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Abstract

Given a set P of n point sites in the plane, the city Voronoi diagram subdivides the
plane into the Voronoi regions of the sites, with respect to the city metric. This metric
is induced by quickest paths according to the Manhattan metric and an accelerating trans-
portation network that consists of ¢ non-intersecting axis-parallel line segments. We describe
an algorithm that constructs the city Voronoi diagram (including quickest path information)
using O((c + n)polylog(c + n)) time and storage by means of a wavefront expansion. For
¢ € Q(v/nlog®n) our algorithm is faster than an algorithm by Aichholzer et al., which takes
O(nlogn + c?logc) time.

Key words: wavefront expansion, city Voronoi diagram, straight skeleton, closest pair, mini-
mization query, transportation network

1 Introduction

Imagine Manhattan in 2050—void of car traffic. Only a network of conveyors accelerates the
movement of countless busy visitors in this huge pedestrian zone. As is known streets are arranged
isothetically in Manhattan, so given a general direction, pedestrians can intuitively find a footpath
to one of the many post offices. But time is precious, and thus a technique is required, telling an
arbitrary pedestrian the quickest path to the post office that can be reached most quickly. Detours
utilizing the transportation network should be accepted if they help to save time. A courier service
with several staging posts faces a similar problem. For any incoming job it has to be determined
how and starting from which post the pickup point can be reached most quickly.

We concretize the situation as follows. We are given a transportation network C' = {s1,...,s.}
which consists of ¢ isothetic line segments that are only allowed to touch and a set P = {p1,...,pn}
of n point sites in the plane. Movement off the network takes place with unit speed with respect to
the Manhattan metric, while a segment s; can be used to move with some speed g; > 1 into either
direction. We require that the number of different speeds is constant. A segment can be accessed
and left at any point. According to the Manhattan or Li-metric, the distance dyianhattan Of two
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points a = (x4, yYo) and b = (xp,yp) in the plane is defined as dyianhattan (@, ) = |az — b + |ay — by|.
Observe that the length £(e) of an isothetic line segment e = ab is the distance dyfanhattan(a, b) of its
endpoints. In this paper we use the following notion of distance, which is based on the Manhattan
metric. Let IT = (a = uy,u9,...,up_1,ur = b) be an isothetic path from a to b with vertices
ui,...,ug, then the length ¢ of II is defined as
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off the network C on the network C

Thus, the length of II is the sum of the lengths of all parts of II that are off the transportation
network, plus the length of those parts that are on the network, individually weighted by the speed
g; of the corresponding network segment. In other words, the length of the path II from a to b is
the time it takes to walk along II from a to b, see Figure [1] for an example.
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Figure 1: A five-segment transportation network (black lines) and two a—b paths (fat gray lines).
Path IT,, = (uy,...,us) has length 144+6/2 = 17, path I1,, = (wy,...,w7) has length 104+18/3 = 16.

Now we can define the distance d between two points a and b in the plane to be the temporal
length of the quickest path IT between them:

d(a,b) = min

II isothetic a-b path

The definition of quickest paths induces a metric in the plane that we call city metric (note that
in Figure|l| d(a,b) = ¢(IL,,) = 16). For this metric we define the Voronoi region reg(p;) of a site p;
as the set of all points that are closer to p; than to any other site p;. We define the city Voronoi
diagram Vg (P), first described by Aichholzer et. al. [5], as the subdivision of the plane into these
Voronoi regions. Given a query point ¢ € R2, the site in P closest to ¢ can be determined by
point location (see e.g. [9]) in time logarithmic in the complexity of Vo (P). We additionally obtain
a refinement Vo (P) of the city Voronoi diagram, which is a further subdivision of the plane into
regions of combinatorically equivalent quickest paths to P. This refinement serves as a quickest-path
map and can report the quickest path to the closest site in additional time O(L), with L being the
path complexity.



In this paper we obtain the following new result. We present a technique to construct the city
Voronoi diagram of n sites and c isothetic network segments with a constant number of different
speeds in O((c + n)log®(c + n)loglog(c 4 n)) time using O((c 4 n)log®(c 4 n)) storage.

The technique we present for the construction of the city Voronoi diagram can be viewed as
an example of a more general approach to solving geometric problems. In a setting that involves
objects of high complexity we often have to realize the following three concurrent requirements
on our data. First, the objects need to be simplified in a way such that they allow fast handling
and processing. This is best accomplished by guaranteeing constant complexity of data objects.
Second, this data simplification must not result in a substantial increase in the number of objects.
And third, the simplified objects must help to solve the problem on the original data efficiently.
Our refinement of the city Voronoi diagram meets these three requirements, as we shall see.

The trapezoidal decomposition (see e.g. [9]) is a well-known method for answering point-location
queries in the plane that also follows the stated paradigm. A given planar subdivision is augmented
by drawing vertical extensions through all vertices. The extensions stop when they meet another
edge of the subdivision. Again, this yields a refined planar subdivision with simplified objects of
constant complexity. The search structure for this subdivision, a tree, is built by a randomized
incremental algorithm. Due to the simple shapes of the trapezoidal regions, the search tree can be
built efficiently. The refinement does not increase the complexity of the subdivision asymptotically.
And finally, a query point can be located efficiently in the original subdivision via the trapezoidal
regions.

This paper is structured as follows. In Section [2] we go through the previous work on city
Voronoi diagrams. In Section [3| we analyze the mechanics of the wavefront expansion. Here we also
determine the complexity of the diagram and present a lifting into 3-space, where the additional
dimension represents the elapsed time. This helps us to apply orthogonal range queries for predict-
ing the next change in the shape of the wavefront. In Section [4] we describe our main contribution,
an algorithm that efficiently maintains the shape of the wavefront during the expansion. In Sec-
tion [5] we put things together. This yields the overall result, the construction of the city Voronoi
diagram in O((c + n)polylog(c + n)) time. We conclude the paper with a short discussion and an
outlook in Section[6] To get an impression of the city Voronoi diagram of a moderately complicated
transportation network and several sites, we refer to Figure [18| at the end of this paper.

2 Previous work

The city metric was introduced by Abellanes et al. [I] (under the name time metric) who derived
basic properties of quickest-path metrics. Moreover they gave an O(nlogn)-time construction
algorithm for the city Voronoi diagram V¢ (P) for the special case that the transportation network
is a single straight line. Hurtado et al. [I4] discuss some results for single-line transportation
networks under the Euclidean metric. Based on the concept of weighted regions, introduced by
Mitchell and Papadimitriou [16], Gewali et al. [11] studied a special case that connects to the
city Voronoi diagram. The segments of a given transportation network C can be viewed as one-
dimensional instances of weighted regions. The authors construct the quickest path between two
points in time O(c?). Another variant of our setting is the airlift Voronoi diagram, which restricts
access to the network to a set of stations. Recently Ostrovsky-Berman [17] presented the first
time-optimal algorithm for airlift Voronoi diagrams, running in O((n+ s) log(n+s)+c¢) time with s
being the number of stations. Aichholzer et al. [5] presented an algorithm that constructs the city



Voronoi diagram of n sites and ¢ segments given a uniform network speed in O(nlogn + ¢?logc)
time using O(c + n) space. The resulting data structure, the refined city Voronoi diagram Ve (P),
answers quickest-path queries in O(L + log(c + n)) time. In their algorithm the authors first
prepare a set of time-stamped nodes in the grid induced by the segments using the continuous
Dijkstra method [I5]. Then carefully adapted straight-skeleton figures scheduled at these nodes are
computed by employing techniques for the construction of abstract Voronoi diagrams.

Under the Euclidean metric, Abellanas et al. [2] studied shortest paths and Voronoi diagrams
again for the special case that the transportation network is a single straight line. Bae and Chwa [6]
presented an algorithm that establishes a city Voronoi diagram in the Euclidean plane, admitting
arbitrary orientation and speed of network segments. Their technique is similar to the approach of
Aichholzer et al. [5] and requires O(nc?logn + ¢3logc) time and O(c(c + n)) space. The authors
recently proved that their approach naturally extends to more general metrics including asymmetric
convex distances [7].

The two fundamental techniques used in this paper, namely the expansion of a wavefront,
tracing out a straight skeleton with its vertices [4] and the maintenance of closest pairs in dynamic
sets [I0], have been employed before, e.g. by Mitchell et al. [15] for solving the discrete geodesic
problem and by Agarwal et al. [3] for collision detection in kinetic data structures, respectively.

3 The wavefront expansion

Our algorithm constructs the city Voronoi diagram Vo (P) by simulating the expansion of a wave-
front starting at time tg = 0 at the set P of sites. At time ¢ > 0 the wavefront is the set of all
points whose distance from P is ¢ in the city metric. The key observation is that during the course
of the expansion each point of the plane is reached by the quickest possible path starting from P.
In order to tell the quickest path from ¢ to P we therefore need to store information about how
the wavefront reached ¢ and invert the path taken by the wavefront. This is done as follows. By
storing where the wavefronts of different sites merge and by tracing vertices resulting from such
mergings, we immediately obtain a subdivision of the plane. A region of this subdivision is the set
of points that can be reached most quickly starting at the unique site contained. The borders of
this subdivision consist of all points that can be reached equally quickly from at least two sites,
thus the subdivision obtained is the Voronoi diagram with respect to the city metric, i.e. the city
Voronoi diagram V¢ (P), see Figure 2| We can trace the path of other wavefront vertices in order
to obtain a refinement of Vi (P). Since the wavefront consists exclusively of vertices and straight
line segments (due to the properties of the city metric), this refined city Voronoi diagram V¢ (P)
subdivides V¢ (P) into regions of uniform wavefront expansion. (Note that the faces, edges, and
vertices of Vo (P) correspond to the edges, vertices and combinatorial changes of the wavefront,
respectively.) Thus, if we store for each such region the direction in which the wavefront swept over
the region, we can tell for all points of that region how to reach the oldest object of this region.
This oldest object can either be a vertex or a line segment, being the part of the region that was
reached first by the wavefront. By doing this repeatedly, we ultimately reach a point in P, tracing
back the expansion of the wavefront. See Figure [3] for an example.



Figure 2: The wavefronts of two sites p; and
p2 merge, tracing out the (dashed) boundary of  Figure 3: The expansion of the wavefront guides
their Voronoi regions. the way from a query point ¢ back to p;.

3.1 Events

We discretize the continuous expansion of the wavefront at the points in time when a collision
between the wavefront and the network or between two parts of the wavefront happens. We call
each of these points in time event. The combinatorial shape of the wavefront changes at most at
such events. An event is a pair of a timestamp and a locus in the plane, which is either a point or
a line segment. We distinguish four types of events, depending on the situation. A vertex of the
wavefront hitting a segment generates a type-A event, while an edge of the wavefront sliding into
a network node triggers a type-B event. A type-C event occurs when a wavefront edge shrinks to
zero length and finally, a type-D event is a collision of two parts of the wavefront. See Figures
for examples.
It is not hard to see the following:

Observation 1 For any type of event the number of changes in the wavefront is constant.

3.2 Relevant events

As a consequence of Observation [I, we only need to focus on the detection and on the number of
events. An upcoming event can be detected by comparing for all edges and vertices of the wavefront
the timestamp of their next collision. This comparison leads us to the notion of virtual events. A
virtual event is defined by two points of the wavefront, or a point of the wavefront and a point of
the transportation network that would collide, given their current movement, but actually do not
collide due to the fact that at least one of them is involved in an event that happens earlier. See
Figures[p| and [6] for an example. There are also events that do happen, but still do not contribute to
the complexity of Vo (P). We call such events redundant, see Figure [7| for an example. Events that
are neither redundant nor virtual are relevant and take part in shaping Vo (P). Next we discuss an
important result about the total number of relevant events.
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(b) Edge e slides into vertex vc in a type-B event.

402

v
(c) Edge e1 shrinks and causes a type-C event (see e.g.
the leftmost portion of Figure (3)).

U3
(d) Vertex v; and edge e cause a type-D event.

Figure 4: The four different types of events that occur during the wavefront expansion.
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Figure 5: A type-A event involving vertex v1  Figure 6: The event has been prevented by an-
and segment s1 is pending. other event.



Figure 7: The shape of the wavefront at vertex vy after colliding with the segment s; makes the
subsequent type-A event (gray rhombes) redundant.

3.3 The linear complexity

Adapting a result of Aichholzer et al. [5] to a constant number k of network speeds we obtain the
following result:

Theorem 1 The number of relevant events and the complexity of the refined city Voronoi diagram

Vo(P) is O(k(c+n)).

Proof. We build upon Observation [l| and count the number of events that generate additional
faces in the region bounded by the wavefront. These are type-A and type-B events (see Figure 4)).
The number of type-B events is clearly bounded by twice the number of network segments. To
estimate the number of type-A events, define a vertex v of the wavefront to be a peak if v moves
parallel to a coordinate axis, does not move along a segment of the network, and the wavefront is
locally contained in a halfplane orthogonal to the direction of movement. Only peaks can cause
type-A events. Each point in P generates at most four peaks, each endpoint of a segment in C
at most one. No other event generates a new peak. On the other hand a peak can cause at most
k non-redundant type-A events, since after colliding with a segment with maximum speed in the
network, all further type-A events of this peak will be redundant. See Figure [7] for an example.
Thus, the number of faces of V¢ (P) is linear in k(c + n).

As Aichholzer et al. [5] observe, the refined city Voronoi diagram V¢ (P) can be considered the
straight skeleton of a set of figures and as such is a planar graph whose vertices have degree at
least three. Thus, by Euler, the number of vertices and edges of Vo (P) is linear in the number of
faces. As the relevant events of the wavefront are in one-to-one correspondance with the vertices
of Vo (P), the number of events is linear in k(¢ + n), too.

As opposed to relevant events, the number of redundant and virtual events can each amount
to Q(c?), as can be seen in Figure While these events are easy to identify, we cannot treat
them explicitly without a significant increase in the asymptotic running time, since the number of
relevant events is only linear in k(c + n). Thus we are left with the task of efficiently detecting
the next event while implicitly ignoring non-relevant events. In the next subsection we consider a
unifying approach for detecting all four types of events.
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(a) Redundant events. (b) Virtual events.

Figure 8: There can be Q(c?) virtual and redundant events (marked by crosses), even if all segments
have the same speed (2).

3.4 The wavefront in 3-space

We now add a third dimension to our view of the wavefront expansion, such that a positive z-
component represents the time that passed since the start of the wavefront in the z-y-plane. Con-
sequently wavefront vertices and edges trace out rays and polygons, respectively. Note that once
the wavefront has reached the last event, the orthogonal projection of these polygons onto the plane
yields the regions of the refined city Voronoi diagram. In a similar fashion we extend all network
segments to vertically unbounded rectangles and all network nodes to vertical rays. Each ray is
defined by its point of origin and by the vector v by which it moves in unit time. The z- and
y-components v, and v, of this vector correspond to the movement of the corresponding vertex in
the original xz-y plane. Naturally, the z-component v, is 1 for all rays. Thus, the speed of a ray
U = (vg,vy,1) is |U], using the Euclidean metric. Note that the vertical rays corresponding to net-
work nodes have speed 1. The z-component of the wavefront expansion thus yields the timestamp
of an event by its z-coordinate in space. Figures [9a] and [9D] show how the z-axis is added in the
context of type-B and type-A events, respectively. Analogously, a type-C event, as in Figure
yields a collision of a ray 77 and a polygon € in 3-space, while a type-D event, as in Figure
involves the collision of a ray v; and a polygon € in 3-space. Summarizing, for each type of event
in space, we observe the following:

Observation 2 In 3-space any event can be described as a collision between a ray and a polygon.

Such collisions can be computed using ray-shooting techniques, but general methods for ray-
shooting have unsatisfactory time bounds. While it is possible to answer general on-line ray-
shooting queries among n static arbitrary polyhedra in R? in O(logn) time, a preprocessing time
of O(n*) is required, see [12] for an overview of ray-shooting techniques. Furthermore, to avoid
detecting a quadratic number of events, we still need to take care of redundant and virtual events.
In the next section we describe how we efficiently detect upcoming events. As from now we will
treat the wavefront in 3-space, as described in this section, however, for the sake of readability most
figures will depict the projection onto the z-y plane. Since the rays and slabs in 3-space correspond
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(a) A type-A event in space, involving ray v and poly- (b) Ray @ and polygon € collide in a type-B event
gon 51 is imminent. at point vp in space.

Figure 9: Examples of events, observed as collisions of a slab and a ray in space.

one-to-one to rays and slabs in 2-space via orthogonal projection, we do not differentiate between
them explicitly.

4 Maintaining the next event

Since each event is a collision of a ray and a polygon we can always determine the next event by
maintaining the closest pair between these two dynamic sets of objects (polygons and rays). If we
can do this quickly and repeatedly, we can efficiently simulate the expansion of the wavefront. In
the following we present a hierarchy of event-prediction mechanisms, culminating in the prediction
of the next relevant event of the expansion.

4.1 The global prediction

Eppstein and Erickson [10] proposed a method of maintaining the closest pair among two dynamic
sets R and B of objects according to a given distance measured : Rx B — Rar that can be computed
in constant time. Both sets are dynamic in that they are subject to insertions and deletions. As a
prerequisite the sets R and B need to support minimization queries, i.e. for any object b € B an
object r € R minimizing d(r, b) can be determined and vice versa. In our application R and B will
be partially unbounded polygons and tips of rays, respectively. We use the following result:

Theorem 2 ([10]) Suppose that after P(n) preprocessing time, we can maintain a data structure
of size P(n) that supports insertions, deletions, and minimization queries, each in amortized time
T(n). Then after O(P(n) + nT'(n)) preprocessing time, we can maintain the closest pair between
R and B in O(P(n)) space, O(T(n)logn) amortized insertion time, and O(T (n)log*n) amortized
deletion time.
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(a) Slab S; is created (b) At z1 slab S1 be- (¢) At z2 slab Ss be-
: at p and is involved in comes inactive. Slabs comes inactive. Slab Sy
v event 1. So and S3 are created. is created.

Figure 10: Division (dashed) of Figure 11: The white region of Figure ist split into slabs
regions (shaded) into slabs. during the wavefront expansion at events z; and zs.

Employing this theorem we are left with the lesser problem of efficiently performing minimization
queries. If we consider the requirements of the theorem in our situation, we need to determine
for any given ray (i.e. moving vertex) the region (of Vo (P)) it hits next and the inverse, for any
given region A the ray that hits A next. These two well-known types of queries are ray-shooting
queries and lowest-intersection queries, respectively. Let us call the results of such queries local
predictions and the closest pair in the sense of the above theorem the global prediction. We now
face the challenge of simplifying our data such that we can implement fast minimization queries
while taking implicit care of non-relevant events.

4.2 Simplification of wavefront data

The data we deal with for the purpose of local predictions comprises rather complicated, potentially
unbounded polygons in 3-space. Recall that the orthogonal projection of these polygons onto the
plane yields the regions of the refined city Voronoi diagram, thus we call these polygons regions.
If we split these regions along the current wavefront, as depicted in Figure [10| projected onto the
plane, namely each time the region hits the locus of an event, we obtain slabs that are possibly
unbounded triangles or quadrilaterals in 3-space. The key observation is that all slabs have constant
complexity.

For an example, observe the white region in Figure [I0} This region of the refined city Voronoi
diagram has high complexity, since after its creation at site p, it is involved in two subsequent events
at 1 and at xs. As depicted in Figure we subdivide the white region during the wavefront
expansion at these events along the current wavefront in order to obtain slabs of low complexity.

As long as a slab has not yet been involved in an event (except for the one that created the
slab) we call it active. Analogously we define active rays. If an active slab is involved in a second
event it becomes inactive and gets bounded by the current wavefront. This changes the shape
of all slabs involved, except for already bounded triangular slabs, which merely become inactive.
Then, depending on the type of event, new slabs are spawned. These new slabs either continue the
slabs bounded by the event and are thus still contained in the corresponding region of the refined
city Voronoi diagram, or create a new region. For example, in Figures and |11| two new slabs
(light gray and dark gray) and two continuing slabs (S and S3) are created at event x;. Note
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‘ Type ‘ shape

unbounded triangle

2 parallelogram

3 diverging quadrilateral

4 bounded triangle or quadrilateral

e

v

Figure 12: The four types (color-coded) of slabs that occur. Dashed lines indicate where regions of
Vo (P) (boundaries dotted) are divided into slabs along the current wavefront.

that inactive slabs cannot take part in a relevant event. They have already been swept over by the
wavefront and thus we exclude them from further event detection. For example, in Figure [10| after
both events have occured, only slabs Sy and Sy are still active. Neither S3 nor S; can be involved
in any future event.

We distinguish four types of slabs depending on the relative direction of bounding rays (diverging
or converging) and on the number of bounding edges (three or four). For the definition of the four
types of slabs see Figure Note that a slab must belong to one of these types since a slab is both
created and terminated by the wavefront, and not involved in an intermediate event. Thus a slab
is either a triangle or a quadrilateral of some sort, all of which are covered by the four types.

By Theorem [I] the total number of relevant events that occur during the wavefront expansion
is linear in k(c+n). Since by Observation [I] each event causes a constant number of changes in the
wavefront, we obtain the following corollary:

Corollary 1 Subdividing the refined city Voronoi diagram Vo (P) into slabs yields a partition of
complexity O(k(c+n)).

We are now left with answering minimization queries for a linear number of triangles and unbounded
quadrilaterals versus rays.
4.3 Ignoring virtual events

The following two lemmas guarantee that only relevant events or redundant events can possibly be
globally predicted. Redundant events will be dealt with in Section

Lemma 1 A slab and a ray either miss each other, collide in an event or define a virtual event.

Proof. Active slabs potentially cover areas beyond the current wavefront. The key observation is
that the slabs are designed to cover only those points of the plane that they would cover in the
final diagram, if they are not made inactive prematurely by some event involving them. The same
holds for rays. Thus, if a slab and a ray intersect, this either actually causes an event during the

11
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Figure 13: Among these slabs only S; and Sy Figure 14: In principle each combination of a slab
are similar. Slab S3 encloses a smaller angle and a ray class defines a sublocal data structure.
and Sy is a bounded triangle, thus neither is However, some combinations are ignored (crosses)
similar to any other. by arguments of Section

wavefront expansion, or is prevented by another event. Each collision that does not correspond to
a relevant or a redundant event is anticipated by another event.

The importance of the design of the slabs becomes obvious if we observe that the consequence
of an overly coarse simplification of the wavefront data would be collisions outside the scope of
events and virtual events. Thus, Lemma |1 would not hold, and such events would have to be dealt
with explicitly. Lemma [2| shows that we do not even have to identify virtual events explicitly.

Lemma 2 Virtual events are never predicted globally.

Proof. The global prediction maintains the next collision between a ray and a slab. By Lemma
this constitutes either an event or a virtual event. If it were virtual, then by the definition of a

virtual event, it would not be the next collision to happen. Thus, virtual events are never globally
predicted.

4.4 Orthogonalized sublocal queries

We now define slabs to be similar if their sides pairwise enclose the same angle with the x-axis. For
an example see Figure Rays are similar if they merely point in the same direction and move at
the same speed. These definitions at hand, the following holds for classes of similarity of slabs and
of rays:

Lemma 3 The number of classes of similarity of slabs and of rays is constant.

The proof of Lemma (3| builds upon the fact that the expansion of a wavefront edge can only be
accelerated, i.e. altered from the simple Manhattan metric expansion, by a single network segment.

12



slab S

ray rf

Figure 15: A transformed slab-ray pair in a  Figure 16: An additional axis (¥-axis) is intro-
sublocal data structure. duced for range searching.

Since the number of different speeds and angular positions of segments is constant, the wavefront
can expand only with a constant number of orientations and speeds. Since vertices of the wavefront
are the intersection points of two edges, the same holds for wavefront vertices.

Let us now consider an arbitrary combination of one class of slabs with one class of rays. Fig-
ure [14| shows an exemplary sketch of a few such combinations. We call the result of a minimization
query involving all objects of exactly these two classes a sublocal prediction. Since by Lemma [3] the
number of ray and slab classes is constant, the number of pairs of ray and slab classes is constant,
too. Therefore, any local prediction can easily be computed from sublocal predictions in constant
time. Within a sublocal data structure considerable simplifications are possible. For each such data
structure we can define a coordinate transformation f consisting of at most one rotation and four
concatenated shearings. First the rotation aligns the rays with the z-axis and one side of the slabs
with the z-axis. Then step by step each side of the slabs is orthogonalized to two of the three axes.
As shown in Figure we end up with simple orthogonal range queries instead of ray-shooting or
lowest-intersection queries.

Observation 3 Sublocal data structures can be implemented as multi-dimensional orthogonal range-
query data structures.

Since each sublocal data structure contains only similar rays and slabs, we can define two axes of
the coordinate system to be parallel to slab edges, a third axis to be parallel to the rays. The
same can be achieved by applying the abovementioned rotation and shearings to the data in a fixed
coordinate system. Note that in order to orthogonalize slabs of types 3 and 4 (see Figure , we
need to introduce an additional axis (see Figure , adding one more level to the range searching
data structure, since these slabs comprise three pairwise non-parallel edges. Summarizing, we
observe that the range-searching data structures are at most four-dimensional, see for example [9]
or [12] for an overview of such data structures.

4.5 Feeding the global prediction

As stated earlier the global prediction relies on local predictions. Local predictions in turn are based
on a constant number of sublocal queries, each being answered with a multi-dimensional orthogonal

13



range query. The general picture of our algorithm is given in Figure [I7] Making use of Theorem []
and of well-known results about multi-level range trees and fractional cascading (see e.g. [9]) we
can state the following (treating the number & of different network speeds as a constant).

Observation 4 After an O((n+ c)log®(n +c))-time preprocessing our sublocal data structures can
each handle insertions, deletions and queries in O(log3(c + n)loglog(c + n)) time using O((c +
n)log®(c +n)) total space. The same holds for local data structures.

Similar results for ray shooting in a fixed direction among general k-oriented polyhedra are obtained
in [§].

Comparing slabs with rays we observe that while slabs are static, rays are not. Thus a ray
cannot simply be represented by its static foot point pgot. In order to do justice to the dynamic
nature of rays we should in fact use the (moving) tip of the rays. However, instead of repeatedly
advancing the tips of all rays we can simply apply a time correction when inserting the foot points
into our lowest-intersection data structures and when querying our ray-shooting data structures:
We set pp = proot — (0,0,1)[0], with ¢ being the time elapsed since the start of the wavefront
at tp = 0 and ¥ being the direction of the ray. The key observation is that inside each individual
sublocal data structure these modified foot points represent at all times the relative position of the
tips of their rays, once the transformation f has been applied. Thus, time correction ensures that

events are reported in the proper temporal order.

4.6 Ignoring redundant events

Since the statement of Observation [4 is applied to relevant events, all that is left to deal with after
Lemmas [I] and [2| are redundant events. We can show that due to the careful design of our slabs we
do not need to invest any time ignoring redundant events. As indicated in Figure [7], a redundant
event is due to a wavefront vertex hitting a segment with equal or lower speed than segments hit
by the same wavefront vertex earlier. If we simply refrain from forwarding local queries to sublocal
data structures designed for segments with equal or lower speed, we implicitly ignore all redundant
events. The crossed-out entries in Figure [L4]illustrate this. This finally yields the following lemma:

Lemma 4 The total number of globally predicted events is O(k(c+ n)).

5 Main result

The structure of our algorithm is shown in Figure and in the previous sections we have described
all its vital data structures and procedures. We now state our main result:

Theorem 3 Given an isothetic transportation network C with ¢ disjoint isothetic segments, a
constant number of different speeds on these segments and a set P of n sites, the refined city Voronoi
diagram can be computed in O((c + n)log®(c + n)loglog(c + n)) time using O((c + n)log(c + n))
storage. The refined city Voronoi diagram answers queries asking for the quickest path to S in
O(L + log(c+ n)) time, where L is the complexity of the path.

Proof. Recall that we assume that the number £ of different network speeds is constant. According
to Lemma {4}, O(c + n) events are treated. Using Observation {4, Theorem [2f allows us to predict
each event in O(log®(c+n)loglog(c+n)) time. Hence, the total time used for the global prediction
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Figure 17: Sketch of the construction algorithm.

is O((c 4 n)log®(c + n)loglog(c + n)), which dominates the time needed to handle events (see Ob-
servation |lf and Lemma . Observation @ and thus Theorem [2| require O((c +n)log®(c+n)) space.
The preprocessing time of O((c + n)log®(c + n)loglog(c 4+ n)) for the global prediction dominates
the preprocessing times of the other data structures (see Observation . The total preprocessing
time in turn is dominated by the running time of the global prediction.

6 Conclusion and open problems

In this paper we have presented an algorithm for the construction of the refined city Voronoi
diagram. By carefully simplifying the data objects involved, we were able to employ fast techniques
for the simulation of a wavefront expansion. On the other hand, the space consumption of our
simplified data and the data structures is only slightly superlinear. While our algorithm runs in
subquadratic time it relies heavily on certain constraints in the setup. In particular these are the
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constant number of different network speeds and the isothetic network layout. Our results can be
generalized to arbitrarily oriented network segments and to weighted sites as long as the number of
different orientations and weights is constant. However, it is a challenge to find a general solution
that runs in subquadratic time and can handle arbitrary network speeds, site weights, and segment
orientations.
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Figure 18: The city Voronoi diagram Vi(P) (dashed) of a complex transportation network C' (bold)
and a set P of twelve sites (disks). The individual speeds of the network segments are given next
to the segments. Snaphots of the expanding wavefront are given by thin solid lines, while the

additional edges of the refined diagram V¢ (P), being the traces of wavefront vertices, are indicated
by dotted lines.
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