G). As the tree T◦(G) constitutes is a path of nodes, the split node

Correctness of
representatives
regarding edge
deletion S has exactly two subtrees N1 and N2 connected by connection edges e1 = {S, S̄1}

and e2 = {S, S̄2}. As the edges e1 and e2 correspond to edges lying on path γ in
the entire min-cut tree T (G) of G, the unique vertices y1 ∈ S̄1 and y2 ∈ S̄2 that lie
on path γ belong to the nearest cut pairs of e1 and e2 regarding the Gomory-Hu
execution introduced in Lemma 13. So by Theorem 3 the representative r(S̄1) := y1

and r(S̄2) := y2 correctly decide how to reconnect the subtrees N1 and N2 after
splitting S.

Finally we still need to define the representatives of nodes newly occurring dur-
ing the Gomory-Hu execution in Algorithm 4 and Algorith 7. According to Gus-
field [Gus90] these representatives are defined iteratively by the following rule.

Definition 12 (Representatives of newly occurring nodes) Considering the current
split node S, the next step pair is required to include the representative r(S) of S, i.e.,
the next step pair is {r(S), v}, with v 6= r(S) an arbitrary vertex in S. After splitting

Definition:
Iteratively
defined
representatives S the new node Sr(S), which contains r(S), has again r(S) as representative, for

the other node Sv, which contains v, we define r(Sv) := v.

The representatives in Definition 12 correctly decide how to reconnect the sub-
trees of the current split node S by Theorem 3, as, by Lemma 12 and the fact that

Correctness of
iterative
representatives each step pair consists of later representatives, a representative yj is included in the

node S̄j of a connection edge ej = {S, S̄j} if and only if yj belongs to the nearest
cut pair of ej regarding the Gomory-Hu execution in Algorithm 4, or Algorithm 7
respectively.

Now we can give the formal description of the specification of Tree-EdgeAdd-1
(Algorithm 4) and Tree-EdgeDel-1 (Algorithm 7). To this end we introduce
Algorithm 8, which considers the central issue of executing the Gomory-Hu method

4.2. SIMPLE IMPLEMENTATION OF UPDATE-ALGORITHMS 53

Algorithm 8: Central-Tree

Input: Graph G⊕(), initial intermediate min-cut tree T◦(G) with
representatives of nodes, designated split node S in T◦(G)

Output: Intermediate min-cut tree T?(G⊕()) with S entirely unfolded
M ← S1

T?(G⊕())← T◦(G)2

while ∃ split node S ⊆M in T?(G⊕()) with |S| > 1 do3

%compare the following to Definition 12
Choose arbitrary vertex v ∈ S, with v 6= r(S)4

Calculate a minimum r(S)-v-cut (U, V \ U) in G⊕(), r(S) ∈ U5

Split S into Sr(S) = S ∩ U and Sv = S ∩ (V \ U)6

r(Sr(S))← r(S)7

r(Sv)← v8

Create new edge {Sr(S), Sv} in T?(G⊕())9

forall edges ej = {S, S̄j} previously incident with S in T?(G⊕()) do10

if r(S̄j) ∈ U then11

Reconnect subtree Nj with Sr(S) in T?(G⊕())12

else13

Reconnect subtree Nj with Sv in T?(G⊕())14

return T?(G⊕())15

for a single node S in the initial intermediate min-cut tree T◦(G). More precisely,
Algorithm 8 executes the Gomory-Hu method by choosing step pairs from the initial
set S as long as there exist valid step pairs and then stops.

With Central-Tree (Algorithm 8) the specification of Tree-EdgeAdd-1
(Algorithm 4) and Tree-EdgeDel-1 (Algorithm 7) can be given as follows in
Algorithm 9 and 10. In the case of the addition of an edge, where the initial
intermediate min-cut tree T◦(G) has only one node that is no singleton, only this
node needs to be unfolded by the application of Central-Tree. In the case of the
deletion of an edge, where the initial intermediate min-cut tree T◦(G) is a path of
nodes, Central-Tree is applied to each node in T◦(G) that is no singleton.

Algorithm 9: Tree-EdgeAdd-2

Input: Min-cut tree T (G) of G = (V, E, c()), enlarged graph
G⊕ = (V, E ∪ {{b, d}}, c⊕()) with modified vertices b and d

Output: Min-cut tree T (G⊕)
Calculate path γ from b to d in T (G)1

if path γ spans V then2

return Gomory-Hu (G⊕)3

else4

Calculate tree T◦(G) by contracting all edges lying on path γ in T (G)5

S ← contraction of γ6

Calculate representatives of nodes in T◦(G)7

%as described in Definition 10
T?(G⊕)← T◦(G)8

T?(G⊕)← Central-Tree (G⊕, T?(G⊕), S)9

T (G⊕)← T?(G⊕) with singletons replaced by vertices10

return T (G⊕)11

54 CHAPTER 4. DYNAMICALLY UPDATING MIN-CUT TREES

Algorithm 10: Tree-EdgeDel-2

Input: Min-cut tree T (G) of G = (V, E, c()), reduced graph
G	 = (V, E \ {{b, d}}, c	()), modified edge {b, d} with weight ∆

Output: Min-cut tree T (G)
Calculate path γ from b to d in T (G)1

if γ = {b, d} and cT({b, d}) = ∆ then2

Remove edge {b, d} from T (G)3

return resulting components T (G)|Gb
and T (G)|Gd

4

else5

if path γ spans V then6

return path γ7

else8

Calculate tree T◦(G) by contracting all edges9

not lying on path γ in T (G)
Calculate representatives of nodes in T◦(G)10

%as described in Definition 11
T?(G)← T◦(G)11

while ∃ split node S in T?(G) with |S| > 1 do12

T?(G)← Central-Tree (G	, T?(G), S)13

T (G)← T?(G) with singletons replaced by vertices14

return T (G)15

4.3 Algorithm Engineering

In the previous Sections 4.1 and 4.2 we introduced an approach for dynamically
updating min-cut trees by avoiding the calculation of minimum u-v-cuts that for
sure do not change due to the modification of graph G. However, especially in the
case of edge deletion the set of cuts known not to change is expected to be rather
small, as so far we only regard the edges lying on path γ as not changing. By
contrast, in the case of edge addition the presumably larger part of a min-cut tree
T (G) consisting of edges not lying on γ does not change for sure.

In this section we explore whether there are even more minimum u-v-cuts whose
calculation can be avoided, or for which at least can be checked with little effort
whether they may change. To this end we watch the cuts from two different an-
gles. The first view concentrates on a given cut and asks for cut pairs in a given
graph. The second view considers pairs of vertices in a given graph and asks for
minimum separating cuts. The following Subsection 4.3.1 explores edge-induced
cuts in the modified graph from the first angle, while Subsection 4.3.2 tries to find
minimum u-v-cuts for given pairs {u, v} with less effort compared to a recalcu-
lation. In Section 4.3.3 we then improve Tree-EdgeAdd-2 (Algorithm 9) and
Tree-EdgeDel-2 (Algorithm 10) with the aid of the insight we gained in the for-
mer two sections. As for the case of edge deletion less effort saving is expected we
mainly concentrate on the improvement of this subject.

4.3.1 Edge-Induced Cuts as Minimum Separating Cuts

In this subsection we consider cuts induced in the modified graph G⊕() by edges
of the previous min-cut tree T (G). We just give a loose collection of observations.
The first observation stated as Lemma 16 is quite simple. It regards the minimum
weighted edge on the path γ in T (G) in the case of edge addition.

4.3. ALGORITHM ENGINEERING 55

Lemma 16 In the case of the addition of an edge e⊕ = {b, d}, with weight ∆, in
graph G the minimum weighted edge emin on the unique path γ from b to d in the
previous min-cut tree T (G) = (V, ET , cT()) also induces a minimum b-d-cut θmin in

Lemma:
Minimum
b-d-cut
remainsthe modified graph G⊕.

Proof. The cut θmin in graph G⊕ has weight c⊕(θmin) = cT(emin)+∆. If there was
a cheaper b-d-cut in G⊕, this cut would also separate b and d, and therefore, would
have already been cheaper in G.

The next lemma considers the case of edge deletion. It assumes the calculation
of at least one new minimum u-v-cut in the modified graph G	, but depending on
the shape of this cut Lemma 17 states an assertion about edge-induced minimum
separating cuts not changing due to the modification. Note, that an analog assertion
in the case of edge addition does not exist.

Lemma 17 Let (U, V \ U) denote an arbitrary minimum u-v-cut in the modified
graph G	 for arbitrary vertices u and v. If (U, V \U) does not separate the modified

Lemma:
Known
cut sidevertices b and d, each cut induced by an edge {g, h} of the previous min-cut tree T (G)

that lies on the side of (U, V \ U) not including b and d also remains a minimum
g-h-cuts in G	.

Furthermore, each such edge {g, h} remains a minimum separating cut in G	

for each of its previous cut pairs in G that lies on the side of (U, V \U) not including
b and d.

Proof. Consider the minimum u-v-cut in G	 to be the first split cut, concerning
the step pair {u, v}, in a Gomory-Hu execution. Then, after splitting V by this cut,
consider the side of (U, V \U) which does not include b and d as next split node S.
So regarding S both modified vertices b and d lie in the same subtree, and therefore,
are contracted in G	(S). Hence, each minimum g-h-cut in G	(S) with {g, h} ⊆ S
does not separate b and d and is also a minimum g-h-cut in G	, by Lemma 12. So
from Lemma 8 (A1, A2) it follows that any previous minimum g-h-cut in G that
does not separate b and d is also a minimum g-h-cut in G	.

The next corollary, which considers treetops in the previous min-cut tree T (G),
follows from Lemma 17. For an introduction of treetops see the following Defini-
tion 13. Figure 4.3 shows an example of a treetop ⇑e.

Definition 13 Let e = {u, v} denote an edge not lying on the path γ between the
modified vertices b and d in the previous min-cut tree T (G), and let θe denote the

Definition:
Treetop of
an edgecut induced by e in G. Then the treetop ⇑e of the edge e is defined as the set of all

vertices lying on that side of θe which does not include the path γ.

b

d

. . .
. . .

e

θe ⇑e

Figure 4.3: Treetop ⇑e of an edge e.

56 CHAPTER 4. DYNAMICALLY UPDATING MIN-CUT TREES

Corollary 8 Let e = {u, v} denote an edge in the previous min-cut tree T (G) that
does not lie on the path γ between the modified vertices b and d, and let θe denote
the cut induced by e in graph G. If θe also constitutes a minimum u-v-cut in the

Corollary:
Known
treetop modified graph G	, then each edge {g, h} included in the treetop ⇑e also induces a

minimum g-h-cut in graph G	.

The last lemma now states an assertion which at the first glance seems quite
different from the one in Lemma 16, but follows by a similar argumentation. It
considers the deletion of an edge e	 = {b, d}, with weight ∆, from graph G and an
edge {g, h} with only vertex g lying on the unique path γ from b to d in the previous
min-cut tree T (G) (compare to Figure 4.4).

Lemma 18 Let emin denote the cheaper of the two edges on path γ incident with
vertex g, and let {u, v} denote an edge with u and v included in the treetop of edge
{g, h} in T (G). If the edge {u, v} is cheaper than cT(emin) − ∆ in the previous

Lemma:
Condition for
remaining
minimum
u-v-cuts

min-cut tree T (G), it also induces a minimum u-v-cut in the modified graph G	.

Proof. Consider the initial intermediate min-cut tree T◦(G) resulting from con-
tracting all edges not lying on the unique path γ in T (G). In T◦(G) the vertex
g then constitutes the representative r(S) of a node S, and S also contains the
vertices h, u and v. Furthermore, the two edges on path γ incident with vertex
g in T (G) correspond to the connection edges eb := {yb, g} and ed := {yd, g} of
the two subtrees Nb and Nd of S in T◦(G) (see Figure 4.4). Remember that these
two edges also induce minimum separating cuts of at least weight cT(emin) −∆ in
the modified graph G	. Lemma 9 now says that each minimum u-v-cut θ in the
contracted graph G	(S) that is cheaper than the previous minimum u-v-cut in G
separates the modified vertices b and d. This is, such a cut θ either separates the
nearest cut pair {yb, g} of edge eb or the nearest cut pair {yd, g} of edge ed.

b

d

. . .
. . .

θ

g
h

u

v

yb
yd

S

NdNb

Figure 4.4: Illustration to the proof of Lemma 18.

Now we assume the previous minimum u-v-cut induced in G by edge {u, v}
to be cheaper than cT(emin) − ∆, with emin the cheaper of the two edges eb and
ed. If there existed a new minimum u-v-cut θ in G	(S) cheaper than the previous
minimum u-v-cut in G, this cut θ would separate one of the nearest cut pairs {yb, g}
or {yd, g}. As cut θ, however, would be cheaper than cT(emin)−∆, this contradicts
the fact that both edges eb and ed also induce minimum separating cuts of at least
weight cT(emin)−∆ in the modified graph G	.

4.3.2 New Minimum Separating Cuts for Given Vertices

In this subsection we consider given pairs of vertices and ask for the updated mini-
mum separating cuts in the modified graph. We mainly explore the case of the dele-
tion of an edge. To this end we independently regard two different aspects which

4.3. ALGORITHM ENGINEERING 57

will be combined later in Subsection 4.3.3 to an improvement of Tree-EdgeDel-2
(Algorithm 10). The first aspect concentrates on the contracted graph G	(S), with
S a node of the initial intermediate min-cut tree T◦(G) resulting from the entire
min-cut tree T (G) of G by contracting the edges not lying on path γ, and asks for
properties of cuts in G	(S) which separate the modified vertices. Remember that
T◦(G) is a path of nodes in the case of edge deletion. The second aspect considers
minimum separating cuts in a more general situation, which is described later. We
start with the more concrete issue of graph G	(S).

First Aspect

As mentioned above this aspect considers the contracted graph G	(S), with S a
node of the initial intermediate min-cut tree T◦(G) resulting from the entire min-cut
tree T (G) of G by contracting the edges not lying on path γ. To achieve a skimpy
formulation of the lemmas and facts in this paragraph, we characterize some special
parts of the graph G	(S). Figure 4.5 shows the terms defined in the following.

Definition 14 In the contracted graph G	(S) we denote the set of vertices included
in the subtree of S that contains the modified vertex b by N(b), and analogously N(d)

Definition:
Subtree-sets
and wood of
an edgedenotes the set of vertices in the subtree containing d. With the aid of the structure

of the previous min-cut tree T (G) the set S can be split regarding a designated edge
e = {u, v} ⊆ S into the treetop ⇑e and the remaining vertices in S \ ⇑e. We call
this set of remaining vertices the wood]e := S \ ⇑e of the edge e.

b

d

. . .
. . .

e
⇑e

SNb Nd

]e

Figure 4.5: Special parts of the contracted graph G	(S).

The following Lemma 19 actually serves to introduce the more general Lemma 20
and to state the main fact in this subsection, which is given later as Fact 3. To this
end Lemma 19 states an assertion about specially defined cuts in the contracted
graph G	(S). It compares, regarding an arbitrary edge e = {u, v} ⊆ S, a cut that
separates u and v and additionally splits the treetop ⇑e and one of the subtrees of S
from the rest of G	(S) with a cut also separating u and v and additionally splitting
the same subtree, but only a part of the treetop from the rest of G	(S). Note, that
the cuts considered in this lemma are not yet required to be minimum separating
cuts, although they both separate u and v. For a better readability we omit the
indices regarding the edge e in the formulas.

Lemma 19 In the situation described above and shown in Figure 4.6 let e = {u, v}
denote an edge in S and let (⇑A,⇑B) denote an arbitrary cut of the treetop ⇑e, with
v ∈⇑A. Then in G	(S), and G	 respectively, it holds that

Lemma:
Comparing
special cuts
in G	(S)

c	(θb) := c	(N(b)∪ ⇑, N(d) ∪])
≤ c	(N(b)∪ ⇑A, N(d) ∪] ∪ ⇑B) =: c	(θ′b)

58 CHAPTER 4. DYNAMICALLY UPDATING MIN-CUT TREES

b

d

. . .
. . .

⇑A

]N(b) N(d)

⇑B

θ′
b

θb

v

u

e

(a) Cut θb is cheaper than or of the same weight as cut θ′b

b

d

. . .
. . .

⇑A

]N(b) N(d)

⇑B

v

u

e

θ′
d

θd

(b) Cut θd is cheaper than or of the same weight as cut θ′d

Figure 4.6: Specially defined cuts compared by Lemma 19.

regarding the subtree Nb, and analogously, regarding the subtree Nd, it holds that

c	(θd) := c	(N(d)∪ ⇑, N(b) ∪])
≤ c	(N(d)∪ ⇑A, N(b) ∪] ∪ ⇑B) =: c	(θ′d).

Proof. We prove Lemma 19 regarding the subtree Nb by contradiction. The proof
regarding the subtree Nd is symmetric. We show that the cut θ := (⇑A, N(b) ∪
N(d) ∪] ∪ ⇑B), which differs from θ′b in the set N(b), would be cheaper in G than
the edge-induced minimum u-v-cut θmin := (⇑, N(b)∪N(d)∪]) in G, which differs
from θb in the set N(b), if θ′b was cheaper than θb.

So we assume that c	(θb) > c	(θ′b). As the cuts θ and θmin both do not separate
the modified vertices b and d, each of them is of the same weight in G	(S), G	 and
G, by Corollary 1 and Lemma 8 (A1). Here we consider the weights in G	 and get

c	(θmin) = c	(θb)− c	(N(b), N(d) ∪]) + c	(N(b),⇑) and
c	(θ) = c	(θ′b)− c	(N(b), N(d) ∪] ∪ ⇑B) + c	(N(b),⇑A)

With (N(d) ∪]) ⊆ (N(d) ∪] ∪ ⇑B) and ⇑A⊆⇑ it holds that

c	(N(b), N(d) ∪]) ≤ c	(N(b), N(d) ∪] ∪ ⇑B) and
c	(N(b),⇑) ≥ c	(N(b),⇑A)

4.3. ALGORITHM ENGINEERING 59

So with the assumption that c	(θb) > c	(θ′b) we finally get

c	(θmin)− c	(θ) = [c	(θb)− c	(θ′b)]
− [c	(N(b), N(d) ∪])− c	(N(b), N(d) ∪] ∪ ⇑B)]
+ [c	(N(b),⇑)− c	(N(b),⇑A)] > 0

This contradicts the fact that the edge-induced u-v-cut θmin is a minimum u-v-cut
in graph G.

Lemma 20 now considers more general cuts by also allowing the wood]e of edge
e to be split (see Figure 4.7). Note, that the cuts considered in this lemma still are
not required to be minimum separating cuts, although they both separate u and
v. For a better readability we again omit the indices regarding the edge e in the
formulas.

Lemma 20 In the situation of Lemma 19 we additionally consider an arbitrary cut
(]A,]B) of the wood]e, with u ∈]B. Then in G	(S), and G	 respectively, it holds

Lemma:
Comparing
more general
cuts in G	(S)
by cutting the
wood as well

that

c	(θbb) := c	(N(b)∪ ⇑ ∪]A, N(d) ∪]B)
≤ c	(N(b)∪ ⇑A ∪]A, N(d) ∪]B ∪ ⇑B) =: c	(θ′bb)

regarding the subtree Nb, and analogously, regarding the subtree Nd, it holds that

c	(θdd) := c	(N(d)∪ ⇑ ∪]A, N(b) ∪]B)
≤ c	(N(d)∪ ⇑A ∪]A, N(b) ∪]B ∪ ⇑B) =: c	(θ′dd).

Proof. Again we prove Lemma 20 regarding the subtree Nb. The proof regarding
the subtree Nd is symmetric. The assertion of Lemma 20 follows by Lemma 19.
We express the cuts θbb and θ′bb with the aid of the cuts θb and θ′b considered in
Lemma 19, which just differ in the set]A. So we get

c	(θbb) = c	(θb)− c	(]A, N(b)∪ ⇑) + c	(]A, N(d) ∪]B) and
c	(θ′bb) = c	(θ′b)− c	(]A, N(b)∪ ⇑A) + c	(]A, N(d) ∪]B ∪ ⇑B)

So with c	(θb) ≤ c	(θ′b), by Lemma 19, we finally get

c	(θ′bb)− c	(θbb) = [c	(θ′b)− c	(θb)]
− [c	(]A, N(b)∪ ⇑A)− c	(]A, N(b)∪ ⇑)]
+ [c	(]A, N(d) ∪]B ∪ ⇑B)− c	(]A, N(d) ∪]B)] ≥ 0

At this point we can finally deduce the following main fact of this subsection from
Lemma 20. Remember that we still assume the graph G	(S) to be the contracted
graph in the first iteration of a Gomory-Hu execution in Algorithm 10, i.e., the
considered split node S is also a node in the initial intermediate min-cut tree T◦(G)
resulting by contracting all edges not lying on the path γ in the entire min-cut tree
T (G) of G.

Fact 3 In the case of the deletion of an edge e	 = {b, d} in graph G, consider
G	(S) as described above and let e = {u, v} denote an edge of the previous complete
min-cut tree T (G) lying in S. Let further θ′ := (U, V (S)\U) denote a cut in G	(S)

Fact:
Adjustable
cutsthat separates b and d as well as u and v and additionally splits the treetop ⇑e, with

v ∈⇑e ∩(V (S) \ U). Then the cut θ := (U \ ⇑e, (V (S) \ U)∪ ⇑e)

60 CHAPTER 4. DYNAMICALLY UPDATING MIN-CUT TREES

b

d

. . .
. . .

⇑A

]AN(b) N(d)

⇑B

θbb

v

u

e

θ′
bb

]B

(a) Cut θbb is cheaper than or of the same weight as cut θ′bb

b

d

. . .
. . .

⇑A

]AN(b) N(d)

⇑B

v

u

e

θ′
dd

θdd

]B

(b) Cut θdd is chaper than or of the same weight as cut θ′dd

Figure 4.7: Specially defined cuts compared by Lemma 20.

(F1) does not split the treetop ⇑e of edge e,

(F2) but splits the remaining set V \ ⇑e (concerning graph G) the same way
as cut θ′ does and

(F3) is at most as expensive as cut θ′ in G	(S), and graph G	 respectively, and
also separates u and v.

Fact 3 does not consider minimum separating cuts in G	(S), but just any cuts
separating the modified vertices b and d as well as an edge e = {u, v} not lying on
path γ in T (G). So Fact 3 can be regarded as a property of the designated vertex v
which allows to adjust each cut that separates e = {u, v} and the modified vertices
b and d such that it does not split the treetop ⇑e of e = {u, v}. As each minimum u-

Implied
vertex
property v-cut in G	(S) that is cheaper than the previous minimum u-v-cut induced by edge

e = {u, v} in G needs to separate the modified vertices b and d by Lemma 8 (A1),
Fact 3 particularly holds for such minimum u-v-cuts in G′

	(S).

Second Aspect

The second aspect considered in this subsection explores specially shaped mini-
mum separating cuts in the following more general situation. Let H = (V, E, c())
denote an undirected, weighted graph and {r, v1, . . . , vz} a set of designated ver-
tices in H. We call the vertex r the center, the remaining vertices v1, . . . , vz are

4.3. ALGORITHM ENGINEERING 61

called cut-vertices regarding the center r. Furthermore, let V⊂ denote a subset of V
containing all cut-vertices, but not containing the center r. For V⊂ a partitioning
Π := {P1, . . . , Pz} is defined such that each vertex vj lies in Pj . Now we assume
for each cut-vertex vj the property that for each vj-r-cut θ′j := (Rj , V \ Rj) in H,
with r ∈ Rj , the cut θj := (Rj \ Pj , (V \Rj) ∪ Pj) is of at most the same weight in

Definition:
Partition-
propertyH. Note, that θj does not split Pj , but splits V \ Pj the same way as θ′j does and

separates vj and r (compare to Fact 3). We call this property partition-property.

Now consider an arbitrary minimum vi-r-cut θ′i := (Ri, V \ Ri), with r ∈ Ri,
that does not split Pi and an arbitrary minimum vj-r-cut θ′j := (Rj , V \ Rj), with

Three
different
casesr ∈ Rj , that does not split Pj , with vi 6= vj (such cuts exist by the partition-

property assumed for vi and vj). We distinguish the following three cases (compare
to Figure 4.8) concerning the positions of θ′i and θ′j :

1) Cut θ′i separates vj and r, and θ′j separates vi and r.

2) Cut θ′i does not separate vj and r, but cut θ′j separates vi and r.

3) Cut θ′i does not separate vj and r, and cut θ′j does not separate vi and r.

vi vj

r

Rj V \ RjRiV \ Ri

Pi Pj

(a) Positions of case 1

vi

vj

r

Rj V \ RjRiV \ Ri

Pi Pj

(b) Positions of case 2

vi
vj

r

Rj V \ RjRiV \ Ri

Pi
Pj

(c) Positions of case 3

Figure 4.8: Three different cases concerning the positions of θ′i and θ′j .

The analysis of these cases yield the following:

Analyzing case 1 (see Figure 4.8a) As cut θ′i separates vj and r, and as vj satisfies
the partition-property, the cut θi := (Ri \ Pj , (V \Ri) ∪ Pj) (red dashed) is a
minimum vi-r-cut, which does not split the union Pi ∪ Pj . Analogously, the
cut θj := (Rj \ Pi, (V \ Rj) ∪ Pi) (red dashed) is a minimum vj-r-cut, which
does not split the union Pi ∪ Pj .

Analyzing case 2 (see Figure 4.8b) As cut θ′j separates vi and r and vi satisfies
the partition-property, the cut θj := (Rj \ Pi, (V \Rj)∪ Pi) (red dashed) is a
minimum vj-r-cut, which does not split the union Pi ∪ Pj .

62 CHAPTER 4. DYNAMICALLY UPDATING MIN-CUT TREES

Furthermore, by Lemma 15 the cut θnew(j) := (Ri ∩ Rj , (V \ Ri) ∪ (V \ Rj))
(green dashed) is a minimum vj-r-cut, which does not split the union Pi ∪Pj .
This corresponds to the following fact: If we regard cut θ′i as the first split cut
of a Gomory-Hu execution, we get an intermediate min-cut tree consisting of
two nodes Ri and V \ Ri connected by an edge. If now {vj , r} is chosen as
the next step pair in Ri, cut θ′j induces cut θnew(j) as split cut in H(Ri), by
Theorem 2 and 3. By Lemma 12 the previous split cut θ′i turns out to be also
a minimum vi-vj-cut, as θnew(j) separates vi and r.

Analyzing case 3 (see Figure 4.8c) By Lemma 15 the cut θnew(i) := ((V \ Rj) ∪
Ri, (V \Ri)∩Rj) (green dashed) is a minimum vi-r-cut, and the cut θnew(j) :=
((V \Ri)∪Rj , (V \Rj)∩Ri) (green dashed) is a minimum vj-r-cut. Both cuts
θnew(i) and θnew(j) do not cross. So as vi and vj both satisfy the partition-
property, cut θi := (((V \ Rj) ∪ Ri) \ Pi, ((V \ Ri) ∩ Rj) ∪ Pi) and θj :=
(((V \Ri)∪Rj) \Pj , ((V \Rj)∩Ri)∪Pj) (both red dashed) are non-crossing
minimum separating cuts, which do neither split partition Pi nor Pj .

4.3.3 Improving the Algorithms

Now we combine the two aspects previously explored in Subsection 4.3.2 and several
Lemmas stated in Subsection 4.3.1 to a better algorithmic solution for the deletion
of an edge. The case of adding an edge can also get slightly improved with the
aid of Lemma 16. However, at first we concentrate on the edge deletion. Consider
Algorithm 11, which is actually the same as the previous Algorithm 10, but calls a
different method to solve the central problem in Line 19 and stores the minimum
weight of the edges on path γ incident with the current representative in w(min)
(Line 18) for a later improvement according to Lemma 18. Furthermore, some
initialization takes place in Line 11 to Line 15 which will be explained later.

The idea of our improved algorithmic approach in the case of edge deletion is to
construct split cuts which preserve known partitions during the Gomory-Hu execu-
tion, according to the fact that some vertices in G	(S) meet the partition-property
introduced in the second aspect in Subsection 4.3.2. The considered partitions will

Idea of
improved
approach turn out to correspond to treetops, which sometimes may remain unchanged by the

edge deletion in G	, by Corollary 8. So the aim of this improved appraoch is to
find such remaining treetops as soon as possible and to use each newly calculated
minimum separating cut as split cut in a Gomory-Hu execution.

As soon as a remaining treetop, or partition, is found (see if-clause in Line 11 in
Central-TreeDel (Algorithm 12)), it gets marked as“already known” in Line 16.
When there are no unmarked nodes, apart from singletons, left in the intermediate

Handling
remaining
treetops min-cut tree T?(G), the marked nodes can easily get unfolded according to the

Gomory-Hu method (see Line 21, Algorithm 11), as all split cuts are already known
by the previous min-cut tree T (G).

In the following we illustrate how the modified graph G	, concerning G	(S)
for a node S in the initial intermediate min-cut tree T◦(G), corresponds to graph
H described in the second aspect in Subsection 4.3.2. Afterwards we exemplarily
apply Central-TreeDel (Algorithm 12) to a node in the initial intermediate
min-cut tree T◦(G) to show that the nodes in the resulting intermediate min-cut
tree T?(G) again induce a correspondence between G	 and H, which allows us to
apply Central-TreeDel iteratively.

4.3. ALGORITHM ENGINEERING 63

Algorithm 11: Tree-EdgeDel-3

Input: Min-cut tree T (G) of G = (V, E, c()), reduced graph
G	 = (V, E \ {{b, d}}, c	()), modified edge {b, d} with weight ∆

Output: Min-cut tree T (G)
Calculate path γ from b to d in T (G)1

if γ = {b, d} and cT({b, d}) = ∆ then2

Remove edge {b, d} from T (G)3

return resulting components T (G)|Gb
and T (G)|Gd

4

else5

if path γ spans V then6

return path γ7

else8

Calculate tree T◦(G) by contracting all edges not lying on path γ9

Calculate representatives of nodes in T◦(G)10

%as described in Definition 11
%---------- initialization ----------
forall vertices v in V do11

L(v)← ∅12

l(v)← ∅13

Pv ← ∅14

D(v)← ∅15

%------------------------------------
T?(G)← T◦(G)16

forall unmarked nodes S in T?(G) with |S| > 1 do17

w(min)← minimum weight of the two edges on γ18

incident with r(S)
T?(G)←Central-TreeDel (G	, T (G), T?(G), S, w(min))19

forall marked nodes S in T?(G) with |S| > 1 do20

Unfold S21

T (G)← T?(G) with singletons replaced by vertices22

return T (G)23

Correspondence between graph G	 and graph H

The modified graph G	, concerning G	(S) for a node S in the initial intermediate
min-cut tree T◦(G), corresponds to the graph H described in the second aspect in
Subsection 4.3.2 as follows: Regard the representative r(S) of node S, as given in
Definition 11, as the designated center r (see black vertex in S in Figure 4.9a), and
such vertices in S which are adjacent to r(S) in T (G) as cut-vertices v1, . . . , vz (see
green vertices in Figure 4.9a). The treetops of the edges {vi, r(S)}, i = 1, . . . , z,

Detecting
second
aspect in G	correspond to the partitions P1, . . . , Pz.

Furthermore, by Fact 3 each cut-vertex v meets the partition-property regarding
any v-r-cut that separates the modified vertices b and d. So a cut-vertex v partic-
ularly meets the partition-property for minimum v-r-cuts in G	 that are cheaper
than a previous minimum v-r-cut in G, as such minimum v-r-cuts always separate Detecting first

aspect in G	
the modified vertices b and d, by Lemma 9. Therefore, each newly calculated min-
imum v-r-cut in G	 that is cheaper than the previous one in G can get adjusted,
before it may be used as split cut in Line 35 (Algorithm 12), such that it does not
split the treetop, i.e., the partition, related to the cut-vertex v. This happens in
Line 30, Algorithm 12. In this situation the newly occurring node Sv after split-

64 CHAPTER 4. DYNAMICALLY UPDATING MIN-CUT TREES

. . .b
dp2

S

pz−1

2

1

4
3

NdNb

(a) Situation at the first call of Central-TreeDel

p2

b

. . .

d

pz−1

Nb
Nd

S2

S3

S4

Sr(S)

1

(b) Situation after splitting S by the non-crossing cuts 2, 3 and 4 shown above

Figure 4.9: Exemplary application of Central-TreeDel

ting S is not marked as “already known”, and so its representative, which is vertex
v, becomes a center in a later iteration. A newly calculated minimum v-r-cut that
is not cheaper in G	 induces a remaining treetop by Corollary 8, and therefore, is
replaced by the previous edge-induced cut, which is used as split cut instead (see
if-clause in Line 11 to Line 20, Algorithm 12). In this case the newly occurring
node Sv after splitting S is marked as “already known” and so never considered by
Central-TreeDel (Algorithm 12).

So, as a cut-vertex v becomes either a new center or a part of a remaining
treetop, we additionally store some information regarding v. This information isAdditional

information
initialized for all vertices in V before the first call of Central-TreeDel (see
Algorithm 11, Line 11 to Line 15) and is updated for the current representative
r(S) at the beginning of Central-TreeDel (Algorithm 12). In the case that
v becomes a center we need information I(1) and I(2), in case that v induces a
remaining treetop we store I(3) and I(4).

I(1) list L(v) of cut-vertices regarding v as center r

I(2) list l(v) of related minimum v̄-v-cuts θ′v̄ in G	, v̄ ∈ L(v)

I(3) partition Pv defined as the treetop of e = {v, r} in T (G)

I(4) set D(v) of cut-vertices separated from center r by the
minimum v-r-cut θ′v in l(r)

For the current center r(S) the list L(r(S)) of cut-vertices changes during the exe-
cution of Central-TreeDel (Algorithm 12). In the end it contains several cut-

4.3. ALGORITHM ENGINEERING 65

Algorithm 12: Central-TreeDel

Input: Graph G	, complete min-cut tree T (G), current intermediate
min-cut tree T?(G) with representatives of nodes, current node S,
minimum edge weight w(min) on γ

Output: In parts unfolded intermediate min-cut tree T?(G)
%Side-effect: Updating information I(1), I(2) and I(4)
Add all vertices in S that are adjacent to r(S) regarding T (G) to L(r(S))1

forall vertices v in L(r(S)) do2

Pv ←⇑{v,r(S)}3

while L(r(S)) has next element v do4

if l(r(S)) does not yet contain related cut θv then5

if cT({v, r(S)}) < w(min)−∆ then6

θv ← θmin induced by edge {v, r(S)} %by Lemma 187

else8

θv ← GoldbergTarjan (v, r(S), G)9

Add θv to list l(r(S)) %in a valid relation to v10

if c	(θv) = c(θmin) then11

%θmin denotes previous edge-induced minimum v-r(S)-cut
Delete v from list L(r(S))12

Delete θv from list l(r(S))13

%---Split partition Pv (treetop) from S
T?(G)← SplitAndReconnect (T?(G), S, v, θmin)14

S ← Sr(S)15

Mark Sv as “already known”16

if |S| > 1 then17

return Central-TreeDel (G	, T (G), T?(G), S, w(min))18

else19

return T?(G)20

else21

while L(r(S)) has next element v̄ do22

if θv separates v̄ and r(S) then23

Delete v̄ from L(r(S))24

if l(r(S)) already contains related cut θv̄ then25

Add v̄ to set D(v)26

Add v̄ to list L(v)27

Move related cut θv̄ from list l(r(S)) to list l(v)28

%---Now L(r(S)) has at most two elements
while L(r(S)) has next element v do29

%---Calculate partition-preserving cut for v
%θv = (R, V \R), r(S) ∈ R, denotes cut in l(r(S)) related to v
θv ← (R \ Pv, (V \R) ∪ Pv) %by partition-property30

forall vertices v̄ in D(v) do31

θv ← (R \ Pv̄, (V \R) ∪ Pv̄) %by case 1 and case 232

forall vertices v̄ 6= v in L(r(S)) do33

θv ← (R ∪ Pv̄, (V \R) \ Pv̄) %by case 334

T?(G)←SplitAndReconnect (T?(G), S, v, θv)35

S ← Sr(S)36

return T?(G)37

66 CHAPTER 4. DYNAMICALLY UPDATING MIN-CUT TREES

vertices v related to a set M of non-crossing minimum v-r-cuts in G	 such that
none of the minimum v-r-cuts splits its related partition Pv, none of the minimumIntroducing set

M of split cuts
v-r-cuts separates another cut-vertex v̄ (whose minimum v̄-r-cut is in M) from r(S),
and finally the center r(S) gets isolated (compare to the cuts 2, . . . , 4 in Figure 4.9a).
More precisely, in Line 29 the cut-vertices that induce remaining treetops (compare
to cut 3 in Figure 4.9a) are not included in L(r(S)) anymore, as the related cuts are
already used as split cuts in Line 14, and therefore, the vertices are deleted from
L(r(S)) in Line 12. (Note, that one can prove that there are at most two cuts left
in l(r(S)) in Line 29.)

Based on the second aspect in Subsection 4.3.2 such a set M of split cuts always
exists, as the two subtrees Nb and Nd of S in T?(G) are contracted in G	(S) and
the remaining vertices of G	, apart from the center r, are partitioned into treetops
(compare to Figure 4.9a). The construction of M works a follows: At the beginningConstruction of

split cuts in M
we assume for each cut-vertex v̄ one minimum v̄-r-cut to be in M (see Line 1). Then
consider a fixed cut-vertex v (see Line 4) and a minimum v-r-cut θ′v = (R, V \ R)
in G	, with r ∈ R, that is cheaper than the previous one in G (see Line 21). As v
meets the partition-property, we can consider cut θv = (R\Pv, (V \R)∪Pv) instead,
which preserves partition Pv (see Line 30). Now for each other cut-vertex v̄ still in
M compare θv to a minimum v̄-r-cut θv̄, which preserves Pv̄ (see Line 22).

By the analysis of case 1 and case 2 in Subsection 4.3.2, we are allowed to transfer
the partition Pv̄ to the v-side of cut θv for each cut-vertex v̄ that is separated from
r by cut θv (see Line 32). As we suppose θv to be in M , it follows that the related

Considering
separated
cut-vertices cuts to these vertices are not in M anymore (see Line 24 to Line 26). However, each

cut θv̄ whose cut-vertex v̄ is separated from r by cut θv and that does not separate
v from r vice versa, by the analysis of case 2, also constitutes a minimum v̄-v-cut
in G	 which still can be used as later split cut (see Line 27 and Line 28).

Considering the cut-vertices v̄ in M that are not separated from the center r by
θv, we distinguish two situations. If there is any minimum v̄-r-cut θ′v̄ that separates

Considering
cut-vertices
not separated v from r, it follows that θv is not included in M , as we suppose θ′v̄ to be in M (see

Line 24). Otherwise, by the analysis of case 3 in Subsection 4.3.2, we are allowed
to transfer the partition Pv̄ to the r-side of cut θv for each cut-vertex v̄ that is not
separated from r by cut θv (see Line 28).

Algorithm 13: SplitAndReconnect

Input: Intermediate min-cut tree T?(G) with representatives of nodes,
designated split node S in T?(G), second vertex v 6= r(S) of step
pair, split cut (U, V \ U) in G	 with r(S) ∈ U

Output: Intermediate min-cut tree T?(G) with S split
Split S into Sr(S) = S ∩ U and Sv = S ∩ (V \ U)1

r(Sr(S))← r(S)2

r(Sv)← v3

Create new edge {Sr(S), Sv} in T?(G)4

forall edges ej = {S, S̄j} previously incident with S in T?(G) do5

if r(S̄j) ∈ U then6

Reconnect subtree Nj with Sr(S) in T?(G)7

else8

Reconnect subtree Nj with Sv in T?(G)9

return T?(G)10

4.3. ALGORITHM ENGINEERING 67

Exemplary Application of Central-TreeDel

Now we exemplarily apply Central-TreeDel (Algorithm 12) to a node in the
initial intermediate min-cut tree T◦(G) to show that the nodes in the resulting
intermediate min-cut tree T?(G) again induce a correspondence between G	 and
H, which allows us to apply Central-TreeDel iteratively. Figure 4.9a shows an
initial intermediate min-cut tree T◦(G) with a designated node S. Additionally we
know the structure given by the previous entire min-cut tree T (G) for the vertices
in S. So this is the situation before the first call of Central-TreeDel.

At the beginning all nodes in T◦(G) are unmarked and in our example the node S
includes more than one vertex. So in Line 19 of Algorithm 11 Central-TreeDel
is applied to S, with its representative r(S) shown as black vertex in Figure 4.9a.
According to Line 1 in Algorithm 12 the list L(r(S)) contains all green vertices Initialization

in Figure 4.9a. We assume these vertices to be labeled with v1, . . . , v4 from left to
right. The list l(r(S)) of related cuts is empty or filled with dummy-cuts, depending
on the implementation (It just needs to relate each cut to the right cut-vertex in
L(r(S)).

Now the set M induced by the cut-vertices in L(r(S)) is calculated. The first
while-loop in Line 4, Algorithm 12, starts with v = v1. As we do not know yet a First while-loop

for vertex v1
minimum v1-r(S)-cut in G	, but there exists one that is cheaper than the previous
minimum v1-r(S)-cut in G, we calculate a new minimum v1-r(S)-cut θ′1 in Line 9
(for example with the preflow-push method by Goldberg and Tarjan [GT88]). As
cut θ′1 does not separate any other cut-vertices from r(S), set D(v3) remains empty
in the while-loop in Line 22 all cut-vertices remain in L(r(S)). The cut 1 shown in
Figure 4.9a that separates v1 from r(S) is already adjusted. The original cut θ′1 may
cross several partitions, i.e., treetops, of the other (green) cut-vertices. However,
we will see in the following that cut θ′1, and therefore, cut 1 shown in Figure 4.9a is
also a minimum v1-v2-cut in G	.

To this end consider the second while-loop in Line 4. This iteration regards
v = v2. In Line 9 we get a new minimum v2-r(S)-cut θ′2 in G	, which we add to list
l(r(S)), as it is not of the same weight as the previous minimum v2-r(S)-cut θmin

in G. As cut θ′2 separates cut-vertex v1 from r(S), but θ′1 did not separate v2 from
Second
while-loop
for vertex v2r(V) before, by the analysis of case 2 in Subsection 4.3.2 we see that θ′1 is also a

minimum v1-v2-cut in G	. By using later the adjusted cut 2 shown in Figure 4.9a
as split cut, θ′1 induces the minimum v1-v2-cut 1 shown in Figure 4.9b, which is
the same as shown in Figure 4.9a. So it is feasible to add v1 to set D(v2) in the
while-loop in Line 22, at the same time to deleted it from L(r(S)), and to add it
instead to L(v2) in case v2 becomes a center in a later iteration (see node S2 in
Figure 4.9b).

Now we consider the third while-loop in Line 4. This iteration regards v = v3.
As do not know yet a minimum v3-r(S)-cut in G	, but the new cut is supposed to
have the same weight as the previous one in G, we either calculate a new minimum
v3-r(S)-cut θ′3 in Line 9 or we notice that there exists no cheaper cut in G	 by the
condition in Line 6. In this case we consider the previous edge-induced cut as related

Third
while-loop
for vertex v3cut to v3 in l(r(S)). Then the if-clause in Line 11 becomes true, and by Corollary 8

the minimum separating cuts for all pairs of vertices in partition P3 remain the
same, i.e., are already given by the previous min-cut tree T (G). So it is feasible to
delete v3 from L(r(S)) in Line 12 (analogously θ′3 is deleted from l(r(S))) and to
use the previous minimum v3-r(S)-cut θmin as split cut instead in Line 14. As the
minimum separating cuts in the newly occurring node S3 in Figure 4.9b are already
known, we accordingly mark this node in Line 16. The rest after splitting node S

68 CHAPTER 4. DYNAMICALLY UPDATING MIN-CUT TREES

is again considered as the current node S in Line 15. Note, that the additional
information stored in several lists and sets remains unchanged.

The last while-loop in Line 4 regards v = v4 whose related minimum v4-r(S)-
cut θ′4 is again cheaper in G	. As θ′4 does not separate any previous cut-vertexLast while-loop

for vertex v4
from r(S) we finally get the adjusted cut 4 as shown in Figure 4.9a as split cut. In
this example the list l(r(S)) in Line 29 finally contains cut 2 and cut 4. Cut 1 was
deleted, as it is “absorbed” by cut 2, and cut 3 preserves a treetop, and therefore,
was unfolded immediately as a new subtree of S.

After applying the remaining split cuts in l(r(S)) in an adjusted form, Fig-
ure 4.9b shows the resulting intermediate min-cut tree T?(G). Now node S3 is
marked as “already known”, node Sr(S) became a singleton only containing the iso-
lated center r(S), and to node S2 and S4 Central-TreeDel will be applied in
the next iterations. This is feasible, as for example in node S2 again the repre-

Iterating
Central-TreeDel
is feasible sentative v2 can be regarded as the new center with its related treetop also lying

in S2, which is guaranteed by the fact that the previous split cuts preserve their
related partitions. New cut-vertices are all previous cut-vertices which were sepa-
rated from the previous center by the split cut θ2 that induces S2 (they are already
stored in L(v2)) and again all vertices adjacent to the center v2 in S2 (red vertices
in Figure 4.9b). To regard the vertex v1, which was already added to L(v2) by
the previous iteration, as cut-vertex of the new center v2 is feasible, as we already
know a minimum v1-v2-cut, and the related partition P1 is also preserved by the
construction of θ2. Furthermore, each so defined cut-vertex v for the new center v2

again meets the partition-property by Fact 3 regarding any v-v2-cut that separates
the modified vertices b and d (see for example the red dotted cut in Figure 4.9b and
Figure 4.9a). Finally also a new set M of split cuts (as introduced before) can be
constructed, as, concerning S2, both subtrees again are contracted in G	(S2) and
the remaining vertices of G	, apart from the center v2, are again partitioned into
treetops (compare to Figure 4.9b).

Summary for Improved Edge Deletion Algorithm

The improvement in our new algorithm Tree-EdgeDel-3 (Algorithm 11) bases
on the fact that this algorithm reduces the number of calculations of minimum u-
v-cuts in G	 in a high degree, compared to Tree-EdgeDel-2 (Algorithm 10), which
just unfolds the independent nodes of the initial intermediate min-cut tree T◦(G)
by randomly choosing valid step pairs for the Gomory-Hu execution in Central-
Tree (Algorithm 8). Our new algorithm knows a condition given by Lemma 18Points of

improvement
which allows to decide in some special cases, before calculating a new cut, that a
step pair has no cheaper minimum separating cut in G	. So in these cases the
algorithm avoids a needless minimum u-v-cut calculation. Furthermore, if there
are any remaining treetops, mutually disjoint, in the previous min-cut tree T (G),
our improved algorithm finds them by recalculating only one minimum u-v-cut per
treetop.

Finally, as the path γ between the two modified vertices b and d consists of at
least one edge, we always know at least one minimum separating cut in G	. ThisBest and worst

case effort
is, in the worst case, when path γ consists of only one edge and the new min-cut
tree T (G) develops to a path from b to d spanning all vertices in V, we still save
one minimum u-v-cut calculation compared to a recalculation of the whole min-cut
tree, which would take n− 1 cut calculations. In the best case, when path γ spans
all vertices in V, there is no calculation of any minimum u-v-cut necessary at all. In
case that the previous min-cut tree T (G) is also a valid min-cut tree T (G) for G	,

4.3. ALGORITHM ENGINEERING 69

we need to calculate at most as many new minimum u-v-cuts as there are subtrees
remaining after deleting path γ from T (G).

Improved Edge Addition Algorithm

For the sake of completeness we also review algorithm Tree-EdgeAdd-2 (Algo-
rithm 9), which considers the case of edge addition, slightly improved with the aid
of Lemma 16. Lemma 16 just says that the minimum b-d-cut induced by the edge Points of

improvement
of minimum weight on path γ in T (G) also constitutes a minimum b-d-cut in graph
G⊕. So we transform Algorithm 9 by changing Line 4 and Line 6 into Algorithm 14.

Algorithm 14: Tree-EdgeAdd-3

Input: Min-cut tree T (G) of G = (V, E, c()), enlarged graph
G⊕ = (V, E ∪ {{b, d}}, c⊕()) with modified vertices b and d

Output: Min-cut tree T (G⊕)
Calculate path γ from b to d in T (G)1

emin ← edge of minimum weight lying on γ2

if path γ spans V then3

return Gomory-Hu (G⊕), with first split cut emin already known4

else5

Calculate tree T◦(G) by contracting all edges lying to the left of emin6

and contracting all edges lying to the right of emin on path γ in T (G)
Calculate representatives of nodes in T◦(G)7

%according to Definition 10
S1 ← left contraction of γ8

S2 ← right contraction of γ9

T?(G⊕)← T◦(G)10

for i = 1,2 do11

T?(G⊕)← Central-Tree (G⊕, T?(G⊕), S)12

T (G⊕)← T?(G⊕) with singletons replaced by vertices13

return T (G⊕)14

In the worst case, when path γ spans all vertices in V, we again save one cut
calculation compared to a recalculation of the whole min-cut tree. In the best case, Best and worst

case effort
when path γ consists of only one edge, there is no calculation of any minimum
u-v-cut necessary at all. In case that the previous min-cut tree T (G) is also a valid
min-cut tree T (G⊕) for G⊕, we need to calculate one minimum u-v-cut less than
edges lying on path γ.

70 CHAPTER 4. DYNAMICALLY UPDATING MIN-CUT TREES

Chapter 5

Dynamically Updating
Minimum u-v-Cuts

In the previous chapter our approach for dynamically updating min-cut trees con-
centrated on the minimization of the number of recalculated minimum u-v-cuts.
Another idea is to update the minimum u-v-cuts, which are given in the min-cut
tree, individually. Unfortunately there is little related work on this subject. Most
of the publications we found concentrate on dynamically updating global minimum
cuts instead of minimum separating cuts concerning two fixed vertices (see for ex-
ample Nagamochi [Nag06]). An approach of Kaplan and Shafir [KS08] considers
edges of minimum weight along paths in incremental (dynamic) trees, which seems
quite similar to the representation of minimum u-v-cuts in a min-cut tree. Unfor-
tunately, due to the special shape of min-cut trees and problems similar to those
illustrated later in Subsection 5.1.3, this approach can not be adapted for updating
min-cut trees.

However, talking about minimum u-v-cuts means talking about maximum flows
from a source u to a target v, according to the Max-Flow-Min-Cut Theorem by
Ford and Fulkerson [FF56]. So in Section 5.1 we shortly introduce u-v-flows and an
approach of Kohli and Torr [KT07] for dynamically updating minimum u-v-cuts by
adjusting residual graphs of given maximum flows.

Furthermore, a maximum u-v-flow not only represents one minimum u-v-cut, but
all minimum u-v-cuts in the underlying graph, by Picard and Queyranne [PQ80].
This yields another approach, which does not really update minimum u-v-cuts, but
tries to preserve any of the known cuts as long as possible while the underlying
graph is repeatedly modified. This idea is presented in Section 5.2.

5.1 Adjusting Residual Graphs

In this section we shortly introduce flows in undirected weighted graphs and review
the approach of Kohli and Torr [KT07] of dynamically adjusting residual graphs of
given maximum u-v-flows. We will further outline the problems coming with this
approach applying for updating min-cut trees.

71

72 CHAPTER 5. DYNAMICALLY UPDATING MINIMUM U -V -CUTS

5.1.1 Flows in Undirected Weighted Graphs

We consider an undirected positively weighted graph G = (V, E, c()). As flows are
originally defined in directed networks, we identify each edge e = {g, h} ∈ E with
two opposedly directed edges −→e = (g, h) ∈

−→
E and ←−e = (h, g) ∈

←−
E , both of the

same weight as the original edge in G, i.e., c((g, h)) = c((h, g)) = c({g, h}). The
weight of an edge can also be regarded as capacity. So in the remainder of this
section we talk about capacities in the context of flows. A flow in graph G is then
defined as follows:

Definition 15 Let N(g) denote the set of vertices adjacent to vertex g in an undi-
rected graph G = (V, E, c()), and let u and v denote two fixed vertices. Then, a

Definition:
Flow in an
undirected
graph u-v-flow f in G from source u to target v is a function f :

−→
E ∪

←−
E → R on the

(directed) edges in G that meets the following conditions:

• f((g, h)) = −f((h, g)), ∀ undirected edges {g, h} ∈ E (Asymmetry)

• f((g, h)) ≤ c((g, h)), ∀ directed edges (g, h) ∈
−→
E ∪

←−
E (Capacity)

•
∑

h∈N(g) f((g, h)) = 0, ∀ vertices g ∈ V \ {u, v} (Mass balance)

A flow is a maximum u-v-flow if there exists no other u-v-flow in G that has a higher
Definition:
Maximum
flow and value
of a flow value. The value c(f) of a u-v-flow f is defined as c(f) :=

∑
h∈N(u) f((u, h)) =∑

h∈N(v) f((h, v)).

Figure 5.1a shows an example of a maximum u-v-flow with value c(f) = 20. For
a better perceptibility only directed edges with non-negative flow are shown. The
edges are labeled with flow values and capacity values in brackets. The bottlenecks
consisting of saturated edges e ∈

−→
E ∪

←−
E , i.e., f(e) = c(e) (drawn as dashed (red)

arrows), represent minimum u-v-cuts in G (We will see this later by a theorem of
Picard and Queyranne [PQ80]). Such bottlenecks can be detected more easily in
the residual graph G(f), which represents the residual edge capacities left open by
the flow f .

Definition 16 For a flow f in an (undirected) graph G = (V, E, c()) the residual
graph is given by G(f) = (V, E(f), r()) with residual capacity r(e) := c(e) − f(e),

Definition:
Residual graph
of a flow ∀e ∈

−→
E ∪

←−
E and E(f) := {e ∈

−→
E ∪

←−
E |r(e) > 0}

Figure 5.1b shows the residual graph G(f) of flow f given in Figure 5.1a. Again
only directed edges with non-negative flow are shown. The edges are now labeled
with residual capacities in brackets. The minimum u-v-cut drawn as a dashed line
can be found by a breadth-first search starting at u and visiting all vertices that can
be reached over an augmenting path from the source. As this is the first minimum

Definition:
First minimum
u-v-cut u-v-cut found by such a search, we simply refer to it as the first minimum u-v-

cut given by a maximum u-v-flow. Note, that the first minimum u-v-cut given by
a maximum u-v-flow minimizes the cut side containing the source and does not
cross any other minimum u-v-cut in G. In contrast to minimum separating cuts,
maximum flows are directed from the source to the target. A maximum u-v-flow inReversing

flows
an (undirected) graph can be reversed, i.e., it becomes a v-u-flow, by reversing all
directed edges while the flow on each edge remains the same.

5.1. ADJUSTING RESIDUAL GRAPHS 73

5 [5]

10 [13] 4 [10]

2 [13]

7 [15]

1 [12]

3 [3]

9 [10]

1 [1]

4 [4]

3 [3]

7 [7]

2 [5]

5 [5]

4 [4]

5 [15]
5 [5]

5 [6]

7 [7]
2 [10]

13 [20]

7 [13]

7 [7]

2 [2]

10 [14]

u

v

2 [2]

2 [2]

4 [4]

3 [4]
5 [5]

8 [10]

5 [5]

2 [8]

2 [6]

10 [13]

15 [15]

4 [4]

2 [2]

5 [5]

4 [4]

1 [1]

5 [5]

1 [20]
1 [1]

3 [5]
5 [5]

2 [5]
2 [2]

10 [20]

3 [3]

4 [10]

3 [10]

3 [8]

3 [3] 2 [7]

2 [3]

5 [5]

3 [3]

(a) Maximum u-v-flow f in a graph G, with flow weight c(f) = 20

[3] [6]

[11]

[8]

[11]

[1]

[3]

[10]

[1]

[8]

[7]

[6]

[4]

u

v

[1]

[2]

[6]

[4]

[3]

[19]

[2]

[3]

[10]
[6]

[7]

[5]

[5]

[1]

(b) Residual graph G(f) of the maximum flow f shown above

Figure 5.1: Example of a maximum u-v-flow f in a graph G and its residual graph G(f).

5.1.2 The Method of Kohli and Torr

For updating a minimum u-v-cut after an elementary modification of the underlying
graph G, Kohli and Torr [KT07] require the knowledge of a maximum u-v-flow f ,
which represents a minimum u-v-cut in graph G. Their idea is to adjust the residual
graph of the known flow f such that neither the capacity constraint nor the mass
balance constraint is violated due to the modification. Then a max-flow algorithm Idea of Kohli

and Torr
regarding the adjusted residual graph is applied to calculate a maximum flow which
represents a minimum u-v-cut in the modified graph G⊕(). Hence, the method of
Kohli and Torr can be split into two phases. The first phase adjusts the residual
graph, while the second phase applies a max-flow algorithm and so calculates a new
maximum flow, and a new minimum u-v-cut respectively.

Max-flow algorithms (for solving the max-flow problem) are classified into two
categories: Augmenting path and preflow-push algorithms. Augmenting path al- About max-flow

algorithms
gorithms repeatedly find augmenting paths in a residual graph G(f) and push the
maximum possible flow f ′ through this path resulting in the totaled flow (f + f ′)
and the residual graph G(f + f ′). Preflow-push algorithms flood the graph and
create excess flow at the vertices. This excess flow is then incrementally drained

74 CHAPTER 5. DYNAMICALLY UPDATING MINIMUM U -V -CUTS

out by sending it from its vertex toward the target or the source. For more detailed
information about preflow-push algorithms see [GT88] or [Gol08]. An efficient aug-
menting path algorithm is introduced in [Din70].

Kohli and Torr [KT07] use an augmenting path algorithm in their approach.
The number of augmenting paths found by such an algorithm depends on the value
of the total maximum flow pushed from the source to the target. Initializing an
augmenting path algorithm with an updated residual graph instead of the modified
graph G⊕() saves the recalculation of some augmenting paths, as only the difference

Savings by
updating
residual graphs between the value of the adjusted flow and the value of a maximum flow in G⊕()

needs to be pushed through. Furthermore, Kohli and Torr dynamically adapt a
technique introduced by Boykov et al. [BK04], which builds and reuses search trees
to find augmenting paths even faster and with less effort. As Boykov et al. claim this
technique, based on their experiments, to outperform the best known augmenting
path and push-relabel algorithms on graphs commonly used in computer vision, we
assume the updating method of Kohli and Torr also to be “good” in general.

As elementary modifications Kohli and Torr not only regard the addition and
deletion of an edge, but also the more general increasing and decreasing of edge
capacities. According to this view in the first phase of their method they distinguish
two situations, as described in the following. Algorithm 15 additionally outlines the

Two situations
of adjusting
residual graphs phases of the method of Kohli and Torr. For a fixed pair {u, v} this algorithm takes

a tuple (G, [f,Ga, Ga(f)]) consisting of the original graph G, a u-v-flow f in a graph
Ga, the graph Ga and the residual graph Ga(f) for the flow f in Ga. The graph
Ga is not necessarily equivalent to the original graph G, as it may have additional
edges. However, in the initial tuple, before the first updating, it holds that G = Ga.
The flow f in Ga induces the same first minimum u-v-cut as a maximum u-v-flow
in graph G would do. Now assume the capacity of an edge e in graph G, which also
exists in graph Ga, to change. The new capacity is denoted by c′(−→e) = c′(←−e).

In the first situation the capacity constraint of the previous flow f in Ga is not
violated due to the modification, i.e., it holds that f(−→e) ≤ c′(−→e) and f(←−e) ≤ c′(←−e)
(see Line 2, Algorithm 15). Therefore, we just set the capacities of the modifiedFirst

situation
edges −→e and ←−e in graph Ga to c′(−→e). The resulting graph then is denoted by G′

a.
The flow f does not get adjusted. We define f ′ := f . At this point f ′ is a valid
u-v-flow in graph G′

a. So the residual graph G′
a(f ′) is well defined. In the first

situation Phase 1 ends here (see Line 4, Algorithm 15). The only thing still to be
done is the calculation of a maximum u-v-flow fmax in graph G′

a, as the flow f ′ is
not necessarily maximal (see Line 29). Kohli and Torr proved that then the flow
fmax also represents a minimum u-v-cut in the modified graph G⊕().

The second situation considers the violation of the capacity constraint, i.e., in
this situation the modification is a weight reduction and it holds that f(−→e) > c′(−→e)
or f(←−e) > c′(←−e). Then the further steps depend on the position of the modifiedSecond

situation
edges in graph Ga (see Line 7, Algorithm 15).

Assume the modified edge −→e , which is basically the same as the edge ←−e , to be
incident with the source, i.e., −→e = (u, b) and←−e = (b, u) for a vertex b ∈ V (the case
of incidence with the target is symmetric, see Figure 5.2a and the example in the
next paragraph). Note, that each flow can be modified such that there is no negativeIncidence with

source or target
flow leaving the source or entering the target. So in the following we concentrate on
edges with non-negative flow. To resolve the violation of the capacity constraint,
which we assume in this case, the capacities of the modified edges −→e = (u, b) and
←−e = (b, u) are both set to the positive flow value f(−→e) = f((u, b)) in graph Ga.
Hence there is no need to bypass or backtrack the excess flow on the modified edges.
We just define f ′ := f (see Line 12). Additionally a new pair of opposedly directed
edges −→e ′ = (b, v) and ←−e ′ = (v, b) incident with the target is added to graph Ga,

5.1. ADJUSTING RESIDUAL GRAPHS 75

Algorithm 15: ResidualUpdate

Input: Tuple (G, [f,Ga, Ga(f)]) with f in Ga representing
minimum u-v-cut in G, modified edge e with new capacity c′(e)

Output: Tuple (G⊕(), [fmax, G′
a, G′

a(fmax)]) with fmax in G′
a representing

minimum u-v-cut in G⊕()

%---Phase 1

G⊕() ← modification applied to G1

if f(−→e) ≤ c′(−→e) and f(←−e) ≤ c′(←−e) then2

G′
a ← set capacities of −→e and ←−e in Ga to c′(−→e) = c′(←−e)3

f ′ ← f4

Calculate residual graph G′
a(f ′)5

factor ← 06

else7

%---distinguish positions of modified edge
if e is incident with source or target then8

G′
a ← set capacities of −→e and ←−e in Ga to |f(−→e)|9

Add shortcuts −→e ′ and ←−e ′ incident with target or source in G′
a,10

with capacity zero %if not existing yet
Add µ := |f(−→e)| − c′(−→e) to capacities of −→e ′ and ←−e ′ in G′

a11

f ′ ← f12

Calculate residual graph G′
a(f ′)13

factor ← 114

else15

%---edge −→e = (b, d) denotes direction with positive flow
G′

a ← set capacities of −→e and ←−e in Ga to c′(−→e) = c′(←−e)16

µ← |f(−→e)| − c′(−→e)17

Add shortcuts −→eb
′ and ←−eb

′ incident with target in G′
a,18

with capacity zero %if not existing yet
if capacity of −→eb

′ < µ then19

Process Line 9 to Line 11,20

with −→e := −→eb
′, Ga := G′

a, |f(−→e)| := µ, c′(−→e) := 0
Add shortcuts −→ed

′ and ←−ed
′ incident with source in G′

a,21

with capacity zero %if not existing yet
if capacity of −→ed

′ < µ then22

Process Line 9 to Line 11,23

with −→e := −→ed
′, Ga := G′

a, |f(−→e)| := µ, c′(−→e) := 0
f ′ ← set flow on −→e to c′(−→e) and flow on ←−e to −2 c′(←−e)24

f ′(−→eb
′)← f ′(−→eb

′) + µ, f ′(←−eb
′)← f ′(←−eb

′)− µ25

f ′(−→ed
′)← f ′(−→ed

′) + µ, f ′(←−ed
′)← f ′(←−ed

′)− µ26

Calculate residual graph G′
a(f ′)27

factor ← 228

%---Phase 2

fmax ← FlowAlgo (u, v) regarding residual graph G′
a(f ′)29

Calculate residual graph G′
a(fmax)30

Reduce value of fmax by factor · µ31

return (G⊕(), [fmax, G′
a, G′

a(fmax)])32

with an initial capacity of zero (if it does not exist yet). The capacities of these
two edges are then adjusted by the addition of the difference µ := f(−→e)− c′(−→e) =
f((u, g)) − c′((u, g)), which characterizes the violation of the capacity constraint.
This increases the according residual capacities in G′

a(f ′) by µ. So the edges −→e ′ and

76 CHAPTER 5. DYNAMICALLY UPDATING MINIMUM U -V -CUTS

←−e ′ serve as shortcuts connecting vertex b to the target and allow additional flow
of value µ to bypass the previous saturated bottlenecks in Phase 2. The residual
capacity of the modified edge −→e = (u, b) in the adjusted residual graph G′

a(f ′) is
zero, while edge ←−e = (b, u) has a residual capacity of 2 f((u, b)). In Phase 2 the
value of the updated maximum u-v-flow fmax resulting from the application of a
max-flow algorithm to the adjusted graph G′

a(f ′) finally needs to be reduced again
by µ.

Figure 5.2a shows an example for the modification of an edge −→e incident with
the target v, regarding the flow and residual graph given in Figure 5.1a (we consider
the initial case of Ga := G). Assume the capacity of edge −→e = (b, v) to change
from c((b, v)) = 7 to c′((b, v)) = 1. As edge −→e = (b, v) is already saturated in

Example for
incidence with
target the residual graph Ga(f) (compare to Figure 5.1a), it remains saturated due to the

capacity reduction. Therefore, only the opposed edge ←−e = (v, b) appears in the
adjusted residual graph G′

a(f ′) in Figure 5.2a, drawn as dotted (red) arrow. It has
a residual capacity of 2 f((b, v)) = 14. Furthermore, a new pair of edges −→e ′ = (u, b)
and ←−e ′ = (b, u) is added in G′

a with an initial capacity of zero in both directions.
However, after increasing the capacities by µ = f((b, v)) − c′((b, v)) = 7 − 1 = 6,
this pair of edges appears in the adjusted residual graph G′

a(f ′) as a dashed arrow.
Instead of bypassing or backtracking the excess flow stored in vertex b to the target
or the source, this updated residual graph G′

a(f ′) thus allows additional flow of value
µ = 6 to be pushed through as far as possible by a max-flow algorithm applied in
Phase 2. Finally this additional amount of µ = 6 needs to be subtracted again from
the value of the resulting maximum u-v-flow fmax.

The remaining positions regarding a modified edge −→e are characterized by the
fact that −→e is neither incident with the source nor the target, i.e., that −→e = (b, d)
and ←−e = (d, b), with b, d /∈ {u, v}. In this case we assume −→e = (b, d) to be the

No incidence
with source
or target directed edge with positive flow. Figure 5.2b shows an example of capacity reduction

for such a modified edge −→e = (b, d). As underlying graph we again consider the
graph G = Ga given by Figure 5.1a. The capacity of −→e changes from c(−→e) = 5 to
c′(−→e) = 3. To resolve the resulting violation of the capacity constraint, we set the
flow on the modified edge −→e = (b, d) to the new reduced capacity c′(−→e) = c′(←−e)
and the flow on edge ←−e = (d, b) to −2 c′(←−e) in Ga (see Line 24, Algorithm 15).
Accordingly, the capacities of −→e and ←−e in graph Ga are both set to c′(−→e) = c′(←−e)
(see Line 16). In the adjusted residual graph G′

a(f ′) in Figure 5.2b this yields a
residual capacity of 6 for edge ←−e = (d, b), while edge −→e = (b, d) remains saturated
(compare to the dotted (red) arrow). In contrast to the previous position case, in
this case the flow f changes, and therefore, we get an actual excess flow of value
µ := f((b, d))− c′((b, d)) in vertex b and the same amount of flow missing in vertex
d (see Line 17). To deal with this excess flow stored in vertex b, in Line 18 we add
a new pair of opposedly directed edges −→eb

′ = (b, v) and ←−eb
′ = (v, b) incident with

the target to graph Ga as shortcuts, with an initial capacity of zero (if it does not
exist yet). Analogously, a second pair of opposedly directed edges −→ed

′ = (u, d) and
←−ed

′ = (d, u) incident with the source is added (see Line 21). Now we bypass the
excess flow stored in b through the edge (b, v) to the target, while the source provides
the flow missing in d over edge (u, d) (the negative flow on the opposed edges is
adjusted accordingly, compare to the dotted (red) arrows in Figure 5.2b). However,
this step may now cause a violation of the capacity constraint on these edges incident
with the source, and the target respectively, which needs to be resolved as described
in the former case (see Line 20 and Line 23).

According to the former case, in Figure 5.2b the edges −→eb
′ and −→ed

′ become sat-
urated in graph G′

a, and therefore, do not appear in the adjusted residual graph
G′

a(f ′). The opposedly directed edges (v, b) and (d, u) (drawn as dotted (red) ar-
rows) get a residual capacity of 2 f ′((b, v)) = 2 f ′((u, d)) = 2µ = 4. Furthermore,

5.1. ADJUSTING RESIDUAL GRAPHS 77

[3] [6]

[11]

[8]

[11]

[1]

[3]

[10]

[1]

[8]

[7]

[6]

[4]

u

v

[1]

[2]

[6]

[4]

[3]

[19]

[2]

[3]

[10]
[6]

[7]

[5]

[5]

[1]

[14]
[6]

b

(a) Adjusted residual graph G′
a(f ′) after the reduction of c((b, v)) = 7 to c′((b, v)) = 1

[3] [6]

[11]

[8]

[11]

[1]

[3]

[10]

[1]

[8]

[7]

[6]

[4]

u

v

[1]

[2]

[6]

[4]

[3]

[19]

[2]

[3]

[10]
[6]

[7]

[5]

[5]

[1]
[6]

[4]

[4]

[2]

[2]

b

d

(b) Adjusted residual graph G′
a(f ′) after the reduction of c((b, d)) = 5 to c′((b, d)) = 3

Figure 5.2: Examples of adjusted residual graphs in different cases.

the approach of the former case requires the addition of a new pair of opposedly
directed edges (b, v) and (v, b) for vertex b to graph G′

a, incident with the target
and with an initial capacity of zero (if not existing yet); analogously for the vertex d
(drawn as dashed arrows). The capacities of such edges, and the residual capacities
as well, are adjusted by the addition of µ = 2. Finally, after the application of a
max-flow algorithm to G′

a(f ′) in Phase 2, the additional amount of µ = 2 needs to
be subtracted twice from the value of the resulting flow fmax.

5.1.3 Using Dynamic Flows for Updating Min-Cut Trees

The method of Kohli and Torr for dynamically updating minimum u-v-cuts in graph
G requires maximum u-v-flows to be known in G, or graph Ga respectively. If
we want to use such a method in our algorithms for updating min-cut trees (see
Algorithm 14 and 11), the following problem occurs:

The construction of a min-cut tree T (G) according to the Gomory-Hu method
calculates exactly n − 1 maximum u-v-flows related to the step pairs used by Al-
gorithm 3, as the split cuts corresponding to these flows are the n − 1 minimum

78 CHAPTER 5. DYNAMICALLY UPDATING MINIMUM U -V -CUTS

separating cuts that are directly calculated with the aid of a max-flow algorithm.
All other minimum separating cuts represented in T (G) are constructed indirectly
by hiding step pairs and reconnecting subtrees (compare to Lemma 12). So, due

Problem caused
by hidden step
pairs to the possibility of step pairs to get hidden, the knowledge about a correspond-

ing maximum u-v-flow is neither guaranteed for the edges {u, v} in T (G) nor any
arbitrary pair of vertices, apart from the step pairs. On the other hand, there is
also no guarantee that there exists a min-cut tree T (G⊕()) regarding the modified
graph G⊕() that can be constructed with the same set of step pairs as the previous
min-cut tree T (G). If we found a way to calculate a set of n − 1 non-hiding step
pairs in advance, this set would already define a unique structure of an updated
min-cut tree T (G⊕()), by Theorem 1.

However, our Algorithms 14 and 11, developed in Chapter 4 for updating min-cut
trees, choose their step pairs according to the structure of the previous min-cut tree
T (G). So updating a minimum u-v-cut by updating the corresponding maximum
u-v-flow is only possible if this maximum u-v-flow is known, i.e., if the considered
step pair {u, v} is also a step pair regarding the construction of the previous min-
cut tree T (G). Basically each updating approach that bases on the knowledge of
a maximum flow only supports step pairs which have already occurred during the
calculation of the previous min-cut tree T (G).

In the case of a step pair {x, y} getting hidden the construction of a valid max-
imum v-y-flow by the knowledge of a maximum u-v-flow and a maximum x-y-flow
(as Lemma 12 does for minimum separating cuts) constitutes an open problem.
Each of our tries ended up in somehow backtracking flow through the graph, which

Open problem
of flow
construction is as involved as the standard computation of a new maximum v-y-flow.

Note, that updating u-v-cuts individually by adjusting residual graphs of flows
further requires the adjustment of all known residual graphs, even those whose flow
does do not change for sure after the current modification. As it might happen
that these flows get affected by a later modification, they need an adjusted residual
graph at all times.

5.2 Updating a Set of All Minimum u-v-Cuts

As already mentioned at the beginning of this chapter a maximum u-v-flow not only
represents one, but all minimum u-v-cuts in a graph G, according to a theorem of
Picard and Queyranne [PQ80], which is referred to as Theorem 4 in this work.

Assume the set Θ({u, v}) of all minimum u-v-cuts in G to be known. Then
updating these cuts is very easy in some cases: In the case of adding an edge
e⊕ = {b, d} such that there exists at least one minimum u-v-cut in G that does not
separate the modified vertices b and d, the set Θ⊕({u, v}) := Θ({u, v}) \ {θ ∈
Θ({u, v})|θ separates b and d} represents all minimum u-v-cuts in the modified
graph G⊕ (by Lemma 8). In the case of deleting an edge e	 = {b, d} such that

Main idea
of updating
sets of cuts there exists at least one minimum u-v-cut in G that separates the modified vertices b

and d, the set Θ	({u, v}) := Θ({u, v})\{θ ∈ Θ({u, v})|θ does not separate b and d}
represents all minimum u-v-cuts in the modified graph G	 (by Lemma 9).

In following we review the theorem of Picard and Queyranne [PQ80] and deduce
a compact representation of all minimum u-v-cuts in graph G. In Subsection 5.2.2
we will illustrate how such a representation can be updated, and we show the relation
between this approach and the approach of Kohli and Torr introduced in the former
section. Subsection 5.2.3 finally analyzes the conditions on which this approach can
get used for updating min-cut trees according to Algorithm 14 and 11.

5.2. UPDATING A SET OF ALL MINIMUM U -V -CUTS 79

5.2.1 Representation of All Minimum u-v-Cuts

The following Theorem, originally given by Picard and Queyranne [PQ80], page 9,
describes how a maximum u-v-flow represents all minimum u-v-cuts in a graph G.

Theorem 4 There exists a one-to-one correspondence between all minimum u-v-
cuts in a graph G and all closed sets of vertices containing the source u in the

Theorem:
Flow-cut
correspondenceresidual graph of a maximum u-v-flow in G.

A closed set of vertices in a directed graph is defined as a set without outgoing edges.
Two vertices in a directed graph are strongly connected if they are connected by a

Definition:
Closed set and
strongly
connected
vertices

directed path in both directions.

Based on Theorem 4 Fleischer [Fle99] modifies an approach of Hao and Or-
lin [HO94] to calculate a cactus-model that represents all global minimum cuts of a
graph G with the same asymptotic effort a standard preflow-push algorithm (Gold-
berg and Tarjan [GT88]) needs to find a maximum u-v-flow in G. Note further,
that the set Θ({u, v}) of all minimum separating cuts regarding two fixed vertices
u and v can not be represented in a cactus-model. This follows by a Theorem of
Dinitz and Nutov [DN95], which characterizes all sets of cuts that can be modeled
by a cactus. For a detailed introduction of cacti see [DKL76].

However, we can model the set Θ({u, v}) of all minimum u-v-cuts in G by
a directed acyclic graph (DAG). This DAG results from contracting all mutually
strongly connected vertices in the residual graph of a maximum u-v-flow in G. The
closed sets containing the source u in the residual graph are then given by cuts in
the DAG that separate the source from the target and are only crossed by entering
edges regarding the side containing the source. So these cuts in the DAG correspond
to the minimum u-v-cuts in the underlying graph G, by Theorem 4. Reversing the
edges in such a DAG yields a compact DAG-representation of all minimum u-v-cuts
in G, with edges now directed from the source to the target, called DAG (u, v).

Definition:
DAG-
representation
of all minimum
u-v-cutsA DAG-representation DAG (u, v) for a maximum u-v-flow in G can be con-

structed in O(n + m) time with the aid of a (slightly modified) breadth-first search
from the source u. Calculating only the first minimum u-v-cut given by a maxi-
mum u-v-flow basically takes the same asymptotic time. With a second breadth-first
search from the source, we can further assign a level to each node X in DAG (u, v)
that represents the maximum length of all paths in DAG (u, v) from the node Xu

containing the source to X. So the nodes become topologically ordered. Obviously
it holds that there are no edges between two nodes X and X ′ on the same level in
DAG (u, v), and therefore, there are no edges between two sets of vertices in graph G
that correspond to nodes X and X ′ on the same level in DAG (u, v).

Figure 5.3a illustrates a DAG regarding the maximum u-v-flow f given in Fig-
ure5.1a. The mutually strongly connected vertices in the residual graph G(f) (com-
pare to Figure 5.1b) are not contracted yet, but bunched by dotted borders. The
edges between the so bordered nodes are also not contracted yet. Note, that solid
(black) edges have positive residual capacities in both directions, dotted (red) edges
are saturated in the direction not shown. Figure 5.3b finally shows the DAG-
representation DAG (u, v) with nodes topologically ordered. The dotted (red) cut
in this figure represents no minimum u-v-cut, as it is crossed by edges in both direc-
tions, and therefore, the side containing the source u does not constitutes a closed
set. By contrast, the dashed (green) line correctly marks a minimum u-v-cut in G.

80 CHAPTER 5. DYNAMICALLY UPDATING MINIMUM U -V -CUTS

[10]

[3] [6]

[11]

[8]

[11]

[1]

[2]

[8]

[6]

[14]

[3]

[10]

[8]

[10][10]

[1]

[8]

[7]

[6]

[14]

[4]

[4]

u

[4]

[4]
[8]

[1]
[10]

[2]

[10]

[6]

[4]

[3]

[30]

[8]

[4]

[10]

[8]

[2]

[10]

[19]

[2]

[2]
[10]

[3] [4]

[6]

[6]

[7]

[5]

[6]

[1]

[10]

[6]

[6]

[10]

[5]

[14]

v

(a) Directed acyclic graph regarding the residual graph G(f) in Figure 5.1b

u

v

0 1 2 3 4 5

(b) DAG-representation of all minimum u-v-cuts regarding the flow f in Figure 5.1a

Figure 5.3: Example of a directed acyclic graph and the reversed DAG-representation.

5.2.2 Updating the DAG-Representation

Concerning the updating steps for a DAG-representation DAG (u, v), we distinguish
the modifications of adding an edge e⊕ = {b, d} and deleting an edge e	 = {b, d}
in graph G. In the case of edge addition and if there exists at least one minimum

Updating DAG
in case of edge
addition u-v-cut in G that does not separate the modified vertices b and d, the set Θ({u, v})

of all minimum u-v-cuts in G can get updated to Θ⊕({u, v}) by just deleting all cuts
from Θ({u, v}) that separate b and d, by Lemma 8. We call this situation updating
edge addition regarding the pair {u, v}. If otherwise all minimum u-v-cuts in G
separate b and d, a new max-flow calculation and a new DAG construction becomes
necessary. This situation is referred to as recalculating edge addition regarding the
pair {u, v}.

Fortunately with a DAG-representation it is very simple to decide whether a
designated pair of vertices is separated by any minimum u-v-cut or even by all
minimum u-v-cuts. For a pair {g, h} of vertices there exists no separating minimum

Advantage
of the DAG-
representation u-v-cut if and only if g and h are included in the same node Xg = Xh in the DAG-

representation DAG (u, v). Vice versa, all minimum u-v-cuts separate a pair {g, h}
if and only if one vertex g shares its node Xg with the source u while the other vertex

5.2. UPDATING A SET OF ALL MINIMUM U -V -CUTS 81

h shares its node Xh with the target v. By implementing the DAG-representations
as union-find structures (see for example La Poutré [Pou90]) such questions can
get answered efficiently. Furthermore, union-find structures will turn out to also
be very suitable for the updating operations, where nodes will be contracted in the
DAG-representation.

In the case of an updating edge addition, i.e., if the modified vertices b and d do
not both share their nodes with the source or the target in DAG (u, v), the deletion of
all cuts in the DAG-representation DAG (u, v) that separate the modified vertices
b and d can be simply achieved by contracting the nodes Xb and Xd containing
b and d. However, as this operation may cause circles in the resulting graph, we
actually need to contract all paths between Xb and Xd in DAG (u, v) to get a feasible
updated DAG-representation DAG⊕(u, v). With the aid of a modified breadth-first
search regarding the levels in DAG (u, v) Algorithm 16 (UpdateDAG) provides
this functionality in O(n + m) time, with n denoting the number of nodes in the
DAG-representation DAG (u, v) and m denoting the number of edges in DAG (u, v).
So this asymptotic bound in particular is valid for n and m denoting the numbers of
vertices and edges in the underlying graph G. Note, that after updating DAG (u, v)
by a call of UpdateDAG (DAG (u, v), Xb, Xd) the topological order of the nodes
in the resulting graph DAG⊕(u, v) is not given anymore. So the levels need to be
recalculated.

Algorithm 16: UpdateDAG

Input: Directed acyclic graph DAG () with nodes topologically ordered as
described in Subsection 5.2.1, node X and node X ′ in DAG ()

Output: Directed acyclic graph DAG () with all paths between X and X ′

contracted
Store X and X ′ in X1, X2 increasingly ordered by their level1

if X1 and X2 are on the same level then2

%if there is no path between X1 and X2

Contract X1 and X2 in DAG ()3

return resulting directed acyclic graph4

else5

%if there may exist paths from X1 to X2

Mark all nodes reachable from X1 (with a breadth-first search (BFS))6

Store all marked nodes reversely reachable from X2 (with a BFS)7

%Note, that it suffices to consider levels between X1 and X2

Contract all stored nodes together with X1 and X2 in DAG ()8

return resulting directed acyclic graph9

Analogously in the case of edge deletion the DAG-representation can be updated
if there exists at least one minimum u-v-cut in G that separates the modified vertices
b and d, i.e., if the modified vertices are not included in the same node in DAG (u, v).
This situation describes an updating edge deletion regarding the pair {u, v}. The

Updating DAG
in case of edge
deletiondeletion of all cuts in Θ({u, v}) that do not separate b and d then yields the updated

set Θ	({u, v}) of all minimum u-v-cuts in G	, by Lemma 9. This is equivalent to
the contraction of all paths from Xu to Xb as well as all paths from Xd to Xv,
with Xb lying on a lower level than Xd. So to update the DAG-representation
DAG (u, v) call UpdateDAG (DAG (u, v), Xu, Xb) and afterwards UpdateDAG
(DAG (), Xd, Xv), with DAG () the graph resulting from the former call. Note, that
in the case of the deletion of an edge e	 = {b, d} the nodes Xb and Xd do never lie
on the same level in DAG (u, v), as there exist no edges in G between nodes on the
same level in DAG (u, v). The second situation, called recalculating edge deletion

82 CHAPTER 5. DYNAMICALLY UPDATING MINIMUM U -V -CUTS

regarding the pair {u, v}, occurs if no minimum u-v-cut in G separates b and d.
Then a new max-flow calculation and a new DAG construction becomes necessary.

Combining DAG-Representations with Adjusted Residual Graphs

Assume, beside a DAG-representation DAG (u, v) of all minimum u-v-cuts, a related
maximum u-v-flow f in graph Ga and a residual graph Ga(f) to be given such that
f in Ga represents all minimum u-v-cuts in graph G, i.e., calculating a DAG-
representation of flow f regarding the residual graph Ga(f) would yield again the
given DAG-representation DAG (u, v). Then it is feasible to regard the graph Ga

with the flow f and the residual graph Ga(f) as underlying graphs of DAG (u, v).
This allows to combine the approach of updating DAG-representations with the
approach of adjusting residual graphs by Kohli and Torr [KT07].

In the case of an updating edge addition regarding the pair {u, v} the previous
flow f in Ga also represents u-v-cuts in G⊕, as adding an edge never violates the
capacity constraint of f . So this is a “gentle”modification, and it holds that f = f ′.

In case of an
updating edge
addition The underlying graph Ga and the residual graph Ga(f) can also get adjusted easily

by accordingly increasing the capacity and the residual capacity of the modified
edge e⊕ = {b, d}. The previous flow f in Ga even represents all minimum u-v-
cuts in G⊕, as the maximum flow value in G⊕ remains the same. So there is
no additional application of a max-flow algorithm necessary, we just update the
DAG-representation DAG (u, v) (compare to Table 5.2, Column 1). Note, that
updating the DAG-representation DAG⊕(u, v) is equivalent to calculating a new
DAG-representation of the flow f ′ regarding the adjusted residual graph G′

a(f ′),
as increasing the residual capacity of the previously saturated edge e⊕ causes the
opening of exactly such bottlenecks in G′

a(f ′) crossed by the edge e⊕. Therefore, it
is feasible to regard the adjusted graph G′

a with the flow f ′ and the adjusted residual
graph G′

a(f ′) as underlying graphs of the updated DAG-representation DAG⊕(u, v).

In the case of a recalculating edge addition regarding the pair {u, v}, it also
holds that f = f ′, as this is a “gentle” modification. So the underlying graph Ga

and the residual graph Ga(f) can also get adjusted easily by accordingly increasing
the capacity and the residual capacity of the modified edge e⊕ = {b, d}. However,
the value of a maximum u-v-flow in G⊕ might have increased due to the edge
addition. So instead of updating the DAG-representation DAG (u, v), in this case

In case of an
recalculating
edge addition we apply a max-flow algorithm to the adjusted residual graph G′

a(f ′) (compare
to Table 5.2, Column 2). The resulting flow fmax in the adjusted graph G′

a then
again represents all minimum u-v-cuts in the modified graph G⊕. The new DAG-
representation DAG⊕(u, v) is constructed from scratch by a breadth-first search on
the new residual graph G′

a(fmax). Hence, we regard the adjusted graph G′
a with

the new calculated flow fmax and the new residual graph G′
a(fmax) as underlying

graphs of the new DAG-representation DAG⊕(u, v).

In the case of an updating edge deletion regarding the pair {u, v}, with weight
c(e) = ∆, the previous flow f in Ga needs to get adjusted, as the deletion of a
saturated edge violates the capacity constraint of f . Hence we adjust the graph
Ga, the flow f and the residual graph Ga(f) depending on whether the modi-
fied edge is incident with the source or the target or with neither. The adjusted

In case of an
updating edge
deletion flow f ′ in G′

a then is again valid and represents all minimum u-v-cuts in G	. So
there is no additional application of a max-flow algorithm necessary, we just up-
date the DAG-representation DAG (u, v) (compare to Table 5.2, Column 3). Again
updating the DAG-representation DAG⊕(u, v) is equivalent to calculating a new
DAG-representation of the flow f ′ regarding the adjusted residual graph G′

a(f ′), as
decreasing the residual capacity of the previously saturated edge e	 in a bottleneck

5.2. UPDATING A SET OF ALL MINIMUM U -V -CUTS 83

causes a flow reduction and so indirectly causes the opening of exactly those bot-
tlenecks in G′

a(f ′) that are not crossed by edge e	. We regard the adjusted graph
G′

a with the flow f ′ and the adjusted residual graph G′
a(f ′) as underlying graphs of

the updated DAG-representation DAG	(u, v). Note, that we further need to store
µ, as the value of flow f ′ differs from the weight of a minimum u-v-cut in G	 by
either µ or even 2 µ.

In the case of an recalculating edge deletion regarding the pair {u, v}, with
weight c(e) = ∆, the previous flow f in Ga needs to get adjusted if the deletion
of edge e	 violates the capacity constraint of f , i.e., if f(e) > 0. Otherwise
(compare to Table 5.2, Column 5) it holds f = f ′ = fmax and adjusting Ga and
Ga(f) is as trivial as in the case of an recalculating edge addition. In case of a
violation of the capacity constraint we adjust the graph Ga, the flow f and the
residual graph Ga(f) depending on whether the modified edge is incident with the
source or the target or with neither. As the maximum flow value in G	 in this

In case of an
recalculating
edge deletioncase might have decreased by an unknown amount lower than or equal to ∆, the

adjusted flow f ′ in G′
a no longer represents minimum u-v-cuts in G	 for sure. So

instead of updating the DAG-representation DAG (u, v), in this case we apply a
max-flow algorithm to the adjusted residual graph G′

a(f ′) (compare to Table 5.2,
Column 4). The resulting flow fmax in the adjusted graph G′

a then again represents
all minimum u-v-cuts in the modified graph G	. The new DAG-representation
DAG	(u, v) then is constructed from scratch by a breadth-first search on the new
residual graph G′

a(fmax). We regard the adjusted graph G′
a with the new calculated

flow fmax and the new residual graph G′
a(fmax) as underlying graphs of the new

DAG-representation DAG	(u, v). Note, that we again need to store µ, as the value
of flow fmax differs from the weight of a minimum u-v-cut in G	 by either µ or even
2 µ.

5.2.3 Using DAG-Representations for Min-Cut Trees

Dynamically updating minimum u-v-cuts in min-cut trees with the aid of DAG-
representations basically faces the same problems with hiding step pairs as the
approach of adjusting residual graphs by Kohli and Torr [KT07] does. However, in a
special case of hiding a previous step {x, y}, considered in the following Lemma 21,
we can construct the set of all minimum y-v-cuts in G by the knowledge of all

Idea for solving
the problem
caused by
hidden step
pairs

minimum x-y-cuts and all minimum u-v-cuts regarding the current step pair {u, v}.
So apart from requiring a special condition for hiding step pairs, Lemma 21 basically
expands the assertion of Lemma 12, which regards a single minimum u-v-cut, to
the set Θ({u, v}) of all minimum u-v-cuts concerning a fixed pair {u, v}.

Lemma 21 considers an intermediate min-cut tree T?(G) = (V, E?, c?()) pro-
duced by the Gomory-Hu algorithm (Algorithm 3) with e = {S, S̄} an edge in E?.
If we assume S to be split next, the edge e constitutes the connection edge of the
subtree N of S containing S̄ (see Figure 5.4). Let {x, y} ⊆ V be the step pair that
created the edge e, with x ∈ S and y ∈ S̄. Let u and v be any vertices in S (serv-
ing as next step pair), and let Θ({u, v}) denote the set of all minimum u-v-cuts in
graph G such that each cut in Θ({u, v}) separates x and y. So {x, y} definitely
gets hidden, independently of the choice of a split cut in Θ({u, v}). Note, that this
induces the cuts in Θ({u, v}) to be at least of the same weight as the cut induced by
e. Now chose a minimum u-v-cut (U(S), V (S) \ U(S)) ∈ Θ({u, v}) in G(S) as split
cut (compare to the thinly dashed line in Figure 5.4), with {y, v} ⊆ U(S) (This is
possible without loss of generality, as neither the sides of (U(S), V (S) \ U(S)) nor
the vertices {u, v} are fixed). Then Lemma 12 (second part) says that after the

84 CHAPTER 5. DYNAMICALLY UPDATING MINIMUM U -V -CUTS

splitting of S also the pair {y, v} is a cut pair for the cut induced by edge e, and
Lemma 21 now states the following expanded assertion.

Lemma 21 Instead of considering only one minimum x-y-cut induced by edge e,
let Θ({x, y}) denote the set of all minimum x-y-cuts in G. If the potential split
cuts in Θ({u, v}) are more expensive than the cuts in Θ({x, y}), then the deletion

Lemma:
Constructing
set of cuts after
hiding step pair of all cuts in Θ({x, y}) that do not separate y and v yields the set Θ({y, v}) of all

minimum y-v-cuts in G.

v

u

x ye

U(S) V (S) \ U(S)

S̄
S

θ

Figure 5.4: Illustration to Lemma 21.

Proof. As all minimum y-v-cuts in Θ({x, y}) have the same weight as the cut
induced by edge e, and the cut induced by edge e is also a minimum y-v-cut in
graph G, each cut in Θ({x, y}) that separates y and v constitutes a minimum
y-v-cut in G. As all minimum u-v-cuts in Θ({u, v}) are supposed to be more
expensive than the cut induced by edge e, there exists no minimum y-v-cut in G
that separates u and v. We prove now that there further exists no minimum y-
v-cut that does not separate x and y. If there was such a minimum y-v-cut θ
(compare to the solid (green) line in Figure 5.4), this would cross the minimum
u-v-cut (U(S), V (S) \ U(S)) ∈ Θ({u, v}) chosen as split cut (compare to the thinly
dashed (black) line in Figure 5.4). However, this crossing, by Lemma 15, implies a
minimum u-v-cut that does not separate x and y (see thickly dashed (red) line in
Figure 5.4), which contradicts the assumption that all cuts in Θ({u, v}) separate x
and y.

Unfortunately, we can not restrict in general the hiding of step pairs such that
a pair gets hidden if and only if it is separated by all minimum u-v-cuts regarding
a current step pair {u, v} (as required by Lemma 21): Consider two arbitrary con-

Impossibility
of general
restriction for
hiding step
pairs

nection edges ei and ej of subtrees of a current split node S and a current step pair
{u, v}. Let further {xi, yi} denote the nearest cut pair of ei (see Definition 9) and
{xj , yj} the nearest cut pair of ej . Even if neither {xi, yi} nor {xj , yj} is separated
by all minimum u-v-cuts in G, the existence of a single u-v-cut that does neither
separate {xi, yi} nor {xj , yj} is still not guaranteed (compare to Figure 5.5a).

However, in the situation shown in Figure 5.5b, we can guarantee the existence of
a minimum r-u-cut that separates exactly those nearest cut pairs that are separated
by all minimum r-u-cuts in G, by the following Lemma 22. Always choosing such

Restriction for
hiding step
pairs becomes
possible in
special situation

a cut as split cut guarantees the nearest cut pair of a connection edge (which we
assume to be a step pair not hidden yet) to get hidden if and only if it is separated
by all minimum separating cuts of the current step pair.

Lemma 22 Consider a current split node S and a bunch of subtrees all connected
by connection edges with the same vertex r ∈ S included in their nearest cut pair.
Furthermore, the center r is supposed to be part of the next step pair {u, r} (see
Figure 5.5b). Then the first minimum u-r-cut given by a maximum u-r-flow in

Lemma:
First minimum
cut makes
restriction
possible

5.2. UPDATING A SET OF ALL MINIMUM U -V -CUTS 85

graph G separates the nearest cut pair of such a connection edge if and only if all
minimum u-r-cuts separate this nearest cut pair.

Proof. (⇒): The first minimum u-r-cut given by a maximum u-r-flow in graph
G separates a nearest cut pair {y, r} if and only if vertex y lies on the same cut
side as source u. If there was another minimum u-r-cut not separating y from r,
this cut needed to separate the source u from y, and therefore, would cross the first
minimum u-r-cut. This contradicts the fact that the first minimum u-r-cut does
not cross any other minimum u-r-cut in G.

(⇐): If a nearest cut pair {y, r} is separated by all minimum u-r-cuts in graph
G, it follows directly that it is particularly separated by the first minimum u-r-cut
given by a maximum u-r-flow in G.

In the situation shown in Figure 5.5b, by Lemma 22 there always exists a valid
split cut that only separates those nearest cut pairs that are separated by all mini-
mum u-r-cuts. This allows us to restrict a previous step pair {yi, r} to get hidden
if and only if the minimum u-r-cuts regarding the current step pair {u, r} are more
expensive than the split cut induced by {yi, r}, and additionally, {yi, r} is separated
by all minimum u-r-cuts. So by Lemma 21 we are then able to construct a DAG-

Constructing
new set of cuts
after hiding cut
pairrepresentation DAG (yi, u) of all minimum yi-u-cuts from the DAG-representation

DAG (yi, r) of all minimum yi-r-cuts and the current step pair {u, r}. This construc-
tion can be done in O(n + m) time by a call of UpdateDAG (DAG (yi, r), Xu, Xr)
(Algorithm 16), although this is no update operation.

xi xj

v

u
yi yj

(a) Each cut not separating {xi, yi} separates
{xj , yj} and vice versa

r u

y1

y2
y3

y4

y5

(b) First minimum u-r-cut separates exactly
those nearest cut pairs that are separated
by all minimum u-r-cuts

Figure 5.5: Possibility of restricting the hiding of step pairs depends on situation.

Note, that due to the open problem formulated in Subsection 5.1.3 hiding a step
pair {yi, r} still causes the leakage of the corresponding maximum yi-r-flow and the
graphs to adjust. So combining the DAG-representations with the adjustment of
residual graphs makes no sense for hidden pairs of vertices. In case of an updating
edge addition or an updating edge deletion, therefore, only the DAG-representation
is updated (compare to Table 5.1, Column 1 and 3). Updating the minimum yi-u-

Updating DAG-
representation
for a hidden
paircuts regarding a hidden pair {yi, u} in the case of a recalculating edge addition or a

recalculating edge deletion requires the application of a max-flow algorithm to the
complete modified graph. There is no chance to save effort by using an adjusted
residual graph (compare to Table 5.1, Column 2 and 4). For the calculation of
such a new maximum flow based on a complete, non-adjusted graph, we assume
the max-flow algorithm by Goldberg and Tarjan [GT88], solving the problem in
O(nm log n2

m) time, to be used. The steps for updating the DAG-representation
DAG (yi, u) of all minimum yi-u-cuts after a modification of the underlying graph

86 CHAPTER 5. DYNAMICALLY UPDATING MINIMUM U -V -CUTS

G are again outlined in Table 5.1. Table 5.2 lists the updating steps for a DAG-
representation DAG (u, v) in case of {u, v} being visible, according to the description
given in Subsection 5.2.2.

hidden pair {yi, u}

Updating Add Recalculating Add Updating Del Recalculating Del

update DAG GoldbergTarjan update DAG GoldbergTarjan

[O(n + m)] [O(nm log n2

m)] [O(n + m)] [O(nm log n2

m)]

new DAG new DAG

[O(n + m)] [O(n + m)]

Table 5.1: An updating approaches for minimum yi-u-cuts with {yi, u} a hidden pair.

visible pair {u, v}

Updating Add Recalc. Add Updating Del Recalculating Del

gentle gentle violating gentle violating

adjust [O(1)] adjust [O(1)] adjust [O(1)] adjust [O(1)] adjust [O(1)]

update DAG FlowAlgo update DAG FlowAlgo FlowAlgo

[O(n + m)] [“good”] [O(n + m)] [“good”] [“good”]

new DAG new DAG new DAG

[O(n + m)] [O(n + m)] [O(n + m)]

Table 5.2: Combining two updating approaches for minimum u-v-cuts if {u, v} is visible.

Algorithm 11 repeatedly considers a situation as shown in Figure 5.5b (compare
to the second aspect described in Subsection 4.3.2), and therefore, allows the re-
striction required by Lemma 21 to be made. So if we further provide the required
situation in the first initial min-cut tree by choosing the step pairs iteratively as
described in Definition 12, on condition that the underlying graph is only modi-
fied by edge deletions it is possible to continuously use the DAG-representation for
updating the minimum u-v-cuts in the min-cut tree, even if step pairs get hidden.

Partial dynamic
modifications
allow DAG-
representation
method However, the saving of effort and the additional effort caused by updating DAG-

representations regarding edges in the min-cut tree that are already known to remain
minimum cuts after a modification or by constructing new DAG-representations
after hiding step pairs needs to be carefully calculated. A real effort saving is onlyQuestion of

effort saving
possible if the structure of the underlying, dynamically changing graphs at all times
provide a sufficiently large amount of minimum u-v-cuts for each of the considered
pairs {u, v}.

Finally we remark that Lemma 21 together with the following Lemma 23 makes
it possible to construct a min-cut tree TDAG(G) that represents the sets Θ({u, v}) of
all minimum separating cuts for all pairs {u, v} in a graph G in the same asymptotic
time as constructing a min-cut tree T (G) according to Gomory and Hu [GH61]. By

Construction of
min-cut tree
representing
sets of
minimum cuts

choosing the step pairs for the min-cut tree calculation iteratively as described
in Definition 12 and restricting the hiding of step pairs as described above, we
can construct a min-cut tree TDAG(G) with DAG-representations associated to the

5.2. UPDATING A SET OF ALL MINIMUM U -V -CUTS 87

edges. Thereby the max-flow calculation by Goldberg and Tarjan [GT88] takes
O(nm log n2

m) time for each step pair {yi, r} and the breadth-first search to find
the first minimum yi-r-cut needs O(n + m) time, which is asymptotically the same
time as calculating a complete DAG-representation DAG (yi, r) of all minimum yi-
r-cuts. If the step pair {yi, r} gets hidden by a later step pair {u, r}, an additional
effort of again O(n+m) occurs for the construction of the new DAG-representation
DAG (yi, u) according to Lemma 21. Note, that a step pair can only get hidden once,
so this additional effort does not affect the asymptotic time bound. Lemma 23 now
shows that the set Θ({u, v}) of all minimum separating cuts for an arbitrary pair
{u, v} in graph G is represented in the DAG-representations DAG (gi, hi) for all
minimum weighted edges ei = {gi, hi}, i = 1, . . . , z, on the path γ from u to v in
TDAG(G).

Lemma 23 Let TDAG(G) denote a min-cut tree constructed as described above. Let
further u and v denote two arbitrary vertices in G and ei = {gi, hi} a minimum
weighted edge on the path γ from u to v in TDAG(G). Then deleting all cuts in
Θ({gi, hi}) that do not separate u and v yields a subset Θ(i) ⊆ Θ({u, v}) of all
minimum u-v-cuts in G. For the complete set Θ({u, v}) it holds that

Lemma:
All minimum
separating cuts
for an arbitrary
pair of vertices

Θ({u, v}) =
z⋃

i=1

Θ(i).

Proof. As the edge ei = {gi, hi} induces a minimum u-v-cut in G, all other min-
imum gi-hi-cuts that also separate u and v are minimum u-v-cuts, i.e., Θ(i) ⊆
Θ({u, v}), and therefore, Θ({u, v}) ⊇

⋃z
i=1 Θ(i). Furthermore, it follows that all

edges on path γ separated by a minimum u-v-cut in G are minimum weighted edges
on γ. Vice versa, each minimum u-v-cut in graph G separates at least one edge
on path γ, which turns out to be a minimum weighted edge on γ according to the
former, i.e., Θ({u, v}) ⊆

⋃z
i=1 Θ(i).

Open problem
of constructing
merged DAG-
representationSo by Lemma 23 calling UpdateDAG (DAG (gi, hi), Xu, Xv) for each DAG-

representation DAG (gi, hi), i = 1, . . . , z, yields a set of directed acyclic graphs that
all together represent the set Θ({u, v}) of all minimum u-v-cuts in G. The construc-
tion of a closed DAG-representation DAG (u, v) from these graphs still constitutes
an open problem.

88 CHAPTER 5. DYNAMICALLY UPDATING MINIMUM U -V -CUTS

Chapter 6

Updating Clusterings Based
on Min-Cut Trees

In the former chapters we analyzed possibilities of efficiently updating complete min-
cut trees. However, the aim of this work is to develop a correct and effort saving al-
gorithm for updating clusterings. To this end we consider clusterings resulting from
the cut-clustering method (see Algorithm 1) by Flake et al. [FTT04], which bases
on the calculation of min-cut trees and guarantees an intra- and inter-clustering
quality. Although the former chapters hence are motivated by this method, we will
see that the knowledge of a complete min-cut tree is not necessary. In this chapter
we propose four algorithms for dynamically updating clusterings without knowing
a complete underlying min-cut tree structure. Our new algorithms are based on
abbreviated versions of the updating algorithms developed for min-cut trees so far.
They distinguish the four cases of deleting an edge between two different clusters,
deleting an edge within a single cluster, adding an edge within a single cluster,
and finally adding an edge between two different clusters. The two algorithms con-
cerning edge deletions are described in Section 6.2, in Section 6.3 we introduce the
algorithms for the edge addition cases. In the latter we further draw a bow to the
approach of Saha and Mitra [SM06] discussed in Chapter 2. As already announced
in Chapter 2, we now give a reasonable interpretation of the unaffect lemma regard-
ing our new updating algorithm for an inter-cluster edge addition. We will see that
our algorithm looks quite similar, but is different in details, to Algorithm 2 given by
Saha and Mira [SM06]. Finally we will also catch up the proof of Lemma 5 omitted
in Subsection 2.3.1.

6.1 Abbreviating the Cut-Clustering Method

The cut-clustering method (see Algorithm 1) given by Flake et al. [FTT04] calculates
a clustering ζ(G) of an undirected weighted graph G = (V, E, c()). To this end it
inserts an artificial sink t into G connected to each vertex by an edge with weight α.
Then a min-cut tree T (Gα) of the so constructed graph Gα = (Vα, Eα, cα()) is
calculated (with the aid of the Gomory-Hu method, see Algorithm 3). The clustering
ζ(G) of the original graph G finally is identified with the connected components
resulting from the deletion of sink t in T (Gα). This is, the clusters in ζ(G) are given

Clustering is
given by a set
of non-crossing
cutsby the non-crossing cuts in graph Gα induced by those edges {yi, t}, i = 1, . . . , z,

that are incident with the sink t in the tree T (Gα) (see Figure 6.1). Note, that the
vertex yi together with the sink t forms the nearest cut pair of the edge {yi, t}, and

89

90 CHAPTER 6. UPDATING CLUSTERINGS BASED ON MIN-CUT TREES

the edge-induced cut respectively. A set of such non-crossing minimum yi-t-cuts,
which partitions the vertices of graph G and isolates the sink t in graph Gα, is
denoted in the following by Θ(G). The vertices y1, . . . , yz are summarized in the
set W(G). To calculate a clustering ζ(G) instead of a complete min-cut tree T (Gα)

Abbreviating
the Gomory-Hu
algorithm hence a Gomory-Hu execution on the enlarged graph Gα can be stopped as soon as

the node that contains t becomes a singleton. The clustering ζ(G) then is given by
the set Θ(G) of the non-crossing minimum yi-t-cuts cutting off the subtrees of t in
the intermediate min-cut tree T?(Gα) after stopping the Gomory-Hu execution. Any
further split cut calculated during the Gomory-Hu execution identifies an edge lying
somewhere within a subtree. Those edges, or split cuts respectively, are ignored.
Their calculation turns out to be vain.

t

y1

y2 y3

y4

y5

Figure 6.1: Clustering ζ(G) induced by non-crossing minimum yi-t-cuts in graph Gα.

Flake et al. propose a heuristic to reduce the number of such vain split cut
calculations. Their idea is to choose the step pairs in a way that isolates the sink t
quite soon during a Gomory-Hu execution. To this end they advise to define theHeuristic by

Flake et al.
sink t as representative or center of the initial node S = Vα at the beginning. Then
they repeatedly pair the sink t with vertices decreasingly ordered by the total weight
of their incident edges in graph G (compare also to Algorithm 23). If a step pair
becomes hidden during a Gomory-Hu execution, its split cut, which is stored in the
set Θ(G) under reserve, is replaced by the split cut that causes the hiding.

The algorithms for updating complete min-cut trees developed in Chapter 4 base
on the Gomory-Hu method, and therefore, can be abbreviated in the same way.
This is, to update a clustering instead of a complete min-cut tree we can stop the
execution as soon as the sink t becomes isolated. The algorithms developed in this
Chapter will base on such abbreviated versions of the former updating algorithms
for min-cut trees.

As hidden step pairs are of no interest anymore, we can further use the method
of Kohli and Torr [KT07] to adjust residual graphs for a faster recalculation of
minimum yi-t-cuts. Using DAG-representations instead, or even in combination as

Usable methods
for updating
individual cuts described in Section 5.2, might cause more additional effort than effort saving: Both

methods require adjusting and updating operations also for those yi-t-cuts that are
already known not to change. However adjusting a residual graph according to
Kohli and Torr takes constant time per cut, while updating DAG-representations
needs O(n + m) time per cut. Note, that for cuts which are already known not
to change, a new max-flow calculation after adjusting the residual graph is not
necessary. In some cases, i.e., if the underlying graph provides a sufficient amount

6.2. UPDATING ALGORITHMS FOR EDGE DELETIONS 91

of minimum yi-t-cuts for each vertex yi, it might be reasonable to also update DAG-
representations. However the algorithms developed in this chapter just consider the
method of Kohli and Torr.

6.2 Updating Algorithms for Edge Deletions

We start with the case of deleting an edge between two different clusters, as this
case can be easily solved with the aid of Algorithm 11, the former algorithm for
updating a complete min-cut tree after an edge deletion. The case of deleting an
edge within a cluster can also be deduced from Algorithm 11, but in a less direct
way. The algorithms for edge additions introduced in Section 6.3 will turn out
to be quite simple, compared to those regarding edge deletions. In each case the
modification in the original graph G constitutes an according modification in graph
Gα enlarged by the artificial sink t.

6.2.1 Inter-Cluster Edge Deletion

In the case of deleting an inter-cluster edge e	 = {b, d} the modified vertices b and
d lie in different clusters of graph G, which means, they lie in different subtrees of
the sink t in a min-cut tree T (Gα). Remember that in the context of clusterings
we do not know the tree structure of a min-cut tree T (Gα). We just know the

Situation in
case of
inter-cluster
edge deletionclustering ζ(G) given by the set Θ(G) of non-crossing cuts and the set W(G) of the

vertices related to these cuts. Furthermore, we assume the according weights to be
assigned to the cuts in Θ(G). Nevertheless, we know that there exists a min-cut
tree T (Gα) that induces the given clustering ζ(G), and therefore, we know that
the sink t needs to be a vertex on the unique path γ from b to d in this min-cut
tree. Figure 6.2 exemplarily shows the sink t, the clusters bordered by dotted lines
and the path γ concerning the min-cut tree introduced in Figure 6.1. The unknown
edges on path γ are drawn as dashed lines.

Now assume Algorithm 11 to be applied to the unknown, but existing, min-cut
tree T (Gα). As we consider a case of edge deletion the initial intermediate min-cut
tree T◦(Gα) for this algorithm hence resulted from contracting all edges in T (Gα)
that do not lie on path γ. In Figure 6.2 the nodes of T◦(Gα) are bordered by solid
lines. In Line 10 in Algorithm 11 then the sink t became the representative r(S)
of a node S in the initial intermediate min-cut tree. Concerning this node S in
T◦(Gα) the two subtrees Nb and Nd correspond to the clusters affected by the edge
deletion and the node S consists of the remaining clusters in ζ(G) and the sink t
(see Figure 6.2). In Line 19, Algorithm 11, a single call of the central Algorithm 12
regarding S would finally return an intermediate min-cut tree T?(G	

α) in which the
sink t constitutes a singleton. So we could stop the execution of Algorithm 11 at
this point and return the clustering ζ(G) resulting from T?(G	

α) after deleting the
sink t.

The algorithm proposed now for updating a clustering ζ(G) in the case of an
inter-cluster edge deletion basically abbreviates Algorithm 11 as just described. It
is referred to as Algorithm 17. As input Algorithm 17 takes the set Θ(G) of non-
crossing cuts in Gα, which isolate the sink t and define a clustering ζ(G) of G. To

Input for
new updating
algorithmeach cut in Θ(G) we assume the according weight to be assigned, and furthermore,

a residual graph of a corresponding maximum flow according to the approach of
Kohli and Torr. The set W(G) stores the vertices that connect the clusters to the
sink t. The two clusters containing the modified vertices b and d are denoted by Cb

92 CHAPTER 6. UPDATING CLUSTERINGS BASED ON MIN-CUT TREES

t
b

v1

d

v2

v3

SNb

Nd
vb

vd

Figure 6.2: Initial min-cut tree T◦(Gα) in case of inter-cluster edge deletion.

and Cd, the related vertices in W(G) are called vb and vd (compare to Figure 6.2).
Analogously, θb and θd denote the related cuts in Θ(G). The remaining clusters, cuts
and vertices in ζ(G), Θ(G) and W(G), which are not affected by the modification,
are just indexed by 1, . . . , z.

Algorithm 17: Inter-Cluster Edge Deletion

Input: W(G), Θ(G) regarding G = (V, E, c()) with weights and residual
graphs assigned, G	

α = (Vα, Eα \ {{b, d}}, c	α()) with sink added and
edge deleted, modified edge {b, d} with weight ∆

Output: W(G), Θ(G) regarding G	 with weights and residual graphs
assigned

if |ζ(G)| = 2 then1

return W(G), Θ(G) with weights and residual graphs assigned2

else3

%---------- initialization ----------
L(t)← ∅, l(t)← ∅4

for i = 1, . . . , z do5

Add vi to list L(t) %decreasingly ordered6

D(vi)← ∅7

Θ(G)← {θb, θd}8

W(G)← {vb, vd}9

%------------------------------------
w(min)← min{cα(θb), cα(θd)} −∆10

return Central-Clus (W(G),Θ(G),W(G),Θ(G), G	
α, w(min))11

In Line 11 Algorithm 17 reduces the loop of Algorithm 11, Line 17, to a single
call of a modified central algorithm Central-Clus (see Algorithm 18) regarding
the node S, which contains the sink t. According to the former algorithm Central-
TreeDel (see Algorithm 12) this central algorithm considers new minimum vi-t-
cuts in the modified graph G	

α regarding the cut-vertices v1, . . . , vz (see the (green)
squares in Figure 6.2). These cut-vertices are related to the center t, and therefore,
get stored in the list L(t) in Line 6, Algorithm 17. According to the heuristic
proposed by Flake et al. we further decreasingly order the vertices in L(t) by the
totaled weight of incident edges in graph G. The list l(t) then stores the related
cuts. Note, that the two vertices vb and vd are not added to the list L(t). These

6.2. UPDATING ALGORITHMS FOR EDGE DELETIONS 93

vertices lie on the path γ, and hence, their new minimum separating cuts in G	
α are

already known, as these are just the previous ones. Hence, if the input clustering
ζ(G) consists of only two clusters, the input clustering ζ(G) is also a valid clustering
for the modified graph G	, and the algorithm, therefore, returns ζ(G) = ζ(G) (see

Description of
Inter-Cluster
Edge Deletion
algorithmLine 1 and Line 2). Otherwise the known cuts θb and θd are added under reserve

to the set Θ(G) of non-crossing cuts finally defining the updated clustering ζ(G)
(see Line 8 and 9). The set D(vi) initialized in Line 7 for each cut-vertex vi will
store all those vertices included in L(t) or W(G) that are separated from the sink t
by the first minimum vi-t-cut given by a maximum vi-t-flow in the modified graph
G	

α (see Line 18 and 21 in Algorithm 18).

In the central algorithm Central-Clus (see Algorithm 18) we accordingly
assume the first minimum vi-t-cut given by a maximum vi-t-flow to be returned in
Line 7. This minimum vi-t-cut minimizes the side containing the cut-vertex vi, and

Description
of Central-Clus
algorithmtherefore, separates other vertices included in L(t) or W(G) from the center t if

and only if these vertices are separated from t by all minimum vi-t-cuts in G	
α, by

Lemma 22. Furthermore, we apply the max-flow algorithm in Line 6 to a adjusted
residual graph according to Kohli and Torr, instead of the complete modified graph
G	

α. Lemma 18 states a condition on which it is not necessary to calculate a new
minimum vi-t-cut. This condition is checked in Line 3 with the aid of w(min), which
is accordingly initialized in Line 10 in Algorithm 17.

In Line 9 to Line 11 the central algorithm considers minimum vi-t-cuts that turn
out to remain of the same weight. Those cuts are not unfolded as in the previous
central algorithm Central-TreeDel, but instead added under reserve to the set
Θ(G) of non-crossing cuts defining the later updated clustering ζ(G). If a nearest
cut pair of such a remaining cut gets hidden by another minimum vj-t-cut, the cut
is removed again from Θ(G) and just ignored in the following (compare to Line 19
to Line 21). Minimum vi-t-cuts that get cheaper in the modified graph G	

α are
stored in the list l(t) and deleted if their nearest cut pair gets hidden by another
minimum vj-t-cut (see Line 13 to Line 18).

At the end, in Line 23 to Line 28, all cuts remaining in the list l(t) are adjusted
such that they neither cross their own treetops (which correspond to the clusters
in ζ(G)) nor each other, and again isolate the sink t. The so adjusted cuts are
finally added to the set Θ(G), which defines the updated clustering ζ(G) for the
modified graph G	.

Quality of the New Updating Algorithm

Our new algorithm for updating a clustering ζ(G) after an inter-cluster edge dele-
tion guarantees that no previous cluster is split up in the new clustering ζ(G).
So Algorithm 17 finally returns a clustering ζ(G) consisting of at most as many Number

of clusters
clusters as included in the input clustering ζ(G). A previous cluster is either merged
with another cluster or again constitutes a cluster in ζ(G). Thereby clusters are
only merged if there is no other possibility concerning the cut-vertices defined by
the input clustering. This holds, as the max-flow algorithm in Line 7 is supposed
to return the first minimum vi-t-cut given by a calculated maximum vi-t-flow. By
Lemma 22 hence a nearest cut pair {vj , t} gets hidden if and only if all minimum
vi-t-cuts in G	

α hide this pair.

In this sense the updated clustering ζ(G) returned by Algorithm 17 is as close
as possible to the input clustering ζ(G). Moreover, if the previous clustering ζ(G)

Similarity
to previous
clusteringis also a valid clustering for the modified graph G	, our algorithm returns this

clustering ζ(G) = ζ(G) under guarantee. The following Lemma 24 proves this
assertion.

94 CHAPTER 6. UPDATING CLUSTERINGS BASED ON MIN-CUT TREES

Algorithm 18: Central-Clus

Input: W(G), Θ(G) regarding G with weights and residual graphs assigned,
initialized W(G), Θ(G) regarding G	 with weights and residual
graphs assigned, G	

α = (Vα, Eα \ {{b, d}}, c	α()), minimum edge
weight w(min)

Output: Complete W(G), Θ(G) regarding G	 with weights and residual
graphs assigned

while L(t) has next element vi do1

%---Calculate new minimum vi-t-cuts
Adjust residual graph related to θi according to Kohli and Torr2

if cα(θi) < w(min) then3

θ ← θi %by Lemma 184

else5

f ← FlowAlgo (vi, t)6

θ ← first minimum vi-t-cut given by flow f7

Add θ to list l(t) %in a valid relation to vi8

if c	α(θ) = cα(θi) then9

%---Consider cuts remaining of the same weight
Move vi from list L(t) to set W(G)10

Move θ from list l(t) to set Θ(G) %in a valid relation to vi11

else12

%---Consider cheaper cuts
while L(t) has next element vj 6= vi do13

if θ separates vj and t then14

Delete vj from list L(t)15

if l(t) already contains a cut related to vj then16

Delete cut related to vj from list l(t)17

Add vj to set D(vi)18

while W(G) has next element vj 6= vi do19

if θ separates vj and t then20

Move vj from set W(G) to set D(vi)21

Delete cut related to vj from set Θ(G)22

%---Adjust cheaper cuts to cluster-preserving cuts
%---θ = (R, Vα \R), t ∈ R, denotes cut in l(t) related to vi

while L(t) has next element vi do23

θ ← (R \ Ci, (Vα \R) ∪ Ci) %by partition-property24

forall vertices vj in D(vi) do25

θ ← (R \ Cj , (Vα \R) ∪ Cj) %by case 1 and case 226

forall vertices vj 6= vi in L(t) do27

θ ← (R ∪ Cj , (Vα \R) \ Cj) %by case 328

Add all vertices in list L(t) to set W(G)29

Add all related cuts in list l(t) to set Θ(G) %in a valid relation30

return W(G), Θ(G) with weights and residual graphs assigned31

6.2. UPDATING ALGORITHMS FOR EDGE DELETIONS 95

Furthermore, the updating operation causes at most as many max-flow calcula-
tions as clusters are included in the input clustering ζ(G), minus the two clusters

Number of
max-flow
calculationsaffected by the modification. The minimum separating cuts θb and θd of these clus-

ters in Gα are already known to be also minimum separating cuts in the modified
graph G	

α. If the previous clustering remains the same, there are exact |ζ(G)| − 2
max-flow calculations processed, with |ζ(G)| denoting the number of clusters in-
cluded in ζ(G) (compare to Table 6.1, first row).

Lemma 24 In the case of an inter-cluster edge deletion, our new algorithm again
returns the previous clustering ζ(G) if and only if the previous clustering ζ(G) is

Lemma:
Guarantee for
unchanging
clusteringsalso a valid clustering for the modified graph G	.

Proof. (⇒): This assertion is trivial, as our algorithm returns correct results.

(⇐): Assume the previous clustering ζ(G) to be also a valid clustering for the
modified graph G	. To return a new clustering ζ(G) different from ζ(G) our
algorithm needed to find a new cheaper minimum vi-t-cut for at least one cut-
vertex vi ∈ {v1, . . . , vz}. As the previous clustering is supposed to be also valid for
G	, therefore, there must exist another vertex u in cluster Ci such that the cut θi

also constitutes a minimum u-t-cut in the modified graph G	
α. Then there exists

a min-cut tree T (G	
α) such that the edge-induced minimum vi-t-cut represented in

this new min-cut tree T (G	
α) does not separate the modified vertices b and d. This

contradicts Lemma 9, which says that each new minimum vi-t-cut in G	
α which is

cheaper than the previous one in graph Gα needs to separate the modified vertices
b and d.

6.2.2 Intra-Cluster Edge Deletion

In the case of deleting an intra-cluster edge e	 = {b, d} the modified vertices b and
d lie in the same cluster of graph G, which means, they lie in the same subtree of
the sink t in a min-cut tree T (Gα). Again we do not know the tree structure of
a min-cut tree T (Gα). We only know that there exists a min-cut tree T (Gα) that

Situation
in case of
intra-cluster
edge deletioninduces the input clustering ζ(G), which is given by the set Θ(G) of non-crossing

cuts and the set W(G) of the vertices related to these cuts. Again we additionally
assume the according weights to be assigned to the cuts in Θ(G). As the modified
vertices b and d lie in the same cluster, in this case the sink t does not lie on the
unique path γ from b to d in the unknown, but existing, min-cut tree. Figure 6.3
exemplarily shows the sink t, the clusters bordered by dotted lines and the unknown
path γ (dashed lines) concerning the min-cut tree introduced in Figure 6.1.

As we consider a case of edge deletion the initial intermediate min-cut tree
T◦(Gα) for any algorithm developed in Chapter 4 would again result from contract-
ing all edges in the unknown min-cut tree T (Gα) that do not lie on path γ. So the
sink t would not become the representative of a node S in the initial intermediate
min-cut tree, but constitutes a vertex in S off the path γ (while r(S) lies on γ). In
Figure 6.3 the nodes of T◦(Gα) are bordered by solid lines. Analog to the case of
inter-cluster edge deletion C(b,d) denotes the cluster affected by the modification.
The vertex v(b,d), which connects this cluster to the sink t, lies on the path from t
to r(S) in the unknown min-cut tree T (Gα). Concerning the initial intermediate
min-cut tree T◦(Gα) the affected cluster C(b,d) covers the two subtrees Nb and Nd

of S as well as the wood] of the edge {v(b,d), t} (compare to Definition 14). The
remaining clusters in ζ(G) together with the sink t form the treetop ⇑ of the edge
{v(b,d), t}. Hence we only know the subtrees to be included in the affected cluster
and we know the node S in parts, namely the remaining clusters and the sink t.

96 CHAPTER 6. UPDATING CLUSTERINGS BASED ON MIN-CUT TREES

t

v(b,d)

v1

v2

v3

v4

b

d r(S)

S

Nb

Nd

Figure 6.3: Initial min-cut tree T◦(Gα) in case of intra-cluster edge deletion.

The algorithm proposed now for updating a clustering ζ(G) in the case of an
intra-cluster edge deletion is referred to as Algorithm 19 and takes the same input

Input for
new updating
algorithm as Algorithm 17, apart from the naming of the affected cluster C(b,d) and its related

vertex v(b,d) and cut θ(b,d).

In contrast to an inter-cluster edge deletion in case of an intra-cluster edge
deletion we do not know any edges on path γ, and therefore, none of the minimum
separating cuts in the modified graph G	

α is known yet. So Algorithm 19 at first
calculates a new minimum v(b,d)-t-cut in G	

α (see Line 1 to Line 3) and checks in
Line 4 whether this cut is of the same weight as the previous cut θ(b,d) induced
by edge {v(b,d), t}. If this is true, i.e., if θ(b,d) is also a minimum v(b,d)-t-cut in the

Description of
Intra-Cluster
Edge Deletion
algorithm modified graph G	

α, it follows by Lemma 17 that the edges {vi, t}, i = 1, . . . , z,
connecting the remaining clusters to the sink t induce minimum vi-t-cuts, i =
1, . . . , z, in G	

α as well. So in this case the clustering ζ(G) does not change, i.e., it
holds that ζ(G) = ζ(G). The only thing still to be done is to adjust the residual
graphs according to Kohli and Torr also for those cuts that are not newly calculated.

If the new minimum v(b,d)-t-cut in G	
α is cheaper than the previous cut θ(b,d), by

Fact 3 we can adjust it such that it does not split the treetop ⇑ of the edge {v(b,d), t}
(see for example the dashed (red) cut in Figure 6.3). We further assume the first
minimum v(b,d)-t-cut given by a maximum t-v(b,d)-flow to be returned in Line 3.
So the originally calculated minimum v(b,d)-t-cut minimizes the side containing the
sink t, and therefore, the adjusted cut constitutes the best minimum v(b,d)-t-cut in
G	

α in the sense that it separates as many vertices from the sink t as possible while
it preserves the treetop ⇑. Note, that the treetop then lies on the same side as the
sink.

With this new, adjusted minimum v(b,d)-t-cut we get the first potential cut in the
set Θ(G) of non-crossing cuts defining the later updated clustering ζ(G) (compare
to the cuts θb and θd in the case of inter-cluster edge deletion). So this cut is added
under reserve to the set Θ(G) in Line 15 and Line 16. As the treetop ⇑ is not split,
by ignoring the vertices belonging to the wood] we then get a situation in node S
which the central algorithm Central-Clus can be applied to (see Line 18). To this
end in Line 13 the list L(t) is initialized with the cut-vertices v1, . . . , vz related to
the center t (see (green) squares in Figure 6.3). According to the heuristic proposed
by Flake et al. we further decreasingly order the vertices v1, . . . , vz in L(t) by the
totaled weight of incident edges in graph G. Lemma 18, which states the condition
for avoiding vain max-flow calculations with the aid of w(min), however, does not

6.2. UPDATING ALGORITHMS FOR EDGE DELETIONS 97

Algorithm 19: Intra-Cluster Edge Deletion

Input: W(G), Θ(G) regarding G = (V, E, c()) with weights and residual
graphs assigned, G	

α = (Vα, Eα \ {{b, d}}, c	α()) with sink added and
edge deleted, modified edge {b, d} with weight ∆

Output: W(G), Θ(G) regarding G	 with weights and residual graphs
assigned

%---Calculate new minimum v(b,d)-t-cut θ
Adjust residual graph related to θ(b,d) according to Kohli and Torr1

f ← FlowAlgo (t, v(b,d))2

θ ← first minimum v(b,d)-t-cut given by flow f3

%---Check if θ(b,d) remains of the same weight
if c	α(θ) = cα(θ(b,d)) then4

for i = 1, . . . , z do5

Adjust residual graph related to θi according to Kohli and Torr6

return W(G), Θ(G) with weights and residual graphs assigned7

else8

%---Adjust θ = (R, Vα \R), t ∈ R not to split treetop
forall Ci 6= C(b,d) do9

θ ← (R ∪ Ci, (Vα \R) \ Ci) %by partition-property10

%---------- initialization ----------
L(t)← ∅, l(t)← ∅11

for i = 1, . . . , z do12

Add vi to list L(t) %decreasingly ordered13

D(vi)← ∅14

Θ(G)← {θ}15

W(G)← {v(b,d)}16

%------------------------------------
w(min)← 017

W(G),Θ(G)←18

Central-Clus (W(G),Θ(G),W(G),Θ(G), G	
α, w(min))

Resolve all crossings in Θ(G) by Lemma 1519

Isolate the sink t20

return W(G), Θ(G) with weights and residual graphs assigned21

hold anymore in this situation. So in Line 17 w(min) is initialized with zero as
default value. The if-clause in Algorithm 18, Line 3, therefore, never becomes true.

After the execution of the central algorithm Central-Clus in Line 18, the
set Θ(G) consists of cuts which together separate the sink t from the rest of the
treetop ⇑, which covers the clusters not affected by the modification, and from parts
of the affected cluster C(b,d), but at least vertex v(b,d) (compare for example to the
set of fat, dashed lines in Figure 6.4). So it might be necessary to finally isolate
the sink t from some vertices (drawn as black bullets in Figure 6.4) belonging to
the cluster C(b,d). Furthermore, at Line 19 the cuts included in Θ(G) do neither

Resolving
crossings in the
affected clustercross within the treetop ⇑ nor do they split the unaffected clusters, by the cluster-

preserving adjustment in Central-Clus. However they may cross somewhere out
of the treetop ⇑, i.e., within the previous cluster C(b,d). Those crossings are resolved
in Line 19, by Lemma 15.

To finally isolate the sink t in Line 20 we need to choose new cut-vertices in
C(b,d). At this point we again remember the heuristic advised by Flake et al. and

98 CHAPTER 6. UPDATING CLUSTERINGS BASED ON MIN-CUT TREES

t

v(b,d)

v1

v2

v3

v4

b

d

r(S)

v

Figure 6.4: Example of a set Θ(G) of non-crossing cuts at Line 20 in Algorithm 19.

Algorithm 20: Best Cut

Input: Set W, DAG-representation DAG (v, t)
Output: Best minimum v-t-cut in the sense described above
forall u ∈W do1

Mark node Xu in DAG (v, t) containing u2

if Xv is marked then3

return first minimum v-t-cut (Xv, Vα \Xv)4

Start at node Xv5

Merge all nodes that are not reachable from a marked node by searching per6

level and also marking all nodes that are reachable from a marked node
return minimum v-t-cut defined by the merged nodes7

accordingly order the vertices that are not separated from the sink t yet decreasingly
by the totaled weight of their incident edges in G. Then we repeatedly calculate

Finally
isolating
the sink t minimum v-t-cuts in the modified graph G	

α, with vertex v being the next vertex in
the decreasing order. Figure 6.4 exemplarily shows such a minimum v-t-cut as solid
(green) line. To get non-crossing cuts in Θ(G) in the end, each newly calculated
minimum v-t-cut is adjusted such that it does not cross any cut already included
in Θ(G) before it is added to Θ(G) under reserve. Such an adjustment is again
feasible by Lemma 15. If the adjusted minimum v-t-cut separates the nearest cut
pair of another cut already included in Θ(G), this cut is replaced by the adjusted
v-t-cut.

Concerning the new cut-vertices v in C(b,d) we can further calculate best mini-
mum v-t-cuts in some sense. To this end consider a maximum v-t-flow and the re-
lated DAG-representation DAG (v, t). Let Xv denote the node in DAG (v, t) which
contains the source v, and Xt contains the target t. Furthermore, imagine a set W
which stores all those vertices in {v1, . . . , vz} that are related to a new cut in the
current set Θ(G). Then the search given by Algorithm 20 starts at node Xv and

Calculating
best minimum
separating cuts returns in O(n + m) time a minimum v-t-cut that maximizes the side containing

v while it separates a vertex in W from the sink t if and only if all minimum v-t-
cuts represented in the DAG-representation do so. So the returned cut is the best
minimum v-t-cut in the sense that it separates as many vertices from the sink t
as possible while it replaces as few cuts in Θ(G) related to vertices of previously
unaffected clusters as necessary.

6.2. UPDATING ALGORITHMS FOR EDGE DELETIONS 99

The search given by Algorithm 20 is feasible, as each node on level i is adjacent
to at least one node on the previous level i − 1. If an unmarked node on level i is
reachable from an initially marked node by a directed path, hence all nodes on lower
levels on this path are already marked during the search at the time the node on
level i is considered by the search. Figure 6.5 shows an example of a best minimum
v-t-cut calculated by Algorithm 20 (see the dashed (green) line). The vertices in the
set W(G) are drawn as (red) squares. The nodes in DAG (v, t) that are initially
marked in Line 2 are the dark-gray ones, the nodes that are marked during the
search in Line 6 are bordered by dotted lines, but not filled. The order in which
the nodes are considered during the search is given by the numbers assigned to the
nodes.

v

t

0 1 2 3 4 5

1

2

4

5

3 6

7

8

9

10

11

Figure 6.5: Example of a best minimum v-t-cut calculated by Algorithm 20.

Quality of the New Updating Algorithm

Our new algorithm for updating a clustering ζ(G) after an intra-cluster edge deletion
guarantees that no previous cluster, apart from the one affected by the deletion, is
split up in the new clustering ζ(G). Again this follows from the cluster-preserving

Similarity
to previous
clusteringadjustment of the cuts in Θ(G). An unaffected cluster may be merged with other

clusters while the affected cluster C(b,d) may be divided in different parts that are
either also merged with previous clusters or become a new cluster in ζ(G). Again
clusters are only merged if there is no other possibility concerning the cut-vertices
defined by the input clustering ζ(G). So the updated clustering ζ(G) returned by
Algorithm 19 is still quite close to the input clustering ζ(G).

Furthermore, our updating algorithm tries to calculate as few maximum flows
as necessary. In the case that the clustering does not change due to the edge
deletion, our algorithm has the chance to detect this situation after only one max-
flow calculation. Note, that it is, however, not ensured that our algorithm always
detects this situation. We only can guarantee that the unaffected clusters C1, . . . , Cz

also occur in the new clustering ζ(G), which is proven by the following Lemma 25.
So in the case that the previous clustering ζ(G) also constitutes a valid clustering for Number

of clusters
the modified graph G	 our algorithm returns a clustering ζ(G) which has at least
as many clusters as the previous one (compare to Table 6.1, second row). In the
worst case there may occur as many max-flow calculations as vertices are included
in the affected cluster C(b,d) plus the number of clusters in ζ(G). However, in this

100 CHAPTER 6. UPDATING CLUSTERINGS BASED ON MIN-CUT TREES

case it is very likely that a calculation of ζ(G) with the aid of the cut-clustering
method by Flake et al. needs about the same number of max-flow calculations, as

Number of
max-flow
calculations both algorithms choose the selectable cut-vertices according to the same heuristic

advised by Flake at al. Nevertheless, in general our algorithm tries to reduce the
number of max-flow calculations by choosing best minimum v-t-cuts to finally isolate
the sink t.

Lemma 25 In the case that the previous clustering ζ(G) also constitutes a valid
Lemma:
Guarantee for
unchanging
clusterings clustering for the modified graph G	 our algorithm returns a clustering ζ(G) which

contains the previous unaffected clusters C1, . . . , Cz.

Proof. Assume the previous clustering ζ(G) to be also a valid clustering for the
modified graph G	. To return a new clustering ζ(G) which does not contain all
previous unaffected clusters C1, . . . , Cz, our algorithm needed to find a new cheaper
minimum vi-t-cut for at least one cut-vertex vi ∈ {v1, . . . , vz}. As the previous
clustering is supposed to be also valid for G	, therefore, there must exist another
vertex u in cluster Ci such that the cut θi also constitutes a minimum u-t-cut in
the modified graph G	

α. Then there exists a min-cut tree T (G	
α) such that the

edge-induced minimum vi-t-cut represented in this new min-cut tree T (G	
α) does

not separate the modified vertices b and d. This contradicts Lemma 9, which says
that each new minimum vi-t-cut in G	

α which is cheaper than the previous one in
graph Gα needs to separate the modified vertices b and d.

6.3 Updating Algorithms for Edge Additions

The following two updating algorithms for the cases of edge additions are quite
simple, compared to those regarding edge deletions. Both can be easily solved with
the aid of Algorithm 14, the former algorithm for updating a complete min-cut tree
after an edge addition. The case of intra-cluster edge addition is even trivial, as we
will see in the following.

6.3.1 Intra-Cluster Edge Addition

In the case of adding an intra-cluster edge e⊕ = {b, d} the modified vertices b and d
lie in the same cluster of graph G, which means, they lie in the same subtree of the
sink t in a min-cut tree T (Gα). As in the cases before we still do not know the tree
structure of a min-cut tree T (Gα). We just know the clustering ζ(G) given by the

Situation
in case of
intra-cluster
edge addition set Θ(G) of non-crossing cuts and the set W(G) of the vertices related to these cuts.

The according weights are additionally assigned to the cuts in Θ(G). Nevertheless,

Algorithm 21: Intra-Cluster Edge Addition

Input: W(G), Θ(G) regarding G = (V, E, c()) with weights and residual
graphs assigned, G⊕

α = (Vα, Eα \ {{b, d}}, c⊕α()) with sink and edge
added, modified edge {b, d} with weight ∆

Output: W(G⊕), Θ(G⊕) regarding G⊕ with weights and residual graphs
assigned

forall cuts in Θ(G) do1

Adjust related residual graph according to Kohli and Torr2

return W(G), Θ(G) with weights and residual graphs assigned3

6.3. UPDATING ALGORITHMS FOR EDGE ADDITIONS 101

we know that there exists a min-cut tree T (Gα) that induces the given clustering
ζ(G). As the modified vertices b and d lie in the same cluster, sink t does again
not lie on the unique path γ from b to d in the unknown, but existing, min-cut
tree. Figure 6.6 exemplarily shows the sink t, the clusters bordered by dotted lines
and the unknown path γ (dashed lines) concerning the min-cut tree introduced in
Figure 6.1.

t

v(b,d)

v1

v2

v3

v4

d

S

b

Figure 6.6: Initial min-cut tree T◦(Gα) in case of intra-cluster edge addition.

Now assume Algorithm 14 to be applied to the unknown, but existing, min-cut
tree T (Gα). As we consider a case of edge addition the initial intermediate min-
cut tree T◦(Gα) for this algorithm would hence result from contracting all edges in
T (Gα) that lie on path γ. In Figure 6.6 the only node S containing more than one
vertex in T◦(Gα) is bordered by a solid line. The remaining nodes are the singletons
corresponding to the vertices off path γ.

As the sink t does not lie on γ, it is already isolated in the initial min-cut tree
T◦(Gα). So we could stop the execution of Algorithm 14 without calling the cen-
tral operation Central-Tree in Line 12. The updated clustering ζ(G⊕) resulted

Description of
Intra-Cluster
Edge Addition
algorithmdirectly from the deletion of t in the intermediate min-cut tree T◦(Gα). Therefore,

it is equivalent to the input clustering ζ(G). As our former algorithms for the cases
of edge deletions use the method of Kohli and Torr to update individual minimum
separating cuts, the only thing still to do is to accordingly adjust the residual graphs
related to the cuts in Θ(G) = Θ(G⊕). The new (trivial) algorithm is referred to as
Algorithm 21.

6.3.2 Inter-Cluster Edge Addition

In the case of adding an inter-cluster edge e⊕ = {b, d} the modified vertices b and
d lie in different clusters of graph G, which means, they lie in different subtrees of
the sink t in an unknown, but existing min-cut tree T (Gα). So the sink t lies on
the path γ from b to d in T (Gα). The input clustering ζ(G) is given again by the

Situation
in case of
inter-cluster
edge additionset Θ(G), the set W(G) and the according weights assigned to the cuts in Θ(G).

Figure 6.7 exemplarily shows the sink t, the clusters bordered by dotted lines and
the path γ concerning the min-cut tree introduced in Figure 6.1. The unknown
edges on path γ are drawn as dashed lines.

As we again consider a case of edge addition the initial intermediate min-cut tree
T◦(Gα) for Algorithm 14 would again result from contracting all edges in T (Gα)
that lie on path γ. In Figure 6.7 the only node S containing more than one vertex

102 CHAPTER 6. UPDATING CLUSTERINGS BASED ON MIN-CUT TREES

t
b

v1
d

v2

v3

S

vb

vd

Figure 6.7: Initial min-cut tree T◦(Gα) in case of inter-cluster edge addition.

in T◦(Gα) is bordered by a solid line. The singletons corresponding to the vertices
off the path γ constitute the remaining nodes in the initial min-cut tree.

Our new updating algorithm is now referred to as Algorithm 22. In contrast
to the case of inter-cluster edge deletion, in the case of inter-cluster edge addition
we know those cuts in Θ(G) to remain minimum separating cuts in the modified
graph G⊕

α that induce the unaffected clusters C1, . . . , Cz. Therefore, in Line 4
Description of
Inter-Cluster
Edge Addition
algorithm Algorithm 22 initializes the set W(G⊕) with the related vertices v1, . . . , vz and the

set Θ(G⊕) with the cuts θ1, . . . , θz (see Figure 6.7). Furthermore, as our former
algorithms for the cases of edge deletions use the method of Kohli and Torr to
update individual minimum separating cuts, Algorithm 22 accordingly adjusts the
residual graphs related to these cuts. After the initialization the non-crossing cuts in
Θ(G⊕) hence separate the sink t from all unaffected clusters (compare to the set of
fat, dashed lines in Figure 6.8). So the sink t still needs to be isolated from the two
affected clusters, which cover the path γ. To this end Algorithm 22 calculates new
minimum separating cuts regarding the two cut-vertices vb and vd (see the (green)
squares in Figure 6.8) and checks whether these new cuts are of the same weight
as the previous cuts after the addition of ∆. According to the heuristic advised by
Flake et al. [FTT04], in Line 1 the vertices vb and vd are ordered decreasingly by
the total weight of their incident edges in G. In Line 10 we then assume the best
minimum separating cut to be returned (by Algorithm 20) regarding the vertices
v1, . . . , vz together with the other vertex remaining in {vb, vd} as being blocked. If
one of the cut-vertices in {vb, vd} gets separated from the sink t by the new cut
related to the other cut-vertex, the separated cut-vertex is ignored in the remainder
of the algorithm (see Line 16 to Line 20).

If the new minimum separating cuts are of the same weight as the previous ones
after the addition of ∆, they are replaced by the previous cuts and added to the
set Θ(G⊕) under reserve (see Line 12 to Line 14). Otherwise, the algorithm stores
the cut-vertices that are separated from the sink t by these new cuts in the set
D(vb) and the set D(vd) (see Line 24) and then adjusts the new cuts in Line 25 to
Line 29 such that they do not split the previously unaffected clusters, by Theorem 3.
Figure 6.8 shows a new minimum vd-t-cut, drawn as solid (red) line, which separates
the cut-vertex v1 from the sink t.

At Line 30 the new separating cuts in the list l(t) may still cross somewhere
within the affected clusters Cb and Cd (compare to the solid (red) lines in Figure 6.8).
However, this can be easily resolved by Lemma 15. The so adjusted non-crossing
cuts are then added to the set Θ(G⊕). In Line 33 it finally might be necessary to

6.3. UPDATING ALGORITHMS FOR EDGE ADDITIONS 103

Algorithm 22: Inter-Cluster Edge Addition

Input: W(G), Θ(G) regarding G = (V, E, c()) with weights and residual
graphs assigned, G⊕

α = (Vα, Eα \ {{b, d}}, c⊕α()) with sink and edge
added, modified edge {b, d} with weight ∆

Output: W(G⊕), Θ(G⊕) regarding G⊕ with weights and residual graphs
assigned

Store vb and vd in u1, u2 decreasingly ordered by1

the total weight of their incident edges
%---------- initialization ----------
L(t)← {u1, u2}, l(t)← ∅2

D(u1)← ∅, D(u2)← ∅3

W(G⊕)← {v1, . . . , vz}, Θ(G⊕)← {θ1, . . . , θz}4

forall cuts in Θ(G⊕) do5

Adjust related residual graph according to Kohli and Torr6

%------------------------------------
%---Calculate best new minimum separating cuts
while L(t) has next element ui do7

Adjust residual graph related to θu
i according to Kohli and Torr8

f ← FlowAlgo (ui, t)9

θ ← best cut given by flow f %regarding vertices in W(G⊕)10

and uj (j 6= i) as being blocked
Add θ to list l(t) %in a valid relation to ui11

if c⊕α(θ) = cα(θu
i) + ∆ then12

Move ui from list L(t) to set W(G⊕)13

Move θ from list l(t) to set Θ(G⊕)14

else15

while L(t) has next element uj 6= ui do16

if θ separates uj and t then17

Delete uj from list L(t)18

if l(t) already contains a cut related to uj then19

Delete cut related to uj from list l(t)20

while W(G⊕) has next element vi do21

if θ separates vi and t then22

Delete cut related to vi from set Θ(G⊕)23

Move vi from set W(G⊕) to set D(ui)24

%-- Adjust best new cuts to cluster-preserving cuts
%-- θ = (R, Vα \R), t ∈ R, denotes cut in l(t) related to ui

while L(t) has next element ui do25

forall vertices vj in D(ui) do26

θ ← (R \ Cj , (Vα \R) ∪ Cj) %by Theorem 327

forall vertices vj in W(G⊕) \D(ui) do28

θ ← (R ∪ Cj , (Vα \R) \ Cj) %by Theorem 329

Resolve all crossings in list l(t) %by Lemma 1530

Add all vertices in list L(t) to set W(G⊕)31

Add all (non-crossing) cuts in list l(t) to set Θ(G⊕)32

%in a valid relation
Isolate the sink t33

return W(G⊕), Θ(G⊕) with weights and residual graphs assigned34

104 CHAPTER 6. UPDATING CLUSTERINGS BASED ON MIN-CUT TREES

t
b

v1
d

v2

v3

vb

vd

Figure 6.8: Example of a set Θ(G⊕) after initialization.

isolate the sink t from some remaining vertices. This is done as already described
for the case of inter-cluster edge deletion in Subsection 6.2.2.

Quality of the New Updating Algorithm

Our new algorithm for updating a clustering ζ(G) after an inter-cluster edge ad-
dition guarantees that no previous cluster, apart from the two clusters affected by
the addition, is split up in the new clustering ζ(G⊕). This follows from the cluster-
preserving adjustment of the new minimum separating cuts regarding the vertices
vb and vd. The affected clusters Cb and Cd may be divided in different parts that are
either merged with previous unaffected clusters or become a new cluster in ζ(G⊕).
By calculating the best cut in Line 10 we try to merge as few previous clusters

Similarity
to previous
clustering as necessary with parts of the affected clusters and at the same time to separate

as many vertices covered by Cb ∪ Cd as possible from the sink t. So the updated
clustering ζ(G⊕) returned by Algorithm 2 is again quite close to the input clustering
ζ(G), while the algorithm tries to calculate as few maximum flows as necessary.

In the case that the clustering does not change due to the edge addition, our
algorithm has the chance to detect this situation after only two max-flow calcu-
lations regarding the vertices vb and vd. Note, that neither is there a guarantee
that our algorithm always detects this situation nor can we guarantee any further,
apart from the fact that the unaffected clusters do not get split up in the new clus-
tering ζ(G⊕) (compare to Table 6.1, last row). In the worst case there may occur

Number of
max-flow
calculations as many calculations as vertices are included in the affected clusters Cb and Cd.

However, in this case it is again very likely that a calculation of ζ(G⊕) with the
aid of the cut-clustering method by Flake et al. needs about the same number of
max-flow calculations, as both algorithms choose the selectable cut-vertices accord-
ing to the same heuristic advised by Flake at al [FTT04]. Nevertheless, in general
our algorithm tries to reduce the number of max-flow calculations by choosing best
minimum v-t-cuts to finally isolate the sink t.

The numbers of max-flow calculations occurring in the differnt cases of edge
addition and edge deletion are again outlined in Table 6.1. To this end we list theSummary of

quality analysis
number of max-flow calculations in the worst case regarding the different modifica-
tions in general (see first column). Furthermore, we consider the special situation
that the previous clustering ζ(G) also constitutes a valid clustering after the mod-
ification. Concerning this situation we give a lower and upper bound of max-flow

6.3. UPDATING ALGORITHMS FOR EDGE ADDITIONS 105

calculations and of clusters included in the new clustering ζ(G⊕()). The number
of vertices in a cluster C is denoted by |C|, the number of clusters in a clustering
ζ(G) is denoted by |ζ(G)|.

Worst Case Case of Unchanging Clustering

[flows] Lower Bound Upper Bound Guarantee

|ζ(G)| − 2 |ζ(G)| − 2

Inter [flows] [flows]

Del
|ζ(G)| − 2

|ζ(G)| |ζ(G)|
Yes

[clusters] [clusters]

1 |ζ(G)|+ |C(b,d)| − 1

Intra [flow] [flows] No

Del
|ζ(G)|+ |C(b,d)| − 1

|ζ(G)| |ζ(G)|+ |C(b,d)| − 1 Chance: 1

[cluster] [clusters] [flow]

0 0

Intra [flows] [flows]

Add
0

|ζ(G)| |ζ(G)|
Yes

[clusters] [clusters]

1 |Cb|+ |Cd|

Inter [flow] [flows] No

Add
|Cb|+ |Cd|

1 |ζ(G)|+ |Cb|+ |Cd| − 2 Chance: 2

[cluster] [clusters] [flows]

Table 6.1: Bounds of max-flow calculations and clusters.

6.3.3 Bow to the Approach of Saha and Mitra

At the beginning of this work, in Chapter 2, we discussed the approach of Saha
and Mitra [SM06] for dynamically updating clusterings after the addition of an
inter-cluster edge to the underlying graph G. Apart from a massive methodical
error, we illustrated that Saha and Mitra apply one lemma, namely the merging
lemma, on invalid conditions, while they use another lemma, namely the unaffect
lemma, to prove the correctness of their algorithmic approach in a way that is not
feasible. Therefore, we announced in Subsection 2.3.2 that we will give a reasonable
interpretation of the unaffect lemma later. Now in this subsection we first review
the unaffect lemma and then interpret it according to the knowledge we gained by
developing our updating algorithm regarding an inter-cluster edge addition. Lemma:

Review of the
unaffect lemma

Lemma 26 (Unaffect lemma) Let Cb and Cd be two clusters in a clustering ζ(G)
resulting from the cut-clustering method of Flake et al. [FTT04]. If there are some
insertions and deletions of edges across and within the clusters Cb and Cd of the
dynamic graph G, then all clusters in ζ(G) \ {Cb, Cd} “remain unaffected”.

106 CHAPTER 6. UPDATING CLUSTERINGS BASED ON MIN-CUT TREES

Saha and Mitra do not prove this lemma properly, but use it to develop the
algorithmic idea of their inter-edge-add algorithm (see Algorithm 2). This idea
bases on the assumption that the expression “remain unaffected” in Lemma 26
means that each cluster C in ζ(G) \ {Cb, Cd} again constitutes a single cluster in
a correctly updated clustering ζ(G⊕) after the addition of an edge e⊕ = {b, d}.
Therefore, Saha and Mitra contract all these “unaffected” clusters to one big node
in an intermediate graph G′

α and then calculate a new min-cut tree of G′
α (compare

to CASE 3 in Algorithm 2). We disproved this approach in Subsection 2.3.2.

Nevertheless, the assertion of the unaffect lemma becomes true if we interpret
the expression “remain unaffected” in the sense that a cluster in ζ(G) \ {Cb, Cd}
might be merged with other clusters, but never gets split up in the new clustering

New
interpretation
of the unaffect
lemma ζ(G⊕). This follows from the cluster-preserving adjustment as it is used for the non-

crossing cuts that define the updated clustering ζ(G⊕) in our approach. Roughly
spoken, our algorithm contracts the “unaffected” clusters individually in graph Gα,
which already contains the artificial sink t, and therefore, allows these clusters to
be reconnected as subtrees by the Gomory-Hu method finally applied. By the way,
our trivial updating algorithm in case of an inter-cluster edge addition is basically
the same as the one mentioned by Saha and Mitra [SM06]. So for this case Saha
and Mitra actually developed a feasible solution.

Proof of the New Merging Lemma

In Subsection 2.3.1 we omitted the proof of the new merging lemma, as for this
proof we use the following equivalence which we did not know by then in Chapter 2.

Observation 3 Consider a clustering ζ(G) of a graph G and a fixed parameter α.
Then the existence of a min-cut tree T (Gα) inducing the clustering ζ(G) is equiv-

Observation:
Equivalence of
min-cut tree
and clustering
existence

alent to the existence of a vertex y in each cluster C ∈ ζ(G) such that (C, Vα \ C)
constitutes a minimum y-t-cut in the enlarged graph Gα (compare to Figure 6.1).

We now review and then prove the new merging lemma introduced as Lemma 5
in Subsection 2.3.1. The cuts mentioned in the new merging lemma are defined as
follows: Cut θmin(b) := (Cb, Vα\Cb) is a minimum yb-t-cut in the enlarged graph Gα

for a vertex yb in the cluster Cb affected by a later addition of an edge e⊕ = {b, d}.
It separates cluster Cb from the sink t. Cut θmin(d) := (Cd, Vα \ Cd) is defined
analogously for a vertex yd in cluster Cd. The cut θ(b,d) := (Cb ∪Cd, Vα \ (Cb ∪Cd))
separates both clusters Cb ∪ Cd from the sink t in Gα.

Lemma 27 (New merging lemma) On the new condition that cα(θ(b,d)) = cα(θmin(b))
= cα(θmin(d)) merging cluster Cb and Cd of the input clustering ζ(G) yields a clus-

Lemma:
Review of the
new merging
lemma tering ζ(G⊕) of the modified graph G⊕ that again results from the cut-clustering

method, and therefore, also respects the clustering quality.

Proof. According to Observation 3 we need to show that in each cluster C in
a clustering ζ(G⊕) resulting from merging Cb and Cd in the previous clustering
ζ(G) there exists a vertex y such that (C, Vα \ C) is a minimum y-t-cut in G⊕

α =
(Vα, Eα ∪ {b, d}, c⊕α()). As the input clustering ζ(G) is assumed to result from the
cut-clustering method, each cluster C ∈ ζ(G) meets this condition. Furthermore,
each unaffected cluster C ∈ ζ(G) also constitutes a cluster in the new clustering
ζ(G⊕), and each minimum y-t-cut in Gα that does not separate the modified vertices
b and d is also a minimum y-t-cut in the modified graph G⊕

α, by Lemma 8. This
is, in each unaffected cluster C ∈ ζ(G), which also constitutes a cluster in ζ(G⊕),

6.3. UPDATING ALGORITHMS FOR EDGE ADDITIONS 107

there exists a vertex y such that (C, Vα \ C) is a minimum y-t-cut in G⊕
α. So we

just need to find a vertex ȳ in C̄ = Cb ∪Cd such that the cut θ(b,d) = (C̄, Vα \ C̄) is
a minimum ȳ-t-cut in G⊕

α.

Let yb ∈ Cb and yd ∈ Cd denote the vertices concerning the minimum yb-t-cut
(Cb, Vα \Cb) and the minimum yd-t-cut (Cd, Vα \Cd) in Gα. As the cut θ(b,d) does
not separate the modified vertices b and d, the weight of this cut is also not affected
by the addition of e⊕ = {b, d}. So θ(b,d) has the same weight in both graphs Gα

and G⊕
α. As we assume that cα(θ(b,d)) = cα(θmin(b)) the cut θ(b,d) is a minimum

yb-t-cut in Gα as well as in G⊕
α, by Lemma 8. So θ(b,d) meets the required condition

for the vertex ȳ := yb.

108 CHAPTER 6. UPDATING CLUSTERINGS BASED ON MIN-CUT TREES

Chapter 7

Experimental Analysis

This chapter considers two experiments to affirm the theoretically predicted behav-
ior of the updating approach developed in this work. The first experiment bases on
the friendship network of Zachary [Zac77] and serves to illustrate some special sit-
uations which may occur while updating clusterings with our new algorithms. The
second experiment concentrates on a dynamic real-wold e-mail graph. In this exper-
iment we compare the performance of our approach to a simple repeated clustering
calculation from scratch using the heuristic recommended by Flake et al. [FTT04]
(compare to Section 6.1). Note, that this method is a heuristic regarding the num-
ber of calculated maximum flows, i.e., this number, and thus the performed effort,
might not be minimal. Nevertheless, it always returns a correct result. We call this
heuristic cut-clustering heuristic and shortly review it in Algorithm 23.

Algorithm 23: Cut-Clustering Heuristic

Input: Graph G = (V, E, c()), parameter α of clustering quality
Output: Clustering ζ(G) with clustering quality depending on α
Vα ← V ∪ {t} %add artifical sink t1

Eα ← E ∪ {{t, v}|v ∈ V} %connect t to each vertex v in V2

∀e ∈ E : cα(e)← c(e)3

∀v ∈ V : cα({t, v})← α %each edge incident with t gets weight α4

L← V decreasingly ordered by the totaled weight of incident edges5

T?(Gα)← ({Vα}, ∅, cα()) %initialize intermediate min-cut tree6

S ← Vα7

r(S)← t %choose representative8

while t is not isolated yet in T?(Gα) do9

S ← node containing the sink t10

u← next vertex in L included in S11

θ ← minimum u-t-cut in Gα(S)12

T?(Gα)← SplitAndReconnect (T?(Gα), S, u, θ)13

%see Algorithm 13

Remove t from T?(Gα)14

ζ(G)← set of connected components resulting from the removal of t15

return ζ(G)16

Also clusterings of an unconnected graph G can easily be updated, as the sub-
sequently added artificial sink connects all components at any time. The insertion
of a vertex in graph G causes the addition of a new cluster in the current clustering

109

110 CHAPTER 7. EXPERIMENTAL ANALYSIS

ζ(G). In the enlarged graph Gα the inserted vertex hence gets connected to the
sink t by an edge of weight α. The removal of a vertex only is allowed if the vertex
is unconnected in the underlying graph G, i.e., if it is only adjacent to the sink t in
Gα. In this situation the considered vertex constitutes a single cluster in clustering
ζ(G), and therefore, can easily be deleted. In both cases this procedure yields a
correctly updated clustering, as shown in Chapter 4, Subsection 4.1.2.

7.1 Zachary’s Friendship Network

In this experiment we consider the graph G illustrated in Figure 7.1, which con-
stitutes the friendship network of Zachary. The vertices in this network represent
individuals which cultivate several friendships to others, so friends are accordingly
connected by edges. As this experiment is not meant to provide a systematic eval-
uation, but a proof of concept, and because clustering is more interesting regarding
graphs with differently weighted edges, we further modify the network by assigning
weights regarding the following cost function: c({u, v}) := deg(u) + deg(v), with

Fixed
underlying
graph deg() denoting the degree of a vertex in the original network. This cost function

bases on the assumption that an individual which has many friends serves as a kind
of leader, and therefore, a friendship to such a leader has a higher importance than a
friendship to an individual which has less friends. For a better readability, however,
we omit showing the weights in Figure 7.1.

Due to the additionally assigned weights in the network, the cut-clustering
heuristic of Flake et al. identifies, apart from a few singletons, two main groups
in graph G. The resulting clustering ζ(G) regarding the parameter α = 10.5 con-Fixed initial

clustering
sists of 17 clusters and is also shown in Figure 7.1. Each trapezoid vertex constitutes
a single cluster (for those singletons no color is defined), the round (green) vertices
form a group to the left, while the square (red) vertices present another group to the
right. The smaller, right group seems to depend on character 33 as a kind of leader.
By contrast, the bigger, left group is dominated by two leaders, namely character 0
and character 1, which are both highly connected to the members of this group.

For a discussion about how to chose a reasonable parameter α see [FTT04],
Section 3.3, page 393. If α goes to zero, the minimum separating cut between the
sink t and any other vertex in the underlying graph G is trivial, as it just isolates the
sink t from all vertices in G. In this case the resulting clustering consists of only oneChoice of

parameter α
big cluster. Vice versa, for α going to infinity, the min-cut tree T (Gα) of the enlarged
graph Gα becomes a star with the sink t at its center. Then the resulting clustering
contains each vertex of graph G as a single cluster. As a reasonable value between
these two trivial cases depends on the structure of graph G, Flake et al. advise a
binary search-like approach to determine the parameter α. For many graphs, and in
particular for the graphs considered in our experiments, this technique works quite
well. Furthermore, Flake et al. recommend another approach to chose α in order
not to calculate a whole clustering, but to find one cluster with special properties.

In the following we assume different, independent events to occur in the network
shown in Figure 7.1 and analyze how our new updating algorithms behave in the
resulting situation compared to the cut-clustering heuristic. Thereby, we consider
the graph G with its edges weighted as described above and the related clustering
ζ(G) shown in Figure 7.1 as fixed initial instance for each event. For the calculation
of the initial clustering ζ(G) the cut-clustering heuristic needs 17 max-flow calcula-
tions, i.e., it calculates as many minimum separating cuts as the number of clusters
that are finally included in ζ(G).

7.1. ZACHARY’S FRIENDSHIP NETWORK 111

0

1

25

3

11
19

18

7

4

10

15

13

33

29

28

23

27

17

5

6

8
9

24

2

31

20

14

30

21

32

26 16

12

22

Figure 7.1: Friendship network with a clustering regarding α = 10.5. The trapezoid,
void vertices represent singletons in the clustering.

7.1.1 Exemplary Inter-Cluster Edge Additions

At first we consider events which yield an inter-cluster edge addition in the under-
lying graph G. So assume for example the addition of an edge of weight one be-
tween character 17 in the right group and the single character 31 (see Figure 7.2a).
The cut-clustering heuristic applied to the so modified graph G⊕

α returns the same Unchanging
clustering

clustering ζ(G⊕) = ζ(G) as before and thereby again calculates 17 minimum sep-
arating cuts. In contrast, our Inter-Cluster Edge Addition algorithm (see
Algorithm 22) at first checks whether the two cuts previously defining the affected
clusters still constitute minimum separating cuts in the modified graph G⊕

α. By
doing so, it realizes that the previous minimum 17-t-cut as well as the previous
minimum 31-t-cut effectively remains a minimum separating cut in G⊕

α, and there-
fore, the previous clustering ζ(G) also constitutes a valid clustering for the modified
graph G⊕. So this is an example for the Inter-Cluster Edge Addition algo-
rithm using the chance listed in the fourth row of Table 6.1. Note, that both
characters 17 and 31 accidentally constitute the cut-vertices connecting the accord-
ing clusters to the sink t. Hence, in this example both algorithms finally return the
same clustering ζ(G⊕), but our new algorithm only needs two max-flow calculations,
while the cut-clustering heuristic again calculates 17 minimum separating cuts.

As another event imagine the addition of an edge with weight 10 between charac-
ter 17 and character 31. In this case the cut-clustering heuristic returns a clustering
ζ(G⊕) of now 18 clusters, in which character 17 has left its previous group due
to the slightly stronger connection to character 31 (vertex 17 has become a (blue)
rhombus in Figure 7.2b). For the calculation of this clustering the heuristic needs 18

Increasing
number of
clustersmax-flow calculations. Our algorithm returns the same updated clustering ζ(G⊕),

but already finishes after 3 max-flow calculations. The sequence of cut-vertices con-
sidered by our algorithm is 17, 31, 22. The new minimum 17-t-cut just separates 17
from the remaining vertices, and the minimum 31-t-cut turns out to be the same as
before. Vertex 22 then is the next cut-vertex in the decreasing order by the totaled
weight of incident edges. Remember, that the unaffected clusters are not consid-
ered, as their related cuts are already known not to change. The new minimum
22-t-cut finally isolates the sink t and the algorithm stops.

112 CHAPTER 7. EXPERIMENTAL ANALYSIS

0

1

25

3

11
19

18

7

4

10

15

13

33

29
28

23
27

5

6

8
9

24

2

31

20 30

21

32

26 16

12

22

1

17

29

28

23

27

30

21

32

26 16

12

22

1

1733

31

14

20

(a) Edge {17, 31} with weight one causes 17
clusters and 2 max-flow calculations

0

1

25

3

11
19

18

7

4

10

15

13

33

29
28

23
27

5

6

8
9

24

2

31

20 30

21

32

26 16

12

22

1

17

29

28

23

27

30

21

32

26 16

12

22

10

33

31

14

20

17

(b) Edge {17, 31} with weight 10 causes 18
clusters and 3 max-flow calculations

0

1

25

3

11
19

18

7

4

10

15

13

33

29
28

23
27

5

6

8
9

24

2

31

20 30

21

32

26 16

12

22

1

17

29

28

23

27

30

21

32

26 16

12

22

25

33

14

20

17

31

(c) Edge {17, 31} with weight 25 causes 17
clusters and 2 max-flow calculations

0

1

25

3

11
19

18

7

4

10

15

13

33

29
28

23
27

5

6

8
9

24

2

31

20 30

21

32

26 16

12

22

1

17

29

28

23

27

30

32

26 16

12

22

33

31

14

20

13
21

17

(d) Edge {17, 21} with weight 13 causes 16
clusters and 1 max-flow calculation

Figure 7.2: Four special inter-cluster edge additions.

Assume a new edge with weight 25 to be added between character 17 and char-
acter 31 (see Figure 7.2c). Both clustering algorithms in this case return a new
clustering ζ(G⊕) of again 17 clusters, but with character 17 founding a new clusterCluster

foundation
together with character 31 (see the rhombic (blue) vertices in Figure 7.2c). The
cut-clustering heuristic again needs 17 max-flow calculations, while updating the
previous clustering ζ(G) only costs two max-flow calculations.

If character 17 becomes connected to the single character 21 by a new edge of
weight 13, this edge addition would yield a new clustering ζ(G⊕) with 16 clusters,
as the new edge commits the single vertex 21 to the group already including vertex

Decreasing
number of
clusters 17 (see the square (red) vertices in Figure 7.2d). The cut-clustering heuristic in

this example uses 16 max-flow calculations. The new updating algorithm only
calculates one minimum 17-t-cut which already separates character 21 together with
the previous cluster including character 17 from the sink t.

7.1.2 Exemplary Intra-Cluster Edge Deletions

Events in a friendship network that yield an intra-cluster edge deletion are any
events that interrupt the amicable relationship between two individuals. So in the
first example we assume an interruption between character 17 and character 27
both being members of the smaller, right group marked by square (red) vertices in
Figure 7.1. This edge deletion yields a special situation, as the clustering ζ(G) re-
turned by the cut-clustering heuristic is almost trivial. The only vertex not included
in the big (blue) cluster marked by round vertices is vertex 17 (see Figure 7.3a).

7.1. ZACHARY’S FRIENDSHIP NETWORK 113

The heuristic again needs as many max-flow calculations as clusters are included in
ζ(G), which means it needs two max-flow calculations. However, concerning the
almost trivial new clustering ζ(G) it might be reasonable to chose a new parameter
α greater than α = 10.5 to get a clustering consisting of more than two clusters.
Unfortunately none of our new updating algorithms is able to deal with a changing Almost trivial

clustering
parameter α. So in this case a new initial clustering calculation becomes necessary.
Developing an approach for also dynamically updating the parameter α might be
future work. In this example a new parameter α = 10.8 > 10.5 would again yield
the clustering shown in Figure 7.2a, in which vertex 17 has left its previous group.
Without a dynamic parameter update our Intra-Cluster Edge Deletion al-
gorithm (Algorithm 19) returns the same almost trivial clustering ζ(G) as the
cut-clustering heuristic (see Figure 7.3a), but needs one max-flow calculation more
than the heuristic. However, in our experiments such a behavior occurred if and
only if also the cut-clustering heuristic returned an almost trivial new clustering.

0

1

25

3

11
19

18

7

4

10

15

13

5

6

8
9

24

17

14

21

20 30

32
31

26 16
22

12

23

33

29

28

27

(a) Deleting edge {17, 27} causes 2 clusters
and 3 max-flow calculations regarding the
new algorithm

0

1

25

3

11
19

18

7

4

10

15

13

5

6

8
9

24

33

29

23

27

31

20

14

30

21

32

26 16

12

22

17

28

(b) Deleting edge {28, 33} causes 19 clusters
and 19 max-flow calculations regarding
the heuristic

Figure 7.3: Two special intra-cluster edge deletions.

In contrast to the previous example an interrupted relationship between charac-
ter 28 and character 33 does not necessarily change the clustering. Our new algo-
rithm finds the updated clustering ζ(G) = ζ(G) by calculating only one maximum
flow, i.e. in this example it uses the chance listed in the second row of Table 6.1.
This example shows that Algorithm 19 is able to find an updated clustering which Closer

clustering
is closer to the previous one than the new clustering calculated from scratch by the
cut-clustering heuristic. The heuristic needs 19 max-flow calculations and returns
the clustering shown in Figure 7.3b, which contains 19 clusters as the vertices 17
and 28 become single clusters shown as a (blue) square and a (yellow) triangle.

7.1.3 Exemplary Inter-Cluster Edge Deletion

Finally we give an example of an inter-cluster edge deletion. So assume the friend-
ship between character 0, which belongs to the left group marked by round (green)
vertices, and the single character 2 to run dry (see Figure 7.1). This modification
again does not necessarily change the previous clustering ζ(G). Our new Inter-
Cluster Edge Deletion algorithm realizes this fact by calculating two max-flow
calculations less than the number of clusters included in ζ(G), which is the best
possible performance in such a case of an inter-cluster edge deletion (compare to
Table 6.1, first row). This best possible behavior is even guaranteed for the case

Guaranteed
best
performancethat the previous clustering ζ(G) also constitutes a valid clustering for the modified

114 CHAPTER 7. EXPERIMENTAL ANALYSIS

graph G	. Remember that Algorithm 17 in this situation recalculates the minimum
separating cuts related to the cut-vertices of the unaffected clusters. The only cuts
being known not to change for sure are the two cuts which define the two clusters
affected by the edge deletion. The heuristic also returns the previous clustering,
but needs again 17 max-flow calculations.

7.2 Real World E-Mail Graph

Our second experiment serves to affirm the theoretically expected good performance
of the updating approach developed in this work. To this end we process a queue
of 12 560 elementary modifications on the initial graph G shown in Figure 7.4. This
initial graph has 310 vertices and 450 edges. During the experiment the number of
vertices varies from 236 to 3 439. The vertices represent members of the Fakultät

Initial
underlying
graph

Figure 7.4: Initial real world e-mail graph.

für Informatik, Universität Karlsruhe (TH), the edges correspond to the e-mail
correspondence between those members. Each edge is weighted by the total number
of e-mails sent between two individuals in the last 72 hours. This means, each e-
mail has a fixed time to live. After that time the contribution of the e-mail to the
weight of the edge expires and the weight of the edge decreases. An edge is deleted
if its weight becomes zero. A vertex is removed if it becomes unconnected in the
underlying graph G. Vice versa, the weight of an edge increases if more e-mails are
sent, and a vertex is inserted if a member which has been inactive for more than 72
hours again starts to correspond via e-mail. Accordingly an edge is added to graph
G as soon as the first e-mail is sent between two unconnected members.

The following statistic compares the performance of our new updating algorithms
to the performance of the cut-clustering heuristic, which repeatedly calculates the
new clusterings from scratch. As the performance of both methods mainly depends
on the number of calculated maximum flows, or minimum u-v-cuts respectively, we
concentrate on this indicator. Note, that for both methods the insertion or removal
of a vertex only causes a modification of the underlying graph and an adjustment

7.2. REAL WORLD E-MAIL GRAPH 115

of the current clustering in constant time. Therefore, the vertex insertions and
removals are ignored in the statistic. For both clustering methods we choose the
parameter α = 0.15 concerning the guaranteed clustering quality, which yields a
clustering consisting of 45 clusters for the initial graph shown in Figure 7.4.

By ignoring the 3 344 vertex insertions and the 216 vertex removals the original
queue of 12 560 modifying steps in this experiment shrinks to 9 000 steps of edge
modifications. In 8 612 of these 9 000 steps of edge modifications updating the

Amount of
effort saving
stepsprevious clustering causes less max-flow calculations than a new calculation from

scratch. This is, in 95.7% of all considered steps our new updating algorithms
perform better than the cut-clustering heuristic.

Note further, that updating the previous clustering after increasing the weight
of an edge can be done by one of the new algorithms regarding edge additions. The
addition of an edge is considered as a special case of increasing the weight of an
edge. Analogously, after decreasing the weight of an edge the previous clustering is
updated by one of our algorithms regarding edge deletions. So in the following we
just talk about intra-cluster and inter-cluster edge additions and edge deletions as
the four elementary modifications.

Figure 7.5a shows the proportions of the elementary modifications regarding
the total number of 9 000 modifying steps. The case occurring most often is, with
54.46%, the addition of an edge between two different clusters. The inter-cluster
edge deletion, by contrast, only occurs 480 times which corresponds to 5.33%.
During the whole experiment the cut-clustering heuristic of Flake et al. [FTT04]

Savings of
max-flow
calculationscalculates 2 080 897 maximum flows. Our updating algorithms, however, only need

198 790 max-flow calculations. This yields a saving of 1 882 107 max-flow calcula-
tions which constitutes 90.45% of effort saving. Figure 7.5b shows the proportions
of the elementary modifications regarding the total number of 1 882 107 savings.
We see that the ratio of the percentaged savings provided by edge additions to the

�

�

�

�

Intra-Cluster Edge Addition:
2400 of 9000 steps

26.67%

�

�

�

�

Inter-Cluster Edge Addition:
4901 of 9000 steps

54.46%

�

�

�

�

Inter-Cluster Edge Deletion:
480 of 9000 steps

5.33%

�

�

�

�

Intra-Cluster Edge Deletion:
4331 of 9000 steps

13.54%

(a) Total number of steps decomposed into ele-
mentary modifications

�

�

�

�

Intra-Cluster Edge Addition:
521805 of 1882107 savings

27.72%

�

�

�

�

Inter-Cluster Edge Addition:
1263610 of 1882107 savings

67.14%

�

�

�

�

Inter-Cluster Edge Deletion:
1287 of 1882107 savings

0.07%

�

�

�

�

Intra-Cluster Edge Deletion:
95405 of 1882107 savings

5.07%

(b) Total savings of max-flow calculations de-
composed into elementary modifications

Figure 7.5: Total number of steps and savings of max-flow calculations.

proportion of the edge additions regarding the number of total steps is greater than
one, while the edge deleting proportion in Figure7.5a provides a smaller proportion
of the total savings in Figure 7.5b. More precisely, the inter-cluster edge additions

Efficiency of
different
modificationsfor example are the most efficient modifications, as 54.46% of the total number of

steps provide 67.14% of the savings. So each unit of the inter-cluster edge addition
proportion on average causes 1.23% of all savings. The least efficient modifications
are the inter-cluster edge deletions with 5.33% of all steps gaining only 0.07% of

116 CHAPTER 7. EXPERIMENTAL ANALYSIS

all savings. This corresponds to 0.01% of all savings on average per unit of the
inter-cluster deletion proportion.

One might have expected the intra-cluster edge addition to be the most effi-
cient modification, as updating the clustering in this case never causes any max-
flow calculation, and therefore, saves 100% compared to the cut-clustering heuristic
calculating the new clusterings from scratch. However, this only holds from an in-
dependent point of view ignoring the remaining modifications. Regarding the total
savings over all modifications, nevertheless, the inter-cluster edge additions together
save more max-flow calculations than the intra-cluster edge additions.

An independent view of the four different modifications is given by Figure 7.6.
The chart in Figure 7.6a again concentrates on the number of modifying steps, while
Figure 7.6b regards the savings of max-flow calculations as a basis. The bar denoted

Independent
view of different
modifications by A in Figure 7.6a for each kind of modification represents the proportion of steps

in which our new approach needs less max-flow calculations than the cut-clustering
heuristic and needs even less or the same number of max-flow calculations as given
by the lower bound or the chance in the case of an unchanging clustering in Table 6.1.
This is, for the intra-cluster edge addition the limit is zero, for the inter-cluster edge

−100

0N
u
m

be
r

o
f
st

ep
s

in
%

Modifications

�

�

�

�
Intra-Add

2400 steps

100

A

0

B

0

C

0

D

�

�

�

�
Inter-Add

4901 steps

91

A

9

B

0

C

0

D

�

�

�

�
Inter-Del

480 steps

79

A

0

B

10

C

11

D

�

�

�

�
Intra-Del

1219 steps

58

A

19

B

18
5

(a) Number of steps per elementary modification

∼

∼

−

−

−

−

−5

0

108.6

3

S
a
vi

n
gs

in
%

�

�

�

�
Intra-Add

521805 savings

100

A B

0

C D

�

�

�

�
Inter-Add

1263610 savings

100

A B

0

C D

�

�

�

�
Inter-Del

1287 savings

108.6

A B

−8.6

C D

�

�

�

�
Intra-Del

95405 savings

100.5

A B
−0.5

Modifications

(b) Savings of max-flow calculations per elementary modification

Figure 7.6: Number of steps and savings of max-flow calculations per modification.

addition we consider the chance of 2 max-flow calculations, the inter-cluster edge
deletion has a lower bound of |ζ(G)|−2, while the intra-cluster edge deletion has the
chance to finish after only one max-flow calculation. The second bar denoted by B
stands for the remaining steps in which updating causes less max-flow calculations
than the heuristic. Accordingly, the bar C represents those cases in which the new
algorithm calculates more flows than the heuristic, and bar D finally shows how
often both methods need the same number of max-flow calculations. In Figure 7.6b

7.2. REAL WORLD E-MAIL GRAPH 117

the bars filled with black squares show the proportions of positive savings caused by
the steps in which updating is cheaper than calculating from scratch. By contrast,
the striped bars illustrate how much saving is again destroyed by the steps in which
the new algorithm calculates more maximum flows than the heuristic. For example,
91% of all 4 901 inter-cluster edge additions are updated with less than or equal to
2 max-flow calculations, and hence, save some effort compared to the cut-clustering
heuristic. Further 9% of the updated inter-cluster edge additions also save some
effort, but cause more than 2 max-flow calculations. By contrast, no updating
step for an inter-cluster edge addition needs more or the same number of max-flow
calculations as the heuristic. By considering the 480 inter-cluster edge deletions we
see that 79% of the updatings save some effort by calculating less than or equal
to 2 maximum flows, while for 10% of all inter-cluster edge deletions updating is
more expensive than using the cut-clustering heuristic. Another 11% of updatings
do neither save nor cause any effort. However, the 49 inter-cluster edge deletions for
which updating causes more effort than a new calculation from scratch destroy only
8.6% of the total saving gained by all updating steps regarding inter-cluster edge
deletions. Remember, that the inter-cluster edge deletions together only contribute
0.07% to the total savings in this experiment. For the intra-cluster edge deletions
the impact of the 222 effort increasing steps on the total savings is with only 0.5%
even weaker.

Altogether in this experiment each updating step after the addition of an edge
saves some effort compared to a new calculation from scratch. After the deletion
of an edge the new updating algorithms in some cases calculate more maximum Summary

flows than the cut-clustering heuristic, but these few cases only have a weak impact
on the savings gained by the remaining edge deletion updates. So together also
the edge deletion modifications contribute some effort saving regarding the whole
experiment.

To measure how close the updated clusterings are to the previous ones in a
real-world experiment is future work. For more information about comparators for Future work

clusterings see [DGGW08]. Regarding the comparison we expect a good and helpful
preservation of the mental map, as our new algorithms never split any unaffected
cluster and try to reuse as big parts as possible of the affected clusters before
calculating new clusters.

118 CHAPTER 7. EXPERIMENTAL ANALYSIS

Chapter 8

Conclusion

This work concentrated on a specific static clustering algorithm, namely the cut-
clustering method introduced by Flake et al. [FTT04]. We chose this method to
extend it to cluster fully dynamic graphs, as it is one of the very few that guarantees
a clustering quality. This clustering quality results from properties of min-cut trees.
The special structure of min-cut trees constitutes the key to the algorithmic idea of
Flake et al. Saha and Mitra [SM06] gave a first proposal how a dynamic extension
of the cut-clustering algorithm might look like, but unfortunately, their approach
turned out not to be feasible. We illustrated that Saha and Mitra made a methodical
error, as they indirectly assumed an invariant to be met, which is provably violated
by the updated clusterings returned by their algorithms. Furthermore, we detected
some inconsistencies concerning the application and the proof of a lemma called
merging lemma and the formulation of the so called unaffect lemma. We completed
the proof of the merging lemma, as Saha and Mitra missed to consider a certain
type of cuts. We developed a new merging lemma by replacing the condition the
previous merging lemma was based on by an equivalent, but different formulated
condition which evinces the previous condition to be very strict. Therefore, the
case in the inter-edge-add algorithm of Saha and Mitra which was induced by the
merging lemma, turned out to be very unlikely. The new merging lemma and its
new condition further allowed a much shorter proof compared to the proof of the
previous version. For the unaffect lemma we gave a reasonable interpretation, while
Saha and Mitra seemed to misinterpret it. They deduced an invalid procedure from
this lemma. Altogether, in the first part of this work we in some parts completed the
approach of Saha and Mitra [SM06] and in other parts disproved and corrected it.

The second part we began with some basic lemmas and an introduction of the
Gomory-Hu method [GH61], which constructs minimum-cut trees of undirected,
weighted graphs. This method constituted the key to many arguments in our work.
As the guaranteed clustering quality of the cut-clustering method results from prop-
erties of min-cut trees, hence, we first explored, independently from the context of
clustering, how min-cut trees can be updated for dynamic graphs. This is, we de-
veloped some ideas for a fully dynamic version of the Gomory-Hu method. Thereby
we gained several updating algorithms distinguished by the elementary modifica-
tions of edge addition and deletion as well as vertex insertion and removal. The
formulation of these algorithms covered several levels of detail.

To construct a minimum-cut tree the Gomory-Hu method uses minimum u-v-
cuts in the underlying graph, which correspond to maximum flows. To achieve
non-crossing minimum separating cuts, as required by the min-cut tree structure,

119

120 CHAPTER 8. CONCLUSION

it further uses the technique of contracting vertices. However, these contracting op-
erations make the implementation of the Gomory-Hu method very involved. Gus-
field [Gus90] hence modified the Gomory-Hu method such that arbitrary minimum
u-v-cut can be used to construct the tree, and therefore, omitted the contraction of
vertices. In Section 4.2 we showed that Gusfield’s ideas are also adaptable to our
dynamic algorithms for updating min-cut trees, which is by far not not obvious.
The modified algorithm developed by Gusfield is of a “closed form”, which means,
it does not allow to choose the step pairs arbitrarily. However, our updating algo-
rithms use initial intermediate min-cut trees which are not guaranteed to constitute
a valid intermediate tree in such a closed process. Therefore, we proved the correct-
ness of Gusfield’s ideas in a more general situation, which allows to use it for our
algorithms, too.

In the case of an edge addition our newly developed algorithm saves as many
calculations of maximum flows as edges are excluded from the path between the two
vertices defined by the modified edge in the previous min-cut tree. The contrary
is true for an edge deletion, where the new algorithm saves as many max-flow
calculations as edges lie on this path in the previous min-cut tree. We further
stated some facts which allow to modify this edge-deletion algorithm such that at
least a chance of saving more effort occurs.

Additionally, as the performance of the Gomory-Hu method is highly affected
by the calculation of minimum u-v-cuts, we analyzed the possibilities of dynami-
cally updating these cuts individually. It turned out that those approaches that
base on updating corresponding maximum flows, like the approach of Kohli and
Torr [KT07], are not able to deal with the hiding of step pairs during a Gomory-Hu
execution. Furthermore, we introduced another approach which considers a DAG-
representation of all minimum u-v-cuts concerning two fixed vertices u and v and
updates the whole set of minimum u-v-cuts. However, the performance of this ap-
proach strongly depends on the structure of the underlying graph. If there exist
only few minimum separating cuts per fixed pair of vertices, many new max-flow
calculations become necessary anyway. Nevertheless, this procedure is at least able
to deal with the hiding of step pairs on certain conditions. Theoretically it can
hence be used for updating min-cut trees in a partially dynamic graph where only
edge deletions occur. Furthermore, it became possible to calculate a min-cut tree
which represents not only one minimum separating cut per pair of vertices, but the
set of all minimum separating cuts.

Chapter 6 then returned to the subject of graph clustering. At this point we were
able to deduce new updating algorithms to cluster fully dynamic graphs from the
algorithms developed so far. We illustrated that for the calculation of a reasonable
clustering according to the cut-clustering method of Flake et al. it is not necessary
to construct a complete min-cut tree. Instead, it suffices to isolate the artificial
sink t. So abbreviating the previous algorithms for updating complete min-cut
trees yielded new updating algorithms regarding the following modifications: The
addition of an edge within a single cluster, the addition of an edge between two
different clusters, the deletion of an edge within a single cluster and finally the
deletion of an edge between two different clusters. The insertion or the removal of
a vertex simply corresponds to the addition or deletion of a singleton in the current
clustering. Our Intra-Cluster Edge Addition algorithm thereby turned out
to be almost trivial. This result basically meets the assertion Saha and Mitra
stated for this case. We further proved that the Inter-Cluster Edge Deletion
algorithm always returns the previous clustering by calculating a guaranteed number
of maximum flows if we assume the previous clustering to also constitute a valid
clustering for the modified graph. Each of our newly developed updating algorithms
further tries to return a clustering as close as possible to the previous one.

121

Finally we affirmed the theoretically predicted behavior of the new updating
algorithms with the aid of a small experiment. In this experiment we compared
the performance of the four new algorithms to a repeated calculation of new clus-
terings from scratch with the aid of the cut-clustering heuristic given by Flake at
al. [FTT04]. In 95.7% of all modifications our algorithms needed less max-flow cal-
culations than the heuristic, while together they achieved a saving of about 90.45%
of max-flow calculations.

Open Problems

In the context of updating complete min-cut trees by individually updating min-
imum u-v-cuts it turned out that those approaches that base on updating corre-
sponding maximum flows are not able to deal with the hiding of step pairs dur-
ing a Gomory-Hu execution. This is caused by the difficulty of rerouting a given
flow to a different target without a complete recomputation. So efficiently solving
such reroutings constitutes an open problem. Another open problem related to
the former, is the construction of a compact, merged DAG-representation result-
ing from several DAG-representations all containing minimum u-v-cuts for a pair
{u, v}, which is not adjacent in a min-cut tree TDAG(G) representing all minimum
separating cuts for all pairs of vertices (compare to Chapter 5, Subsection 5.2.3).

A more extensive experimental analysis of the performance of our new updating
algorithms may also be future work. An interesting questions in this context is
whether the new algorithms are able to achieve even more savings by storing and
updating DAG-representations of minimum separating cuts. Furthermore, we did
not yet measure or evaluate the similarity between the previous and the updated
clusterings our new algorithms try to achieve. The new updating algorithms never
split an unaffected cluster and further try to reuse as big parts as possible of the
affected clusters before calculating new clusters. So we expect a high similarity
between the updated and the previous clustering. Regarding the offline problem
the cluster preserving behavior of our new algorithms allows to reorder those ele-
mentary modifications in the queue that affect clusters which are not affected by
other modifications. Assume for example a sequence of intra-cluster edge additions
regarding one fixed cluster not affected by other modifications. Such a sequence
can simply be ignored, as the addition of an edge within a cluster turned out not
to change the clustering. A more extensive analysis of the offline problem is also
future work.

The last and probably most important open problem mentioned here constitutes
the parameter α, which the clustering quality of our algorithms depends on. The
algorithms developed in this work are not yet able to simultaneously update this
parameter dynamically, as well. However, this might become necessary if the re-
peatedly modified, underlying graph changes that much that the originally defined
parameter does not make sense anymore. The returned clusterings then become
trivial.

122 CHAPTER 8. CONCLUSION

Bibliography

[BE05] U. Brandes and T. Erlebach, editors. Network Analysis. Springer, 2005.
1, 2

[BK04] Y. Boykov and V. Kolmogorov. An experimental comparison of min-
cut/max-flow algorithms for energy minimization in vision. IEEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI
’04), 26(9):1124 – 1137, 2004. 74

[DGGW08] D. Delling, M. Gaertler, R. Görke, and D. Wagner. Engineering com-
parators for graph clusterings. In Proceedings of the 4th International
Conference on Algorithmic Aspects in Information and Management
(AAIM ’08), volume 5034 of Lecture Notes in Computer Science, pages
131–142. Springer, 2008. 117

[Din70] E.A. Dinic. Algorithm for solution of a problem of maximum flow in
networks with power estimation. Soviet Math. Doklady, 11:1277–1280,
1970. 74

[DKL76] Y. Dinitz, A. V. Karzanov, and M. Lomonosov. On the structure of
a family of minimal weighted cuts in a graph. In A. Fridman, editor,
Studies in Discrete Optimization, pages 290–306, 1976. (in Russian).
79

[DN95] Y. Dinitz and Z. Nutov. A 2-level cactus model for the system of
minimum and minimum+1 edge-cuts in a graph and its incremental
maintenance. In Proceedings of the 27th Annual ACM Symposium on
the Theory of Computing (STOC ’95), pages 509–518, 1995. 79

[FF56] Jr. L. R. Ford and D.R. Fulkerson. Maximal flow through a network.
Canadian Journal of Mathematics, 8:399–404, 1956. 71

[Fle99] L. Fleischer. Building chain and cactus representations of all mini-
mum cuts from hao-orlin in the same asymptotic run time. Journal of
Algorithms, 33:51–72, 1999. 2, 79

[FTT04] G. W. Flake, R. E. Tarjan, and K. Tsioutsiouliklis. Graph clustering
and minimum cut trees. Internet Mathematics, 1(4):385–408, 2004. 5,
7, 2, 6, 8, 9, 11, 12, 16, 18, 19, 21, 22, 25, 39, 89, 102, 104, 105, 109,
110, 115, 119, 121

[GGW07] M. Gaertler, R. Görke, and D. Wagner. Significance-driven graph clus-
tering. In Proceedings of the 3rd International Conference on Algo-
rithmic Aspects in Information and Management (AAIM ’07), Lecture
Notes in Computer Science, pages 11–26. Springer, June 2007. 2

123

124 BIBLIOGRAPHY

[GH61] R. E. Gomory and T.C. Hu. Multi-terminal network flows. Journal of
the Society for Industrial and Applied Mathematics, 9:551–570, Decem-
ber 1961. 5, 7, 2, 4, 25, 31, 32, 35, 39, 86, 119

[Gol08] A. Goldberg. The partial augment-relabel algorithm for the maximum
flow problem. In Proceedings of the 16th Annual European Symposium
on Algorithms (ESA ’08). Springer, 2008. 74

[GT88] A. Goldberg and R. E. Tarjan. A new approach to the maximum-flow
problem. Journal of the ACM, 35(4):921–940, 1988. 67, 74, 79, 85, 87

[Gus90] D. Gusfield. Very simple method for all pairs network flow analysis.
SIAM Journal on Computing, 19(1):143–155, February 1990. 7, 32, 35,
47, 48, 49, 51, 52, 120

[HO94] J. Hao and J. B. Orlin. A faster algorithm for finding the minimum cut
in a directed graph. Journal of Algorithms, 17:424 – 446, 1994. 79

[KS08] H. Kaplan and N. Shafir. Finding path minima in incremental un-
rooted trees. In Proceedings of the 16th Annual European Symposium
on Algorithms (ESA ’08). Springer, 2008. 71

[KT07] P. Kohli and P. H. S. Torr. Dynamic graph cuts for efficient inference
in markov random fields. IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI ’07), 29(12):2079–2088, 2007. 2, 71, 73,
74, 82, 83, 90, 120

[Nag06] H. Nagamochi. Computing a minimum cut in a graph with dynamic
edges incident to a designated vertex. IEICE Transactions on Info and
Systems, Volume E90-D(2):428–431, 2006. 71

[NG04] M. E. J. Newman and M. Girvan. Finding and evaluating community
structure in networks. Physical Review E, 69(026113), 2004. 2

[Pou90] J.A. La Poutre. New techniques for the union-find problem. In Proceed-
ings of the 1st Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA ’90), pages 54–63. Society for Industrial and Applied Mathe-
matics, 1990. 81

[PQ80] J.-C. Picard and M. Queyranne. On the structure of all minimum cuts
in a network and applications. Mathematical Programming Study, 13:8
– 16, 1980. 71, 72, 78, 79

[SM06] B. Saha and P. Mitra. Dynamic algorithm for graph clustering using
minimum cut tree. In Proceeding of the 6th IEEE International Con-
ference on Data Mining - Workshops (ICDMW ’06), pages 667–671,
2006. 5, 7, 2, 6, 8, 9, 10, 11, 12, 13, 15, 16, 18, 20, 21, 22, 25, 89, 105,
106, 119

[Tar74] R. E. Tarjan. A note on finding the bridges of a graph. Information
Processing Letters, 2(6):160–161, 1974. 44

[Zac77] W. W. Zachary. An information flow model for conflict and fission in
small groups. Journal of Anthropological Research, 33:452–473, 1977.
109

	Introduction
	Contradicting Barna Saha and Pabitra Mitra
	Review of the Cut-Clustering Algorithm
	Detecting a Methodical Error
	Discussion of Inconsistencies
	The Merging Lemma and CASE 2
	The Unaffect Lemma and CASE 3

	Summary

	Basics Regarding Cuts and Min-Cut Trees
	Some Basic Lemmas
	Canonically Induced Cuts
	Canonically Induced Cuts in Modified Graphs
	Canonically Induced Min-Cuts in Modified Graphs

	The Gomory-Hu Method
	Gomory-Hu Algorithm for Min-Cut Trees
	Definitions and Resulting Remarks

	Dynamically Updating Min-Cut Trees
	Dynamic Changes of Min-Cut Trees
	Execution Theorem and Corollaries
	Algorithm Ideas for Updating Min-Cut Trees

	Simple Implementation of Update-Algorithms
	Realizing the Node Splitting (Phase 1)
	Realizing the Subtree Reconnection (Phase 2)
	Specification of Algorithm Ideas

	Algorithm Engineering
	Edge-Induced Cuts as Minimum Separating Cuts
	New Minimum Separating Cuts for Given Vertices
	Improving the Algorithms

	Dynamically Updating Minimum u-v-Cuts
	Adjusting Residual Graphs
	Flows in Undirected Weighted Graphs
	The Method of Kohli and Torr
	Using Dynamic Flows for Updating Min-Cut Trees

	Updating a Set of All Minimum u-v-Cuts
	Representation of All Minimum u-v-Cuts
	Updating the DAG-Representation
	Using DAG-Representations for Min-Cut Trees

	Updating Clusterings Based on Min-Cut Trees
	Abbreviating the Cut-Clustering Method
	Updating Algorithms for Edge Deletions
	Inter-Cluster Edge Deletion
	Intra-Cluster Edge Deletion

	Updating Algorithms for Edge Additions
	Intra-Cluster Edge Addition
	Inter-Cluster Edge Addition
	Bow to the Approach of Saha and Mitra

	Experimental Analysis
	Zachary's Friendship Network
	Exemplary Inter-Cluster Edge Additions
	Exemplary Intra-Cluster Edge Deletions
	Exemplary Inter-Cluster Edge Deletion

	Real World E-Mail Graph

	Conclusion

