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ABSTRACT
TheWind Farm Cabling Problem (WCP) aims at finding the cost-
minimal inter-array cable routing, also known as internal cable
layout, of a wind farm so that all turbine generation is transmitted
to the substations. For each possible connection in the wind farm,
one of several cable types can be selected. Each cable type comes
with a thermal capacity and unit length costs.WCP can be modeled
as a graph theoretic minimum-cost flow problem with a step-cost
function on each edge. We extend a deterministic “hill-climbing”
heuristic from the literature. This heuristic runs into local minima
from which it is not able to recover. We embed this algorithm into
a framework which involves strategies for escaping these minima.
These escaping strategies allow the heuristic to descend into other,
possibly better, minima. We design three such strategies and pro-
vide an extensive statistical evaluation comparing these strategies.
The best combination of strategies is evaluated against Gurobi 9.0.0
on a Mixed-integer Linear Program formulation and a Simu-
lated Annealing-based heuristic from the literature on publicly
available synthetic benchmark sets. Our simulations show that our
framework works exceptionally well on the largest benchmark in-
stances where it provides better solution within 15 minutes than
Gurobi within one day on 80 % of the input instances. The simula-
tions on the benchmark sets are complemented by a case study on
the world’s soon-to-be largest offshore wind farm: Hornsea One.
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1 INTRODUCTION
Offshorewind energy, according to the International EnergyAgency,
has the potential to cover over 18 times today’s worldwide electric-
ity demand [12]. In October 2019, the last of 174 wind turbines of the
Hornsea One wind farm was built. It is scheduled to be completed
in 2020, at which point it will be the world’s largest operational
offshore wind farm [16, 19]. One step in planning an offshore wind
farm is designing the internal cable layout, i. e., determining what
cables should be used so that all turbine generation can be trans-
mitted to the offshore substations. We refer to this planning step
as theWind Farm Cabling Problem (WCP). Since this problem
is computationally difficult, a variety of exact and heuristic ap-
proaches exist to solve variants of WCP with different degrees of
technical depth. This work extends a heuristic that used Negative
Cycle Canceling (NCC) for a cost-minimization variant of WCP. We
develop and evaluate strategies to escape local minima in which the
heuristic gets stuck. Simulations on synthetic benchmark sets from
the literature show that our extension strictly improves the original
algorithm and that it yields better solutions than competitors but in
a fraction of their allotted running time. In a case study we compare
our algorithm to an exact approach usingMixed-integer Linear
Programming (MILP) on the Hornsea One wind farm.

2 RELATEDWORK
Awind farm can bemodeled as a graph inwhich vertices correspond
to turbines and substations, and edges represent possible connec-
tions between them. In an early work using such a graph model
forWCP, the problem of finding a good cable layout is split into hi-
erarchical layers. These layers relate to well-known graph problems
for which heuristic approaches are proposed [3]. Other solution
methods include clustering [6] or Simulated Annealing (SA) [13]
or use similar problem formulations such as a Planar Open Vehicle
Routing Problem formulation [1]. WCP can also be modeled as
a graph-theoretic minimum-cost flow problem in which multiple
cable types give rise to a step cost function on the edges [7]. Such
step cost functions are the main difference to standard minimum-
cost flow problems, in which flow incurs costs proportional to its
magnitude. The authors of [7] present a hybrid approach of MILP
and heuristic steps to fix constraint violations. They also provide
an overview of other optimization problems in wind farm planning.
We adapted Negative Cycle Canceling, a standard technique for
minimum-cost flows with linear costs, for WCP [9, 10]. Combining
a local search algorithm such as theNCC adaptation with strategies
for escaping local minima is known as Iterated Local Search. An
introduction to this notion can be found in [14]. This technique
is applied to a Fixed-Charge Transportation Problem [4] and to a
Water Distribution Network Design Problem [5].
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3 CONTRIBUTION
In previous work, we showed that our NCC algorithm compares
well against Mixed-integer Linear Programming and Simulated
Annealing even though it gets stuck in local minima and is there-
fore not able to use its running time advantage [10]. In this work,
we design strategies that allow the NCC algorithm to escape local
minima and to continue its “hill-climbing” approach.Wewill denote
the algorithm from [10] as the standard NCC algorithm or NCC
algorithm without escaping and our extension as NCC algorithm
with escaping or as our framework. In Section 4 we give a quick
overview of the problem formulation. A recap of the standard NCC
algorithm and a detailed explanation of our escaping strategies
follow in Section 5, as well as a description how they combine
with the standard NCC algorithm to constitute our framework.
In Section 6 we present simulations on benchmark sets from [13],
which also include a set of cable types. We identify the best mixture
of our escaping strategies in Section 6.1, followed by a compar-
ison to an MILP formulation solved by Gurobi (Section 6.2), to
the standard NCC algorithm (Section 6.3), and to a heuristic us-
ing Simulated Annealing (Section 6.4). We conclude with a case
study on a wind farm instance that resembles the aforementioned
Hornsea One wind farm in Section 7. On small- and medium-sized
instances, our framework proves to provide competitive solutions
to other solution approaches On larger instances—instances the
size of Hornsea One and bigger—it is able to find better solutions
while simultaneously needing less running time.

4 WIND FARM CABLING PROBLEM
We describe the problem formulation according to [9]. The wind
farm is modeled as a graph G = (V ,E), where the set of vertices V
is partitioned into turbinesVT and substationsVS . Each turbine has
a production of one unit and each substation has a capacity on the
amount of turbine production units that can be collected by this
substation. Between any two vertices, except for pairs of substations,
there is at most one directed edge. The edge is directed arbitrarily.
The edges represent possible connections on which a cable can
be laid. A flow on G is a function f : E → R with the following
convention: If f (u,v) > 0 for some edge (u,v), we say that there is
flow fromu tov . For notational purposes we alias f (v,u) = −f (u,v)
for any edge (u,v), which explains how to interpret negative flow
in a straight-forward way. We call a flow f on G feasible if all of
the following conditions hold: 1) At every turbine, the difference of
outgoing to incoming flow is exactly one (namely the production
of the turbine). 2) At every substation, the total incoming flow is at
most that substation’s capacity. 3) No substation has an edge with
flow leaving the substation.

The costs of a flow are derived from the available cable types. On
each edge, the cost of the flow on that edge is the length of the edge
times the per unit cost of the cheapest cable type that has sufficient
capacity to carry the flow. The cost is zero if there is no flow on
the edge and it is infinity if there is no cable type with sufficient
capacity. This cost function is a step function and resembles the
assumption that there can be at most one cable per edge. The total
cost of a flow is the sum of the costs over all edges.

5 ALGORITHM
We describe the NCC algorithm as outlined in [9] and as explained
in [10]. The algorithm first computes an initial feasible flow of finite
cost. Then, the residual graph R is constructed as a copy of the wind
farm graphG where each edge is replaced by two reversely oriented
edges between the same vertices. A virtual substation is added
that has one outgoing edge to and one incoming edge from every
substation. The algorithm picks a natural number ∆ and computes
for each residual edge by how much the cost of the flow on the
underlying wind farm edge would change if additional ∆ units of
flowwere be sent in the direction of the residual edge. With the help
of an adaptation of the well-known Bellman-Ford algorithm [2, 8],
the NCC algorithm tries to find a negative cycle in the residual
graph with the just mentioned marginal (or residual) costs. If it
finds a negative cycle, the flow on G is adjusted according to the
cycle and ∆. The algorithm continues with the potentially modified
flow and a possibly new value of ∆ until no more improvements can
be found. In this case, the algorithm terminates in a local minimum.
There are examples of non-optimal flows without negative cycles
in the residual graph for any value of ∆.

The standard NCC algorithm terminates within two minutes
on the benchmark sets from [13] and yields competitive results to
an MILP solver on the same instances with a maximum running
time of one hour [10]. In the conclusion of this work we raised the
point that this gap in running times could be used to deal with the lo-
cal minima theNCC algorithm gets stuck in.We pick up this sugges-
tion and incorporate the NCC algorithm in a framework of strate-
gies that change a flow and thereby potentially allow the NCC algo-
rithm to descend into different local minima. In this section, we ex-
plain the framework and give detailed descriptions of these escaping
strategies. For each strategy, a weight is specified which represents
a strategy’s frequency of being used in the course of our algorithm.

The framework starts by initializing a flow on the wind farm
as specified by the NCC algorithm. This algorithm then performs
its hill-climbing until no further negative cycle can be canceled.
While the standard NCC algorithm terminates at this point, our
framework picks one of its available escaping strategies randomly
according to the specified weights and applies it to the current flow.
If this strategy changes the flow (no matter if to the better or worse),
another round of Negative Cycle Canceling is run until no more
negative cycles are found. This round of negative cycle canceling
is subject to adapted residual costs as explained in detail for each
strategy. This adaptation helps to prevent changesmade by escaping
strategies from being overturned right away and is replaced by
another adaptation once an escaping strategy successfully changes
the flow. If an escaping strategy is not able to change the flow,
another escaping strategy is picked and the unsuccessful strategy
will not be picked again until the current flow has been changed.
We refer to one pick of an escaping strategy with the ensuing NCC
run (in case of changes) as one iteration of the framework. The
framework terminates if no escaping strategy is able to change the
current flow anymore or if a given time limit is exceeded.

In the following paragraphs we describe three escaping strategies
we developed. All escaping strategies modify the flow based on
local changes to small parts of the graph such as the neighborhood
of a vertex. At all times will the flow stay feasible.
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Free Upgrade (U). This strategy identifies all edges with a non-
zero flow such that adding one additional unit of flow incurs the
need for a bigger cable type. The strategy then performs a single
run of the NCC algorithm with ∆ = 1 in which all residual costs
are computed normally except for the aforementioned edges. Their
residual costs are set to zero instead of a finite positive residual cost.
If a cycle is canceled, all residual edges with a previously saturated
cable type on that cycle are identified. For these edges, the residual
cost for the remainder of the iteration are adjusted to reflect the
free upgrade, i. e., the cost for the new cable type and all cable types
with more capacity is reduced by the cost for the upgrade.

Move Leaf (L). This strategy identifies all leaves, i. e., turbines
without incoming flow. It iterates over all leaves one-by-one and
checks if it has a shorter outgoing edge than the one that transmits
the turbine’s production. In that case, one unit of flow is rerouted via
the shorter edge to a substation with free capacity using only those
edges whose flow is non-zero and less than the maximum cable
capacity—if such a path exists. Then, for the remainder of this itera-
tion, the residual costs of the leaf’s new outgoing edge are adjusted
in the sense that the cost for the cheapest cable type is given for free.

Deal with Bonbon (B). The adaptation of the Bellman-Ford al-
gorithm used in the standard NCC algorithm may also identify
negative sets of cycles in the residual graph which do not improve
the flow when being canceled [10]. The reason for those sets is that
negative cycles consisting of two edges only may exist. Even if the
negativity suggest a decrease of the total costs, canceling such a
two-edge cycle does not change the flow at all. A drawing of such
a set of cycles in [9] inspired us to call such a set of cycles a bonbon.
This escaping strategy makes use of such an unhelpful set of cy-
cles as follows: It first identifies all negative residual edges on the
bonbon. Then it tries to find paths in the residual graph that close
a negative cycle when merged with a negative edge (and possibly
other edges) from that bonbon. The strategy therefore runs again
the Bellman-Ford algorithm with the same setting (including the
adapted residual costs if applicable) for which the unhelpful bonbon
occurred. For each negative edge on the bonbon it considers each
incoming edge.From there it traverses the parent pointers out of
the Bellman-Ford algorithm until a cycle is closed. If the cycle is
negative, then it is canceled and the escaping strategy terminates.
Otherwise, the search continues. This strategy does not change the
standard residual cost computation for the following NCC run.

6 SIMULATIONS
The framework is written in C++14 and compiled with GCC 8.2.1
using the -O3 -march=native flags. All simulations run in single-
thread mode (to ensure comparability) on a 64-bit architecture with
four 12-core AMD-CPUs clocked at 2.1 GHz with 256 GB RAM
running OpenSUSE Leap 15.1.

We evaluate our framework using the cable types from Table 1 on
publicly available benchmark sets [13]. The instances from bench-
mark set N1 have one substation and 10–79 turbines. The other
benchmark sets contain instances with multiple substations and
varying numbers of turbines: 20–79 for N2, 80–180 for N3 and N5,
and 200–499 for N4. The instances in N5 are complete graphs ex-
cept that edges between substations are omitted. The edge sets of

Table 1: The cable types from [13].

Cable type 1 2 3 4
Capacity 5 8 12 15
Cost per unit length 20 25 27 41

Table 2: Number of instanceswhere escaping strategies yield
better solutions than the NCC algorithm without escaping.

B L LB U UB UL ULB
87 434 460 297 327 580 603

Table 3: Comparison of sets of escaping strategies. An entry
in row i and column j shows on howmany instances setting i
produces better solutions than setting j. Values are marked
by a star if they are significant withp < 10−2 and by two stars
if p < 10−4. The best set of strategies is marked green.

B L LB U UB UL ULB
B — 8.9 % 0% 17.8 % 8.5 % 4.3 % 0.3 %
L 91.9 %⋆⋆ — 23.3 % 70.6 %⋆⋆ 65.7 %⋆⋆ 14.9 % 14.2 %
LB 100 %⋆⋆ 76.7 %⋆⋆ — 74.8 %⋆⋆ 71.9 %⋆⋆ 23.0 % 16.9 %
U 82.2 %⋆⋆ 29.4 % 25.2 % — 1.8 % 1.0 % 2.7 %
UB 91.5 %⋆⋆ 34.3 % 28.1 % 98.2 %⋆⋆ — 6.5 % 4.0 %
UL 95.7 %⋆⋆ 85.1 %⋆⋆ 77.0 %⋆⋆ 99.0 %⋆⋆ 93.5 %⋆⋆ — 36.1 %
ULB 99.7 %⋆⋆ 85.8 %⋆⋆ 83.1 %⋆⋆ 97.3 %⋆⋆ 96.0 %⋆⋆ 63.1 %⋆ —

instances in all other benchmark sets are generated by a nearest-
neighbor procedure with additional shortcuts. The parameters for
this procedure are the same in all those benchmark sets.

6.1 Comparing sets of escaping strategies
In a first step, we want to compare different sets of escaping strate-
gies to see how they perform in helping theNCC algorithm to move
away from local minima. We consider seven different sets. The sets
are given by the three escaping strategies from Section 5 with each
escaping strategy having either weight 0 or 1. The all-zero set is not
considered. We refer to the sets by the letters from each strategy
in the set with weight 1. Hence, the set referred to as UB uses the
strategies Free Upgrade and Deal with Bonbon with a weight of 1
each but does not use the strategy Move Leaf. For the simulations,
we randomly select 200 instances from each of the five benchmark
sets in [13]. Each set of strategies is run on each instance with a
time limit of 15 minutes and the best solution value for the combi-
nation of strategy set and instance is recorded. In the terminology
of [10] we use CollectingDijkstraAny as the initialization and
IncDec as the delta strategy. Those have been identified as the best
strategies for the standard NCC algorithm [10]. Table 2 shows the
numbers of instances out of the selected 1000 on which each of the
sets of escaping strategies yields a better solution to WCP than the
standard NCC algorithm. For the Deal with Bonbons strategy this
count equals the number of instances where there was a change to
the flow at all. The other two strategies rely on the respective ensu-
ing run of the NCC algorithm to find better solutions. In particular,
for those strategies, a change to the flow does not necessarily yield
an improvement to the best solution. The numbers in Table 2 show
that Deal with Bonbons and Free Upgrade seem to have the most
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problems to allow finding better solutions. Move Leaf on its own
allows finding better solutions on more than 43 % of the instances.
But only in conjunction with the other escaping strategies, better
solutions can be found on approximately 60 % of all instances.

These numbers only show the presence of a new better solution
after applying escaping strategies. We need to investigate how the
new best solutions of a set compare to solutions from the other sets.

For each ordered pair (i, j) of set of strategies we count the num-
ber of instances ni and nj where the best solution found by i (and j,
respectively) is better than the one found by j (and i , respectively).
If i and j were equally good, then ni ∼ Bin(ni + nj ,θ ) with θ = 0.5
for each set of randomly and independently chosen instances, i. e.,
ni is binomially distributed. For each ordered pair we perform a
one-sided binomial sign test for two dependent samples [18]. We
test the null hypothesis H0 : θ = 0.5 against the alternative hy-
pothesis H1 : θ > 0.5. We apply a Bonferroni-correction by the
number of tests (42). We interpret rejecting the null hypothesis
as setting i performing better than setting j. In Table 3 we show
the ratios ni/ni+nj and the corresponding significance levels. Note
that symmetric entries need not represent all 1000 instances since
instances are omitted if both strategies find the same best solution.

Interestingly, the set of strategies which looked most promising
in quantity according to Table 2 also turns out to provide better
solutions than all the other sets. The difference between ULB and UL
is quite small: Only on 295 out of 1000 instances there is a different
best solution. Nonetheless, the results from Tables 2 and 3 show
that ULB is the best set of strategies among those we considered
in our simulations. We therefore use this set of escaping strategies
when we compare our framework to other approaches toWCP.

6.2 Comparing NCC with Escaping toMILP
Next, we want to see how the framework compares to an approach
using Mixed-integer Linear Programming. To this end, we ran-
domly select 200 instances from each of the five benchmark sets
independently from the previous selection. We run our framework
with setting ULB on each instance five times with different random
seeds and a time limit of 15 minutes each. For the MILP experi-
ments we use Gurobi 9.0.0 [11] on the following formulation with
a maximum running time of one day1:

min
∑
e ∈E

∑
k ∈K

ck · x(e,k)· len(e) (1)

s. t. fnet(u) = −1 ∀u ∈ VT , (2)
fnet(v) ≤ capsub(v) ∀v ∈ VS , (3)

| f (e)| ≤
∑
k ∈K

x(e,k) · capk∀e ∈ E, (4)∑
k ∈K

x(e,k) ≤ 1 ∀e ∈ E, (5)

f (u,v) ≤ 0 ∀(u,v) ∈ E : u ∈ VS , (6)
f (u,v) ≥ 0 ∀(u,v) ∈ E : v ∈ VS , (7)

f (e) ∈ R ∀e ∈ E, (8)
x(e,k) ∈ {0, 1} ∀e ∈ E,k ∈ K , (9)

1TheMILP approach is an exact solution method. Yet, it is computationally prohibitive
on large instances to run Gurobi until the optimal solution is provably found.
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Figure 1: Ratio of solution values from our framework and
Gurobi separated by benchmark sets. On each input instance
our framework runs five times with different random seeds
and the best solution from each run is recorded. The value
of worst of these five solution from each run is divided by
the best solution found by Gurobi. These ratios are depicted
in increasing order.

where G = (VT ∪ VS ,E) is the wind farm graph and capsub(v) is
the capacity of substation v . The length of an edge e is denoted
by len(e) and the net flow at a vertex u is given by fnet(u) =∑
(v,u)∈E f (v,u)−

∑
(u,v)∈E f (u,v). The set of available cable types

is denoted by K . For each cable type k ∈ K let ck be the cost of k
per unit of length and capk be its capacity. We interpret the deci-
sion variables as x(e,k) = 1 if and only if cable type k is used on
edge e . Equation (5) ensures that at most one cable is built per edge.
Equations (2) and (3) represent the balance constraints at turbines
and substations, respectively, and that no substation capacity is
exceeded. The cable capacity constraints are given by Eq. (4). Fi-
nally, Eqs. (6) and (7) stand for the assumption that no flow leaves
substations back into the wind farm.

In Figure 1 we show a comparison of solution values from our
framework and the MILP. For each instance, we identify the worst
of the five separate best solutions after 15 minutes and use this
value for the comparison to Gurobi. The reason for this choice is
to account for different trajectories of picks of escaping strategies.
Picking the worst of the five solutions relates to a worst-case anal-
ysis of our framework. We compute the ratio of this “worst-case
value” to the best solution found by Gurobi at the conclusion of its
one-day running time. Hence, a value less than 1 means that in all
five runs of our framework the best solution found is better than the
solution given by Gurobi. We order these ratios in increasing order
and plot them separately for each benchmark set. Two values are
not shown: In benchmark set N4 there is one data point at 0.9797
and in benchmark set N1 there is one data point at 1.0303.
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Figure 2: Ratios of best solutions computed byNCC algorithms to best solutions found by Gurobi separated by benchmark sets.
Ratios on the x-axis show solutions from the NCC algorithm with escaping strategies and ratios on the y-axis show solutions
from the standard NCC algorithm, i. e., without escaping strategies. The NCC algorithm with escaping is run five times with
different random seeds and only the worst run is considered.

In the two smallest benchmark sets N1 and N2 our framework
and Gurobi find the same solution on a combined 27.75% of the
randomly selected instances and our framework finds better so-
lutions on 22% of the instances. On benchmark sets N3 and N5,
whose graphs only differ in the number of edges, the NCC algo-
rithm with escaping finds better solutions on 37.5% and 45% of
the instances. It performs best on the benchmark set N4, which
includes the instances with the highest number of turbines (up to
500). Here, it outperforms Gurobi on 79.5 % of the selected instances
and achieves the best solution ratios across all benchmark sets.

6.3 Improvement over standard NCC
From the construction of our framework it is obvious that it does
not perform worse than the standard NCC algorithm. We want to
see by how much our framework improves the solutions from the
algorithm without escaping. To this end, we run the standard NCC
algorithm on the same 1000 instances we have used for theMILP
experiments. As stated in [10], the standard NCC algorithm ter-
minates in less than two minutes. A comparison of these solution
values to solution values from our framework after a running time
of 15 minutes is shown in Figure 2. Each data point corresponds to
one instance. On the x-axis we display the solution ratios from Fig-
ure 1. On the y-axis the ratios of the standard NCC algorithm

to the MILP are depicted. As before, values below 1 stand for in-
stances on which the respective NCC algorithm performs better
than theMILP. Values above the diagonal represent instances on
which the escaping strategies yields better solutions than NCC
without escaping. Figure 2 shows that on 36.5% and 32.5% of the
instances fromN1 andN2, respectively, theNCC algorithm with es-
caping provides better solutions than the standard algorithm. OnN3
and N5 these figures rise to 69% and 71.5%, respectively. On the
biggest instances (N4), our framework improves the standard NCC
solution on 85 % of the selected instances. A total of 25 data points
are not depicted in Figure 2, all of which are due to the fact that the
standardNCC solution yields a ratio bigger than 1.03. In all those in-
stances the NCC variant with escaping provides strictly better solu-
tions than the standard variant. Six of those data points are fromN1,
with NCC ratios between 1.0307 and 1.0433. The corresponding
ratios from our framework are between 1 and 1.0304. A single data
point is fromN4: (0.9923, 1.0451), which means that the NCC algo-
rithm with escaping finds better solutions than the MILP in all five
runs. The remaining 18 data points are from N5. All standard NCC
ratios but one are between 1.0644 and 1.1707 with corresponding
ratios for the escaping algorithm between 0.9944 and 1.0362 (six of
which are smaller than 1). The single remaining point has a NCC
ratio of 1.9937, which reduces to 1.0014 after escaping.
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6.4 Comparing NCC with Escaping to SA
We want to compare our framework to a different heuristic ap-
proach, namely an algorithm using Simulated Annealing [13]. To
this end, we again select 200 instances from each of the five bench-
mark sets from [13]. As before, we perform five runs of our frame-
work per instance for 15 minutes each with different random seeds.
We also run the Simulated Annealing approach on each instance
with a maximum running of one hour in its best setting [13].

In Figure 3 we show the results from those simulations. As be-
fore, we record the best solution from each of the five runs of our
framework and identify the worst of those five solutions. We divide
this solution value by the best solution found by the Simulated An-
nealing approach. The resulting ratios are ordered increasingly and
displayed on the y-axis. Note that values below 1 stand for instances
on which the NCC algorithm with escaping performed better than
Simulated Annealing. It stands out that the benchmark sets sep-
arate in two categories: those with few edges (N1, N2, and N3)
and those with many edges (N4 and N5). On the smaller instances,
Simulated Annealing performs better than NCC with escaping:
On N1, Simulated Annealing finds better solutions on 47.5 % of the
instances. On N2 and N3 this holds on 63 % and 62 %, respectively.
There are a total of 122 out of 600 instances in those benchmark
sets on which both approaches yield equal solutions. Even though
Simulated Annealing performs better on instances from the three
benchmark sets with smaller instances, in all but four instances
our framework yields solutions that are at most 2% worse than
the solutions provided by Simulated Annealing—keeping in mind
that we use the worst of five best solutions computed by our frame-
work. For those benchmark sets, five data points are not depicted
in Figure 3, all of which are from N1. The respective ratios range
between 0.8984 and 0.9689. Looking at the benchmark sets whose
instances have many edges, we see that the NCC algorithm with
escaping strategies outperforms Simulated Annealing. It provides
better solutions on 95.5% (N4) and 93% (N5) of the selected in-
stances. On more than half of these instances, our algorithm is
better than Simulated Annealing by a margin of 1 %. On 17.5 % this
margin is bigger than 3 % (not depicted in Fig. 3).

We conclude that the answer to the question whether NCC with
escaping or Simulated Annealing performs better heavily depends
on the size of the input instance. Note, however, that in our simu-
lations Simulated Annealing is allowed four times the maximum
running time of the NCC algorithm and that we use the worst of
five NCC algorithm runs for the comparison.

7 CASE STUDY: HORNSEA ONE
In the previous simulations we have seen that using the NCC algo-
rithm with escaping strategies yields very good solutions compared
to two other approaches from the literature. We want to see how
our framework works on real-world data. To this goal we do a case
study on the largest, soon operational, offshore wind farm in the
world: Hornsea One off the coast of Great Britain [19].

We extract the geographical coordinates of the wind turbines
and substations from Open Street Map [17]. From there, we create
a complete graph (except for edges between pairs of substations as
stated in Section 4). This results in a graph with 174 turbines, three
substations and a total of 15573 edges. In reference to the benchmark
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Figure 3: Ratio of solution values from our framework and
Simulated Annealing separated by benchmark sets. On each
input instance our framework runs five times with differ-
ent random seeds and the best solution from each run is
recorded. The value ofworst of these five solution from each
run is divided by the best solution found by the Simulated
Annealing approach. These ratios are depicted in increasing
order.

Table 4: Solution ratios of our framework to Gurobi on
Hornsea One

Run 1 Run 2 Run 3 Run 4 Run 5
0.9966 0.9909 1.0015 0.9967 1.0013

sets from [13], such an instance would be one the largest instances
from N5. We use the cable types from these benchmark sets as
specified in Table 1. For simplicity we use Euclidean distances for
the edges instead of orthodromic distances.

As before, we give Gurobi one day of maximum running time.
Our framework runs for 15 minutes each in five runs with different
random seeds. In Table 4 we show the ratios of solution values from
each of the five runs to theMILP solution. As before, ratios below 1
indicate that our framework finds a better solution than Gurobi. In
three of five runs does our framework find a better solution than
Gurobi. In the worst of the five runs, the solution given by the NCC
algorithm with escaping is less than 0.2 % worse than the solution
from the MILP. The best solution across five runs is nearly 1%
better than the solution computed by Gurobi.

We want to visually compare different cablings: One from our
framework, one from Gurobi and the real-world internal cabling as
shown in [15]. For our algorithm we choose the cabling from run 3
as it performs worst of all runs. From top to bottom in Figure 4 we
show the cabling computed by the NCC algorithm, by Gurobi and
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(a) Cabling computed by our framework in Run 3

(b) Cabling computed by Gurobi

(c) Real-world cabling adapted to the cable types from the benchmark sets

Figure 4: Visualization of three internal cablings for the Hornsea One wind farm
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the real-world cabling. We color-code the four cables types accord-
ing to increasing capacity (green, orange, red, and black). For the
real-world cabling only one cable type seems to be used. This one,
however, fits very well in the cable types from the benchmark sets,
as the smallest cable type has a capacity of five units of turbine pro-
duction. In the real-world cabling, the maximum amount of turbine
production on a single cable is also five. Note that the model as sum-
marized in Section 4 does neither prohibit cycles nor cable crossings.

It stands out that both algorithmic approaches yield cablings
with large proportions of radial layouts. Turbine production tends
to be collected from the radial layout bits to make use of cable types
with higher capacity the closer the nearest substation gets. From
looking at different solutions it seems hard to identify parts of a
solution which are particularly good compared to other solutions.
There seem to be, however, some parts in particular near the bound-
ary of the wind farm, where multiple solutions coincide. It could
prove helpful to the algorithmic approaches to fix those parts in
the solutions to some extent to facilitate finding the best solutions
possible in the given running time.

8 CONCLUSION
We investigated if and to what extent a Negative Cycle Canceling-
based hill-climbing algorithm [9, 10] for the Wind Farm Cabling
Problem can profit from various strategies that allow the algo-
rithm to escape local minima. To this end we developed three such
strategies: Free Upgrade temporarily allows thicker cables without
having to pay for the upgrade, Move Leaf allows a local change of
a turbine without incoming flow, and Deal with Bonbon overcomes
algorithmic difficulties from the negative cycle detection algorithm
by altering structures on which flow is changed. Mixing these
strategies yielded different degrees of helpfulness in escaping local
minima. An equal mixture of all three proved most helpful among
the settings we considered. We compared the NCC algorithm using
this most helpful setting to Gurobi on an MILP formulation and
to the standard NCC algorithm without escaping strategies. The
escaping strategies do indeed improve the standard NCC algorithm.
Not only do they yield solutions within 1 % of the solutions found
by Gurobi after a running time of one day most of the time, but also
provide better solutions on roughly 80 % of the largest instances we
considered. In comparison to an approach using Simulated Anneal-
ing our framework did exceptionally well on larger instances or
instances with many edges. With the results on the standard NCC
algorithm in mind [10] the choice which of both NCC approaches
to use strongly depends on the circumstances, e. g., on the available
running time. If provably optimal solutions are desired and high
running times are not prohibitive to the use case, then the MILP
approach might be the go-to solution method. In a case study on
the Hornsea One wind farm we compared solutions provided by
our framework and by Gurobi. We have seen that they provide
similar solutions in terms of solution costs but also that they are
difficult to compare visually.

Moving forward, one could try to develop more escaping strate-
gies to further facilitate exploring the search space and escaping
local minima in theNCC algorithm to increase the numbers fromTa-
ble 2. More tuning in the weights for the escaping strategies could
further improve the solution qualities provided by our framework.

From a more practical perspective, more characteristics than only
the solution value could prove helpful in comparing different solu-
tions given by various algorithmic approaches. Such characteristics
could represent technical constraints such as non-crossing or cycle-
free cable layouts. It remains open if and to what extent these
constraints can be incorporated into the NCC algorithm. Along
the same lines could it prove helpful for practitioners to incorpo-
rate other cost elements, e. g., losses or maintenance, into the cost
function of the minimum-cost flow problem.
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