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Abstract

The experimental evaluation of many graph algorithms for practical use involves both tests on real-
world data and on artificially generated data sets. In particular the latter are useful for systematic and
very specific evaluations. Roughly speaking, we are interested in the generation of dynamic random
graphs that feature a community structure of scalable clarity such that (i) the graph changes dynamically
by node/edge insertions/deletions and (ii) the graph incorporates a clustering structure (communities),
which also changes dynamically. The wide variety of generators for random graphs has not yet tackled
such dynamically changing preclustered graphs. In this work we describe a random graph generator which
is based on the Erdős-Rényi model but adds to it tunable dynamics and a tunable and evolving clustering
structure. More precisely, an evolving ground-truth clustering known by the our generator motivates
the changes to the graph by sound probabilities, such that the visible clustering changes accordingly. A
clustering in this context is a partition of the node set into clusters, which internally are rather densely
interconnected, but do not share many edges in between one another. We detail our implementation as a
module of the software tool visone and as a standalone tool, alongside the data structures we use.1 Our
software is free for use and download.
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1 Introduction

The field of clustering dynamic graphs is a widely untrodden area of research. We understand graph
clustering as the partition of the nodes into natural groups based on the paradigm of intra-cluster density
versus inter-cluster sparsity of edges. The majority of algorithms for graph clustering and related problems
are based on this paradigm. Several formalizations have been proposed and evaluated, an overview of such
techniques is given in [3] and [6].

In order to support the efforts to dynamize static clustering algorithms, suitable test instances are needed.
Our goal was to create a generator with advanced features not present in formerly existing implementations
of graph generators. Roughly speaking, we wanted the generated graphs to be

� dynamic, i.e. representing the change of a network in the course of discrete time

� clustered, i.e. exhibiting a clustered structure based on intra-cluster density versus inter-cluster sparsity
of edges

� random, i.e. generated according to a probabilistic model

One can think of the generator as a producer of events. They include small-scale events such as the
creation or removal of a single edge or the introduction or removal of a node, but also large-scale clustering
events, which cause clusters to gradually split or merge. Such a generator allows us to examine how dynamic
clustering algorithms deal with small fluctuations on the one hand and major developments in the clustering
structure on the other. The line of random graph generators for static graphs—at least for our purposes—
reaches back to the prominent and fundamental Erdős-Rényi model [8], also known as G(n, m), Gilbert’s
model G(n, p) [10]. This model was cast into a generator for random preclustered graphs for the purpose
of experiments on clustering algorithms in [4, 5]. We further this line by adding an intuitive mechanism of
dynamics to the preclustered Erdős-Rényi model. For more detailed material on other graph generators we
refer the reader to [11, 7, 1] and references therein.

If you do not want to hassle with any further introduction or details, we point you straight to Section 5.1
for how to download our implementation, and to Section 3.1 for input parameters and for how to read the
output file. Otherwise we cordially invite you to continue reading and thoroughly learn about the mechanics
of this generator.

1.1 The Rough Picture

We will now sketch out the procedure of the generation process on a rough scale, in order to provide the
reader with an informal overview of our approach, before delving into details in later sections. We thus
avoid technicalities here and leave a number of questions open. With some slightly synthetic assumptions,
the generator can be thought of as the head of some department organizing his personnel (the vertices)
which collaborates (via edges) into groups (clusters). Throughout this example it is helpful to keep in mind
that there are three clusterings around: (i) a ground-truth clustering, which motivates the changes in the
graph which define a (ii) reference (observable) clustering which adapts to the ground-truth—with some
lag—and (iii) the clustering which a subjective observer might see with his own biased view. All three can
be the same, but usually differ. We return to this distinction at the end of this example.

Projects Come and Go. The head of department initially organizes his co-workers (i.e., the vertices of
a graph) into groups such that each group works on a different project. From time to time projects are
finished or new ones are launched; however—as in in real life—projects are not neatly scheduled sequentially,
but they overlap or end before the next one arrives in a pretty random fashion. In case a project ends, the
persons that were handling it are now available for other tasks, thus they are assigned to another project
and assist the group which has already been working on it, thus the head of department merges the two
groups. In case a new project is launched, a new group needs to be assigned to it; to this end, an existing
working group is split such that some people stay at the old project and others move on to the new one.
This is how groups (i.e., clusters) evolve.
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Collaborations Arise and Conclude. Suppose now a certain set of projects is being worked on. By any
means people working on the same project (i.e., within the same group) need to collaborate heavily and rely
on one another. However, these collaborations do not pop up the instance a project is launched, but they
gradually evolve. On the other hand, people in different projects rarely need to collaborate. However, two
persons that are newly separated into different groups might not immediately shut down their collaboration
but might do this with some delay. This is how relations of collaboration (i.e., edges) evolve.

Co-Workers are Hired and Fired. Finally, as a process which is more often than not (and in our
case always) independent from projects, our department has a certain fluctuation of personnel. On the
one hand, new co-workers are employed and join some group – and immediately build up collaborations
(otherwise they don’t know what needs to be done). On the other hand, people leave the department or
are fired, immediately breaking up their collaborations. The department might have a general tendency to
grow, shrink or maintain its average manpower. This is how the set of co-workers (i.e., vertices) evolves.

Plans vs. Reality. As a last preparation for the concepts described later, consider how the department’s
personnel chooses tables during lunch break. On the long run, each project group will happily gather
together for lunch to discuss open questions within their project. Thus the grouping during lunch break
will match the organizational structure. However, a newly broken up group will still have a lot to discuss
and might want to have lunch together; conversely a newly merged group might not yet know each other.
To summarize things, the community structure during lunch follows the organizational structure with some
delay. Gradually the arising and concluding collaborations have it adapt to the group structure, but an
outside observer (during lunch break) will not be able to discern the project groups correctly until this
has happened to a sufficient degree. This is how the observable group structure (i.e., the set of observable
clusters) evolves. It is crucial to grasp the difference between what governs changes in collaboration (edges),
namely the ground truth given by the projects’ group structure, and the observable group structure that is
more likely to be discovered by observers (clustering algorithms) who can only see people and their current
collaboration structure (i.e., the graph).

1.2 Definitions and Preliminaries

Let us at first recall the conventional definitions for graphs and their clusterings. Generated instances are
undirected and unweighted graphs. However, the generator works with internal data structures containing
a weighted graph, as described in section 3.

Definition 1. A graph is a tuple G = (V,E) where V is the set of vertices. An edge in E connects two
vertices. The graph is a directed graph if E ⊆ V × V or an undirected graph if E ⊆

(
V
2

)
.

Definition 2. A dynamic graph G(t) = (G0, . . . , Gtmax) is a sequence of static graphs, with Gt = (Vt, Et)
called the state of the dynamic graph at time step t.

Definition 3. A clustering ζ(G) of a graph G = (V,E) is a partitioning of V into disjoint, non-empty
subsets {C1, . . . , Ck}. Each subset is a cluster Ci in ζ.

For convenience we use a short notation for extending and reducing sets.

Definition 4. Given a set A and elements e and e′, the following definitions hold:

A + e := A ∪ {e} (1.1)
A− e := A \ {e} (1.2)

The Static Case. Generators for static graphs with an implanted clustering structure have been proposed
and used in several works [11, 7, 1, 4, 5]. We only briefly review the idea taken from [4], as it is an easy to
use and intuitive technique, derived from one of the oldest approaches on random graphs [8], and constitutes
the base case for our dynamic generator. The Erdős-Rényi model [8] creates for a given set V of n nodes
an edge between each pair of nodes with a uniform probability, such that the expected number of edges in
the graph is some fixed parameter. For brevity we pass over the large array of works that deal with such
random graphs.
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The random preclustered graph generator [4] needs two such edge probabilities: the intra-cluster edge
probability pin for node pairs within clusters and the inter-cluster edge probability pout for node pairs between
clusters. Given such probabilities the generator then predetermines a partition of V in some fixed or random
manner and sets the elements of the partition to be the clusters. Given this clustering of an edgeless graph,
edges are introduced according to pin and pout as in Definition 5:

Definition 5. For each pair of nodes {u, v}, its edge probability is defined as

p(u, v) =

{
pin(C) if u, v ∈ C

pout else

The choice of these two parameters that govern edge density, pin and pout, determines the “clarity” of
the clustering that is implanted into the random graph.

A typical evaluation run for some graph clustering algorithm could thus look like this: Take this generator
and preset some n and some |ζ|, then let pin and pout iterate through some range of values and for each choice
let the clustering algorithm tackle the output graph. This can be done until, e.g., statistical significance
with respect to some quality or runtime measurement is attained, and shows how well the algorithm works
on dense or sparse graphs with a clear or rather obfuscated clustering structure. A comparison to the quality
of the ground truth clustering known to the generator can be useful as well.

In order for the result to be a clustered graph according to the density vs. sparsity paradigm, these
probabilities pin and pout should be chosen such that ∀C : pin(C) > pout. However, note that in the common
case that the size of clusters is in o(|V |), the parameter pout has great impact on obfuscating the clustering
as it affects far more node pairs than pin; this means that although the above condition holds true, far
more inter-cluster edges than intra-cluster edges may be expected. Being aware of this pitfall we avoid the
adaptation of [7] where pout is replaced by the ratio of inter- to intra-cluster edges.

Choices for Dynamics. As the reader might already suspect, our dynamic generator as sketched out in
section 1.1, is parameterized by a number of options to steer the randomness. How often do groups split,
are edges more prone to changes than nodes, how quickly do edges adapt to the planned clustering? We
postpone details on our procedures and parameters to the next section, and start very simple.

In a nutshell, the generator maintains a clustering ζ(Gt) in a sequence of discrete timesteps. This
clustering indirectly steers where edges are randomly created or removed as it steers the probabilities with
which such events happen: Each cluster C has the universal or an individually associated intra-cluster edge
probability pin(C). Together with (the universal) pout, the inter-cluster edge probability of the current graph
Gt, this yields an edge probability for each pair of nodes as noted above.

However, we do not only want to have dynamics in the set of edges, we also want the set of nodes to
dynamically change, and – as sketched out above – we even want the clustering to change. In the following
section we detail these mechanics.

2 Java Implementation Based on Visone

The project was started as an extension to visone2, an application designed for the analysis and visualization
of social networks. Visone has been started as a project within the priority program Algorithmics of Large
and Complex Networks (SPP 1126) of Deutsche Forschungsgesellschaft (DFG), and is now maintained at
Universität Konstanz. In a graphical user interface this tool provides all general tools for graph manipulation
and editing but also many methods for tasks of visualization and analysis. A recent feature – which still
has beta status – is the support of dynamically changing networks and their smooth visualization [2], a tool
of great value for the initial evaluation of our generator, which we were lucky to have access to, thanks to
our co-workers Michael Baur and Thomas Schank. This version has currently the status of a prototype to
the more advanced standalone version (see Section 3) and awaits full integration. No official release of a
version of visone that supports dynamic graphs has been released at the time of finishing this document, see
Section 5.1 for updates on this. A screenshot of visone with our generator plugged in is given in Figure 1.

2http://www.visone.info
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Figure 1: Screenshot of visone and its toolbar for the dynamic generator

2.1 Description of Generator Mechanics

In this section we detail the procedures we use to generate a dynamically changing preclustered graph. We
recommend an occasional glance at the generator’s schematic decision tree given in Figure 2 for an overview.
Technical details on how to use the Java tools are given later.

Decision Tree. Figure 2 shows the generator’s decision tree. Decision nodes are drawn as a rhombus
while operations are drawn as a rectangle. For each decision node a pseudo-random number x ∈ [0, 1) is
generated and then compared to p . If x ≤ p, the first branch will be taken, if x > p, the second branch will
be taken. Before we detail how decisions and operations are done in later sections, we give a rough overview
of how, given an initial instance, the generator produces a single timestep, a process which is iterated until
the desired number of timesteps has been generated.

In each timestep, two bigger decisions are made, the first of which is whether a change in the clustering
is to be attempted (with probability pω) or not (otherwise). In the affirmative case, a split event is chosen
with probability pµ, otherwise a merge event is chosen. The second decision is whether to perform an edge
event (with probability pχ) or a node event (otherwise). For an edge event we then decide – in a non-trivial
manner – whether to add or remove an edge, and which edge this shall be. For a node event a similar but
simpler choice of whether to add (with probability pν) or delete (otherwise) is made. When a new node is
added, it will instantly be connected to the existing nodes inside and outside of its cluster, according to pin

and pout, respectively. Conversely, when a node is removed, its incident edges are also removed in the same
step.

Initial Instance. The starting state of the dynamic graph is constructed in a way similar to [4, 9]. Given
a number n of initial nodes and a number k of initial clusters, we choose uniformly at random for each node
to which cluster it shall belong; i.e., for each node v, v ∈ Ci if x ∈ [i/k, (i + 1)/k), for a pseudorandom
number x ∈ [0, 1). For each cluster this yields a binomially distributed size around the expected size n/k.
This converges toward the normal distribution for large n.

Once each node is assigned to some cluster, edges are drawn. Each inter-cluster node pair becomes
connected with probability pout; each intra-cluster node pair becomes connected with probability pin(C),
which can be universal or specific to each cluster.
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Erdős-Rényi-type graphs



0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

(a) k = 4, β = 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

(b) k = 4, β = 1.5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

(c) k = 4, β = 2.0

Figure 3: Fractions of |V | in each cluster for k = 4, using different values of β for biased selection.
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Figure 4: Fractions of |V | in each cluster for k = 20, using different values of β for biased selection.

Biased Selection. If a uniform distribution of cluster sizes is not desired, a skewed distribution can be
obtained. This is done by introducing an exponent β into the uniform selection of a cluster from the set of
all clusters. Raising the pseudo-random number x ∈ [0, 1) to the power of β, for some β ≥ 1, returns x′ ≤ x.
The formerly uniform distribution of the random number is thereby shifted to the lower end of [0, 1). In
order to select an element from an array a with bias we calculate the index

i = bxβ · |a|c (2.1)

and return return the element at a[i]. Thus the elements at the beginning of the list have a higher probability
of being selected depending on β.

As a method for unbalancing cluster sizes, biased selection is nothing particularly sophisticated, but
serves the general purpose and is very simple to implement and understand; moreover, as visible in Figures 3
and 4, it favors few larger clusters and many smaller clusters of similar size, a setting we frequently observed
in real-world data sets. Note that choosing β ≤ 1 yields the opposite effect, amassing probability mass at
the upper end of the interval; this yields a different scenario with several larger clusters and only few small
ones. It could easily be substituted by any other technique or requirements to cluster sizes; however, keep
in mind that the dynamic process of splitting an merging clusters deteriorates any fixed initial distribution
of cluster sizes—even though we again use biased selection here (see below). For the splits in particular we
plan future methods that try to stay as close as possible to the initial distribution of cluster sizes. For a
rough impression of the impact of β, observe the following formula which expresses the expected fraction of
nodes in cluster Ci. They directly derive from Equation (2.1).

E
(
|Ci|
n

)
= p(xβ ≤ i

k
)︸ ︷︷ ︸

p(place node in
Clusters C1,...,Ci)

− p(xβ ≤ i− 1
k

)︸ ︷︷ ︸
p(place node in

ClustersC1,...,Ci−1)

= β

√
i

k
− β

√
i− 1

k
(2.2)

As an example the expected fractional sizes of clusters for k = 4, k = 20 and k = 10 and different values
of β according to Equation (2.2) are displayed in Figures 3, 4 and 5 respectively.
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Figure 5: Fractions of |V | in each cluster for k = 10, using different values of β ≤ 1.0 for biased selection.

Current Clustering and Reference Clustering. Since the main purpose of the generator is to produce
test instances for clustering algorithms, it has to maintain a valid clustering which governs edge density
and which those clusterings found by algorithms can be compared to. On the other hand, as the generator
allows the underlying clustering to change dynamically, we maintain two separate clusterings of the graph.
We will call the clustering that is used by the generator itself to produce the edge structure the current
clustering ζ(Gt), being the ground truth which the graph dynamically tries to adapt to (compare to the
project groups in Section 1.1). The crucial point is that when a cluster operation has just been initiated,
the edge density of the graph still corresponds to the previous clustering, which can consequently match or
be close to the clustering that a good clustering algorithm will identify in the graph. So in order to evaluate
the performance of a clustering algorithm, the generator has to have the previous clustering in store, which
we will call the reference clustering ζref(Gt). After several steps in which the edge distribution increasingly
incorporates the new ground truth, this clustering will become visible in the graph and the former one will
vanish. At some point determined by the generator, the cluster event is considered completed, and ζref(Gt)
is updated to incorporate the resulting change. We discuss below how we determine this point in time
called the threshold. Our implementation allows multiple such processes simultaneously (but no cluster is
multiply involved), i.e., further cluster events can be initiated before the last one has concluded by reaching
its threshold.

Splitting and Merging Clusters. A cluster C1 is split by distributing its nodes to two new clusters C2

and C3 (formally written as C1 → (C2, C3)). The nodes are distributed using biased selection. The current
implementation uses an exponent of 1, so the nodes are distributed equally. Two clusters C1 and C2 are
merged by combining their nodes to form a new cluster C3, which we will denote with (C1, C2) → C3. In
case pin is universal we are done for both cases; when using cluster-individual pin values, different methods
can be imagined for setting the pin of the resulting clusters):

a) For the split operation C1 → (C2, C3), C2 and C3 inherit their pin from C1. For the merge operation
(C1, C2)→ C3, pin(C3) is set to the arithmetic mean of pin(C1) and pin(C2). It might be an undesired
effect of this method that the values tend to become more and more uniform in the course of time.
Therefore, another method was implemented:

b) The second method tries to estimate a Gaussian distribution from the initially given list
[pin(C1), . . . , pin(Ck)] and generates new pin values randomly according to this distribution. This
is done in order to preserve the initial diversity of pin values over the course of time. A new pin

is determined via a random variable X with a Gaussian distribution, see Equation (2.3), where µ
is the arithmetic mean of the list values and σ2 is the variance of the list values relative to µ, see
Equation (2.4).

X ∼ N(µ, σ2) (2.3)

σ2 =
1
k

k∑
i=1

(pin(Ci)− µ)2 (2.4)
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Then, X can is calculated as in Equation (2.5), where Y ∼ N(0, 1) is generated by the method
java.util.Random.nextGaussian.

X = σY + µ (2.5)

As this might result in values beyond feasibility, if X is not in [0, 1], it is recalculated until it can be
interpreted as a probability.

-1.0 -0.5 0.5 1.0

0.5

1.0

1.5

2.0

2.5

Figure 6: Estimated distribution for pIn=[0.1, 0.2, 0.5, 0.25]

Deleting or Adding Edges. After the decision to change an edge is made, the generator has to decide
whether to add or delete an edge. Ideally, the change should bring the graph closer to the aspired (ground-
truth) clustering structure while retaining some randomness. In order to achieve this, we first calculate the
ratio of existing edges to the expected number of edges with regard to the aspired (current) clustering

r =
m

E(m)
(2.6)

We are looking for a function f(r) whose value can be compared to a pseudo-random number x ∈ [0, 1) in
order to determine the next operation, so that

operation(x, r) =
{

delete if x ≤ f(r)
add if x > f(r)

(2.7)

For r > 1 edge deletion should have a higher probability than edge addition, for r < 1 edge addition should
be more probable, and if r = 1 both operations should have equal probability. We also wanted to express
the idea that there is an upper bound and a lower bound for the ratio so that beyond those bounds only
one operation can happen; for instance, so that if there are twice as many edges as expected, the following
operation will definitely be the deletion of an edge. In terms of the function, this means that beyond a
ratio σ the function value should be greater than 1, and that the value should be less than 0 below a ratio
of 1

σ . The input parameter σ > 1 can be used to accelerate or decelerate the progress towards the current
clustering. The piecewise linear function (2.8) achieves the desired effects. By default, σ is set to 2, lower
values accelerate progress.

fσ(r) =

{
−2+σ+r
2(σ−1) r > 1
1−σr

2(1−σ) r ≤ 1
(2.8)

9

http://java.sun.com/j2se/1.4.2/docs/api/java/util/Random.html#nextGaussian()


0.5 1.0 1.5 2.0

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0

Figure 7: Function f2(r), which governs how the choice between edge deletion and addition is made.

There exist examples where this procedure can be problematic, causing the graph to deviate from the
desired edge distribution. In particular in the case of disjoint cliques (using pin = 1 and pout = 0) it causes
unwanted inter-cluster edges to be created. Although this example is slightly pathological, we also consider
an alternative approach described later in 4. In our standalone version we abandoned the σ-method, but
in the prototype we still use it, since it also has an advantage: the speed by which the reference clustering
follows the ground truth can aggressively be scaled. On release of the visone-version we shall decide which
method to use, possibly both via an option.

Weighted Selection. After deciding which operation to perform, the generator has to select an affected
pair of nodes. The selection should be in such a way that an existing edge with low p(u, v) (see Definition 5)
should have a high chance of being selected for deletion, and that an unconnected pair of nodes with high
p(u, v) should have a high chance of being selected for the insertion of a new edge. So a selection process
where every pair is weighted according to p(u, v) is desired. In fact we achieve this in a way such that each
deletion (or insertion) takes place with a probability exactly proportional to p(u, v). However, we postpone
our implementation details to Section 2.4.

Threshold for Completeness. As mentioned above, the reference (observable) clustering follows the
current (ground-truth) clustering with some delay. The motivation for it is, that this reference is what the
generator deems observable, and since it takes some time for the graph to adapt to a changed ground-truth
clustering, the latter clustering is almost impossible to guess by an observer. Exactly when the reference
clustering is considered to have caught up—at least to some extent—is decided by the threshold value and
the edge densities within or between participating clusters. Note that as long as a split or merge operation
is in progress, the clusters participating cannot be involved in another operation. The resulting clusters
become available again as soon as the operation is “completed” to a sufficient degree. However, other
concurrent operations are fine.

Consider a merge operation (C1, C2) → C3 and a split operation C3 → (C1, C2). We first calculate the
expected value for the number of edges between C1 and C2 according to pin and pout.

a := |C1| · |C2| · pout (split) (2.9)
b := |C1| · |C2| · pin(C3) (merge) (2.10)

We then count the actual number of edges, |E(C1, C2)|. For a split operation to be complete, it should be
close to a, and for a merge operation close to b. Exactly how close is determined by the input parameter
θ, which expresses a tolerance threshold. The generator decides the completeness of a cluster operation
according to

Completed(C3 → (C1, C2)) =
{

true if |E(C1, C2)| ≤ θ · b + (1− θ) · a
false if |E(C1, C2)| > θ · b + (1− θ) · a (2.11)

Completed((C1, C2)→ C3) =
{

true if |E(C1, C2)| ≥ θ · a + (1− θ) · b
false if |E(C1, C2)| < θ · a + (1− θ) · b (2.12)
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For instance, if θ is 0, there is no tolerance and the cluster operation is not completed unless the expected
number of edges is reached exactly; a value of θ = 1 let means the operation is instantly considered
completed.

2.2 Usage of the Visone Command Line Interface

The visone-based generator can be launched as a command line tool. The generator will then generate a
graph and write it to a .graphml file. We shall briefly describe the GUI in Section 2.3. For details on
the exact nature and effect of parameters, please refer to Section 2.1, as we keep descriptions short here for
quick reference.

Output Format. The prototype creates dynamic graphs directly in visone where they are visualized. The
command line tool stores them as files containing GraphML, which can then be read, e.g., by visone itself,
tools from the visone-library or by a homemade XML-parser.3 Documentation for dynamic GraphML can
be found on the web.4 Dynamic information is provided by visone-specific data tags. At this time a general
reference for the dynamic add-ons of visone is [2], a preliminary technical description of the extensions to
GraphML that support dynamics can be found in Section 3.1.

The java main class of the generator is CommandLineDCRGenerator. The parameters for a single graph
can be entered after the -g option. In order to generate multiple graphs at once, the -f option can be used
together with a file where each line specifies the parameters of a new graph. We now explain the syntax of
a command line call, the used parameters are listed in Table 1. The syntax specified in Extended Backus

CLI key notation explanation

n n(0) initial number of nodes
pIn pin edge prob. for node pairs in the same cluster
pOut pout edge prob. for node pairs in different clusters
clusterN k initial number of clusters
steps tmax total number of time steps
nodeOrEdgeP pχ probability of changing nodes or edges
nodeP pν probability that a node will be added
volatility pω probability of a cluster event
splitOrMerge pµ probability of a merge event
slowDown σ adaptation “speed” towards current clustering
threshold θ tolerance to accept new clustering
sizeDistribution β exponent of biased selection method

pIn [pin(C1), . . . , pin(Ck)] list of individual values of pin for clusters
sizeDistribution [s1, s2, . . . , sk] of weighted selection method

estimateNewPIn enp new pin gauss. estimate or arithm. mean

outDir file output directory
fileName output file name

Table 1: Command line input parameters, please refer to Table 2 for default values that are used when a
parameter is not specified, and to Section 2.1 for a description of the impact of the parameters.

Naur Form is as follows:

argument ::= "-h" | "-g" { keyval } | "-f" file
keyval ::= ikey "=" ival | dkey "=" dval | hkey "=" hval | fkeyval
ikey ::= "n" | "steps" | "clusterN"
dkey ::= "pOut" | "volatility" | "splitOrMerge" | "slowDown" | "threshold"
hkey ::= "pIn" | "sizeDistribution"

3since we happily used visone, we do not yet provide a convenient reader for dynamic GraphML.
4http://graphml.graphdrawing.org/
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hval ::= dval | list
list ::= "[" dval { "," dval } "]"
fkeyval = "outDir=" dir | "fileName=" fname

A syntactically correct value for ival is any string that can be parsed by the java.lang.Integer.parseInt
method. For dval, it is any string that can be parsed by java.lang.Double.parseDouble. file may be
any string from which a java.io.FileReader can be constructed.

The value for the key pIn can either be a single number or a list of numbers. In the first case, a global
pin for all clusters is used. In the second case, individual values for pin are set for each cluster. The length
of this list has to be equal to the number of initial clusters. Likewise, the value for sizeDistribution can
be a number or a list (again of the same length) of numbers. In the first case, the nodes are distributed
over the clusters using the method of biased distribution described in Section 2.1. In the case of a list, the
method of weighted selection as described in Section 2.1 is used to distribute the nodes.

Any required parameter not specified by the user will be set to a default value, which are listed in
Table 2. Thus, calling the generator by

> java CommandLineDCRGenerator -g

will produce a graph with only the default values. As another example

> java CommandLineDCRGenerator -g n=42 clusterN=3 pIn=[0.1,0.2,0.3]

will produce a graph G with

n = 42
ζ(G) = {C1, C2, C3}

pin(C1) = 0.1
pin(C2) = 0.2
pin(C3) = 0.3

CLI key notation domain default

n n(0) N \ {0} 60
pIn pin [0, 1] 0.2
pOut pout [0, 1] 0.01
clusterN k N \ {0} 2
steps tmax N 100
nodeP pν [0, 1] 0.5
nodeOrEdgeP pχ [0, 1] 0.5
volatility pω [0, 1] 0.02
splitOrMerge pµ [0, 1] 0.5
slowDown σ (1,∞) 2.0
threshold θ [0, 1] 0.25
sizeDistribution β [1,∞) 1.0
estimateNewPIn { true, false } true

Table 2: Domains and default values of the input parameters

2.3 Graphical Interface

The visone extension provides a graphical user interface, which is currently under construction and awaiting
integration into a public version, thus we do not go into great detail at this point, but will do so in a separate
document as soon as such a version is available. As a preview, Figure 1 shows the GUI of visone, with the
generator tab active.5

5Many thanks to Michael Baur, who regularly helped us with countless details, pitfalls and yet undocumented features of
the visone software and GUI.
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Figure 8: GUI of the visone extension

2.4 Implementation of Weighted Selection.

The selection algorithm uses two arrays pair and accumProb. In the case of an insert operation, every
unconnected pair of nodes {u, v} is inserted into pair, while the sum of its edge probability and the previous
entry in accumProb and stored in this array accumProb of accumulated edge probabilities. Remember
that these edge probabilities p(u, v) are determined by pin(Ci) and pout.

pair[i] = {u, v}i ∈ {{u, v} /∈ E} {u, v}i is the i-th element in the set (2.13)

accumProb[i] =
i∑

j=0

p(pair[j]) (2.14)

In the case of a delete operation every connected pair of nodes {u, v} is associated with 1− p(u, v).

pair[i] = {u, v}i ∈ {{u, v} ∈ E} (2.15)

accumProb[i] =
i∑

j=0

(1− p(pair[j])) (2.16)

Then a pseudo-random number x ∈ [0,accumProb[imax]) is generated and a binary search is performed
in order to find the index i so that

accumProb[i− 1] ≤ x < accumProb[i] (2.17)

The node pair at pair[i] is returned, and the selected operation is performed with it. This procedure
achieves exactly the desired behavior as described above.

In the following we describe, based on the explanations of the last section, how parameters are set and
how the generator is to be called.
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3 Ready-to-Use Standalone Java Implementation

In the following we describe the downloadable and fully functional generator. After a working prototype of
our generator was completed, we implemented a generator which is independent from visone and optimized
for efficiency. The performance was greatly improved by using specialized data structures and removing
unnecessary computations. In the following we describe this version, however, in order to avoid a full
repetition of many features described above, we focus on the differences of this version to that built with
visone. We do repeat details on the parameters for the sake of self-cointainedness and since some names of
parameters were changed.

The only general difference from our prototypical implementation described above affects the procedure
of choosing a random pair of nodes if an edge modification is to be performed. We substitute our weighted
selection by a more efficient technique and data structure, additionally this new method is more autonomous
in handling pathological inputs. In this section we thus describe this change in detail and give information
on the slightly different nomenclature of parameters and on the compact output format. Figure 14 shows
the slightly altered decision tree of this version.

Batch Updates. However, we additionally introduce one more parameter, η, which enables and scales
batch updates, i.e. timesteps which explicitly comprise a number of edge events (not cluster events) of at
least η. This parameter offers another dimension to the generator: timesteps no longer solely consist of
either one edge event or one node event (alongside its induced edge events), but of a scalable number of
such events. With a given η, the generator counts edge events and issues a timestep event if at least η such
events have been performed since the last timestep. Note that a node event might contribute several edge
events at once, such that more that η edge events can occur before a timestep event is issued. As before,
cluster events are issued or completed only once per timestep.

3.1 Usage

A brief explanation of the parameters is given in Table 3. Note that all parameters are optional, since
default values are provided as stated in the table. An example call of the generator could thus look like
this:
java −j a r DCRGenerator −g t max=1000 n=100 k=5 p in =0.3 p out =0.02 eta=10

p omega=0.05 binary=true graphml=f a l s e outDir=/myDynamicGraphsDirectory
f i leName=mySampleDynamicGraph

Output Formats. The generator supports two output formats. One is the XML-based GraphML. For
an introduction to the format we refer the reader to the GraphML Primer. GraphML allows for the defi-
nition of additional data attributes for nodes and edges which are addressed via a key. These attributes
can be static or dynamic. Code Sample 1 shows the definitions used by the generator. The static at-
tribute dcrGenerator.ID is the unique node identifier assigned by the generator. A dynamic attribute
visone.EXISTENCE denotes whether the node or edge is included in the graph at a time step. The dynamic
attributes dcrGenerator.CLUSTER and dcrGenerator.REFERENCECLUSTER contain the ids of the cluster
and reference cluster assigned to a node by the generator. These are also mapped onto distinct colors
for visualization, namely on visone.BORDERCOLOR and visone.COLOR respectively. Code Sample 2 is an
example for the representation of a node - the node exists from time step 0 to time step 55, remaining in
cluster 1 and reference cluster 1.

In addition to the GraphML format, this version provides a custom binary file format which occupies much
less memory. A file can be parsed by loading the file into a java.io.DataInputStream. After two integers
containing the length of the arrays, a byte array for operation codes and an integer array for arguments
follow. The dynamic graph and the two associated clusterings can be reconstructed by iterating through the
operation codes from the first array and reading the corresponding number of integer arguments from the
second array. Node Id’s are assigned implicitly through the order in which the nodes are created. Table 4
shows the semantics of operation codes and arguments and Figure 9 illustrates the arrangement of data in
the file. Code Section 3 is a sample of Java code for reading this, see Section 5.1 for where to download
this code. It reads the dynamic clustered graph into an ArrayList of operations as listed in Table 4

6The default file name is composed from the current date according to the format dcrGraph yyyy-MM-dd-HH-mm-ss
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Code Sample 1 Custom GraphML attributes used in the generator output

<key a t t r . name=”v i sone .EXISTENCE” a t t r . type=”boolean ” dynamic=”true ” f o r=”node” id=”d7”/>
<key a t t r . name=”v i sone .EXISTENCE” a t t r . type=”boolean ” dynamic=”true ” f o r=”edge” id=”d15”/>
<key a t t r . name=”v i sone .COLOR” a t t r . type=”s t r i n g ” dynamic=”true ” f o r=”node” id=”d4”/>
<key a t t r . name=”v i sone .BORDERCOLOR” a t t r . type=”s t r i n g ” dynamic=”true ” f o r=”node” id=”d5”/>
<key a t t r . name=”dcrGenerator .CLUSTER” a t t r . type=”in t ” dynamic=”true ” f o r=”node” id=”d100”/>
<key a t t r . name=”dcrGenerator .REFERENCECLUSTER” a t t r . type=”in t ” dynamic=”true ”

f o r=”node” id=”d101”/>
<key a t t r . name=”dcrGenerator . ID” a t t r . type=”in t ” dynamic=” f a l s e ” f o r=”node” id=”d102”/>

Code Sample 2 GraphML representation of a dynamic node

<node id=”n10”>
<data key=”d102”>10</data>
<data key=”d7”> f a l s e </data>
<data key=”d100” time=”0”>1</data>
<data key=”d5” time=”0”>#6376b3</data>
<data key=”d101” time=”0”>1</data>
<data key=”d4” time=”0”>#6376b3</data>
<data key=”d7” time=”0”>true </data>
<data key=”d7” time=”56”> f a l s e </data>

</node>

Code Sample 3 Example code for parsing the binary .graphj file format

F i l e f i l e = new F i l e ( f i l ePa t h ) ;
Fi le InputStream fStream = new Fi leInputStream ( f i l e ) ;
DataInputStream dStream = new DataInputStream ( fStream ) ;

i n t opLength = dStream . readInt ( ) ;
i n t argLength = dStream . readInt ( ) ;

ArrayList<Byte> ops = new ArrayList<Byte >() ;
ArrayList<Integer> args = new ArrayList<Integer >() ;

f o r ( i n t i = 0 ; i < opLength ; ++i ) {
ops . add ( dStream . readByte ( ) ) ;

}

f o r ( i n t i = 0 ; i < argLength ; ++i ) {
args . add ( dStream . readInt ( ) ) ;

}
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CLI key pseudoc. not. domain default explanation

n n0 N 60 initial number of nodes in G0

p in pin [0, 1] 0.02 edge prob. for node pairs in same cluster
p out pout [0, 1] 0.01 edge prob. for node pairs in different clusters
k k N 2 initial number of clusters
t max tmax N 100 total number of time steps
p nu pν [0, 1] 0.5 given a node event, prob. that a node will be

added (1− pν for a node deletion)
p chi pχ [0, 1] 0.5 prob. of an edge event (1− pχ for a node

event)
p omega pω [0, 1] 0.02 prob. of a cluster event
p mu pµ [0, 1] 0.5 given a cluster event, prob. of a merge event

(1− pµ for a split event)
theta θ [0, 1] 0.25 tolerance threshold to accept new clustering
beta β R 1.0 exponent of biased selection method
eta η N 1 lower bound on edge events per timestep

p inList [pin(C1), . . . , pin(Ck)] [0, 1]k (not used) list of individual values of pin for clusters, can
be used instead of pin

D s [s1, s2, . . . , sk] Rk
+ (not used) relative size dist. of of cluster sizes in C(G0),

can be used instead of β

enp gauss. est. {true, false} false new pin gauss. estimate (true) or arithm.
mean

outDir String ./ file output directory
fileName String 6 name of output file
binary {true, false} false true enables output as binary file (extension

.graphj)
graphml {true, false} false true enables output as GraphML file

(extension .graphml)

Table 3: Command line input parameters

4 Implementation Notes and Data Structures for the Graph

In the following it is useful to think in terms of a graph and its complement graph, as in a dynamic scenario
absent edges are candidates for inclusion in forthcoming states. We define the complement graph as follows:
Let G = (V,E) be an undirected graph. G induces a complement graph Ḡ = (V, Ē) with Ē =

(
V
2

)
\ E.

The data structure we use for storing the current graph G(t) and complement graph Ḡ(t) relates to
each node its incident edges in G(t) as well as its incident edges in Ḡ(t). An edge or complement edge
is internally stored as the target node’s id and weight while the source node’s id is implicitly defined by
the array position of the tree used for edge selection (see below). The data structure is meant to be used

1 1 3 1 2 6 7

21 1 2 2 1 2 1 1 1 3

ops

args

7

11

1 1 3 1 2 6 7 21 1 2 2 1 2 1 1 1 37 11stream

Figure 9: Arrangement of the data stored in the binary output of the generator.
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operation op-code arg0 arg1

create node 1 id(C) id(Cref)
delete node u 2 id(u) -
create edge {u, v} 3 id(u) id(v)
remove edge {u, v} 4 id(u) id(v)
set cluster of u 5 id(u) id(C)
set reference cluster of u 6 id(u) id(Cref)
next time step 7 - -

Table 4: Binary file format

with undirected edges only, but in order to speed up edge deletion at the expense of some memory, each
undirected edge {u, v} is stored both as (u, v) and (v, u). In the following we detail the trees we use; note
that this is the only place we store the actual graph at.

Weighted Randomization Using Binary Trees. A performance problem of the weighted selection
method described above (in Section 2.1) is that any update to an entry of the array accumProb necessitates
the recalculation of every following entry. A general solution for such weighted randomized selections can
be provided by utilizing a complete binary tree for a randomized choice, as follows. Deleting or adding an
element or updating its weight is followed only by the update of its ancestral elements – which is at most
logarithmic in the number of present edges. Each node of the complete binary tree (which is implicitly
stored in an array) can be described as a tuple

qi = (ei, wi, li, ri) (4.1)

where e is an element to be selected, wi is the weight of the current element, li = wi+1 + li+1 + ri+1 is the
sum of the weights in the left subtree and ri = wi+2 + li+2 + ri+2 is the sum of weights in the right subtree.
A leaf node `’s weights l(`) and r(`) are simply 0.

The procedure for the selection of an element starts at the root node by drawing a random number x
from the interval [0, w + l + r). Now there are three possible ranges for x: if x ≤ w, the element is returned;
if w < x ≤ w + l, the carryover x−w is sent to the left subtree; and if w + l < x < w + l + r, the carryover
x − w − l is sent to the right subtree. The procedure continues recursively from there until an element is
returned after at most log2 n steps (at a leaf).

Data Structures for Selecting Pairs of Node. The selection of a pair of nodes as an edge or a
complement edge happens in two stages: First, a source node7 is selected, then a target node. The setup
as follows assures that the probability of an edge being selected for deletion is proportional to 1 − p(u, v)
and the probability of a node pair selected for edge creation is proportional to p(u, v).

For the selection of the source node of the edge, two binary trees, the source trees T̄s (for edge additions)
and Ts (for edge deletions), as described above are associated with the set V (t) of all nodes. Each element
of these two trees points to a node u and is weighted with w(u) = sum(u,v)∈Ē(t)p(u, v) and

∑
(u,v)∈E(t)(1−

p(u, v)) respectively, the total weight of the root elements of this node’s selection trees. To each single node
u ∈ G(t), two of the binary trees T̄t(u) and Tt(u), called target trees, are associated. The nodes of the former
are the targets v of outgoing edges (u, v) in Ḡ(t) weighted by the (addition-) weight w(v) = p(u, v) of that
edge; analogously the nodes of the latter are the targets v of outgoing edges (u, v) in G(t) weighted by the
(deletion-) weight w(v) = 1 − p(u, v) of that edge. Below we give an example of such trees, and illustrate
them in Figures 11 and 12

Actually Deleting or Adding Edges. The probability mass of all edges (4.3) and the probability mass
of all non-adjacent node pairs (4.2) are retrieved - they are the weights found at the root of the respective
source tree. Note that the factor 2 stems from the fact that in these trees, each (non-) edge is represented

7For readability we use the terms “source” and “target”, albeit we deal with undirected edges.
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twice, using each of its two incident node as a source node once.

PĒ := 2 ·
∑

{u,v}∈Ē

p(u, v) = w(root node of T̄s) (4.2)

PE := 2 ·
∑

{u,v}∈E

(1− p(u, v)) = w(root node of Ts) (4.3)

Given these values, the weighted selection (Algorithm 8) is now called to generally decide between creating
and removing an edge:

operation← weightedSelection({add,delete}, {PE , PĒ}) (4.4)

After this first decision the appropriate source tree (Ts or T̄s) is used to choose the source node of the change
via the call to Algorithm 1. Then, using the same algorithm with the appropriate target tree (Tt(v) or T̄t(v))
the target node is chosen. This approach lets the edge structure converge to the aspired clustering while
allowing some randomness. If there are no cluster events to be completed, this process yields a clustered
graph which is stable apart from minor fluctuations.

As previously mentioned, we devised these procedures and data structures in order to achieve quicker
dynamic updates of the data structures used for fair random choices. Each modification of the graph, be
it a node insertion or an edge deletion, entails changes to a constant number of trees (more precisely, to
each of the two source trees Ts and T̄s and to both target trees of each of the two involved incident nodes).
However, for each tree our data structures support update procedures with logarithmic runtime, which
yields a runtime in Θ(log(n)) for each edge update with a small constant. Inserting or deleting a node v
alongside its incident edges entails a runtime in Θ(n log(n)) since v must be introduced to or deleted from
each other node’s trees. In brief we can revert a binary tree to consistency after, say, deleting an element,
by first moving the last element of the tree to the deleted position and then updating the weights of both
the previously deleted node’s parent and the swapped node and propagating these elements’ total weight
upward to the root. We detail these simple steps in Algorithms 2 and 3 in Section 6.
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Figure 10: The graph before the edge mod-
ification. The accumulated weights for edge
addition is 3.6 from C1, 3.5 from C2, and 3.3
from inter-cluster pairs.

Example Process for Edge Modification. We give an
illustrating example here of how a specific edge modifica-
tion is determined. Suppose the graph as given in Fig-
ure 10 is given at the start of the current timestep; suppose
further that the generator decides to modify the edge set
during the current timestep (according to pχ, see Table 3).
At first, in accordance with Equations (4.2) and (4.3) the
(double) probability masses for edge deletions and edge ad-
ditions are given by PĒ = 20.8 and PE = 18.6. Suppose
now weightedSelection (see Equation (4.4)) draws the
random number 0.3 and thus decides in favor of an edge
addition operation.

Having decided to insert a new edge, now the tree T̄s

is used to choose a random source node for the new edge.
Figure 11 shows how this tree could look like. Each node carries as a weight the sum of the probabilities of
its edges in Ḡ, i.e., the sum of the probabilities of its missing adjacencies in G - these are the blue numbers.
The red numbers depict how these weights are propagated upward through the tree. Suppose Algorithm 1
now draws the random number 0.85, yielding x = 0.85 · 20.8 = 17.68 for the initial tree search. At T̄s’s root
node 1 we observe that 17.68 > w(1) + l(1) and thus the algorithm descends into the right subtree, passing
on the new value of x = 17.68 − 1.8 − 11.8 = 4.08. At node 3 we observe that 1.9 < 4.08 < 5.9 and thus
the left subtree is chosen, passing on x = 2.18. Then at node 6, since 1.3 < 2.18 the left subtree is chosen,
where we finally end up with the leaf node 12, which we thus take as the source node of the new edge.

The target node of the new edge is chosen using the target tree of 12, which is given in Figure 12.
This tree stores all nodes of G which are not adjacent to 12, using the probabilities of the corresponding
potential edges as weights of these candidate nodes. Anticipating our discussion below, Figure 13 shows the
subintervals of [0, 2.7) that are equivalent to the target tree depicted in Figure 12. Randomly drawing 0.44
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Figure 11: The source tree T̄s of the graph in Fig-
ure 10, which is used to determine the source node
for an edge insertion. A random number in [0, 20.8)
guides Algorithm 1 through the tree.
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Figure 12: The target tree T̄t(12) of node 12 (see
Figure 10). Given the decision to insert an edge
starting at node 12, T̄t(12) is used to determine
the target node for the edge. A random number in
[0, 2.7) guides Algorithm 1 through the tree.
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Figure 13: The target tree in Figure 12 can equivalently be seen interpreted as an interval of length 2.7
(total weight at root node), subdivided by the nodes’ weights, listed in-order. The random choice now simply
picks the node associated to the interval containing the random number from [0, 2.7).

yields x = 0.4 · 2.7 = 1.08. Algorithm 1 chooses in this tree 3 as the target node. Concluding, edge {12, 3}
is inserted.

Probabilities It is important to note that the way the algorithm chooses its specific edge modification
exactly complies with the following probability space: Set the probability of the specific (possible) event
ξu,v, such as “insert an edge between non-adjacent nodes u and v”, to p(ξu,v) = proportional to p(u, v),
thus enabling a fair random choice. It is not hard to see, that the three steps: (i) choose between deletion
and insertion, (ii) choose source node and (iii) choose target node, always use correctly normalized and/or
combined conditional probabilities, to remain consistent with the above model. The reason for this multi-
step procedure is simply an easier-to-handle representation of the different pieces of data. We formulate
this observation as a small lemma.

Lemma 1 (Probability Space). Weighted randomization using binary trees yields probabilities
p(insert edge between u and v) = proportional to p(u, v) (or to 1 − p(u, v) for deletion) if u and v are
non-adjacent (adjacent), and 0 otherwise.

Proof. We will show that each of the three steps supports this proportionality. We use insertions; deletions
are analogous. As a first observation, note that a binary tree for the selection of an element out of a given
weighted set as above yields proportional probabilities: The binary search through a tree is equivalent to
dividing an array of length equal to the total weight w + l + r of the tree’s root into intervals associated to
the nodes of the tree with length equal to the nodes’ inner weight w, as listed by an in-order traversal of the
tree, and then picking the interval that contains a random number between 0 and the total root weight.

Let ξu,v be the event that inserts edge from u to v, furthermore, let ξu be the event that an edge using
u as the source node is inserted, and let ξinsert mean that an edge is inserted. Suppose now u and v are
already adjacent, then in the target tree T̄t(u) does not contain the node v, and thus p(ξu,v) = 0. Otherwise,
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since trees preserve proportionality:

p(ξu,v | ξu) =
p(u, v)∑

w∈V
w�u

p(u, w)
(4.5)

p(ξu | ξinsert) =

∑
w∈V
w�u

p(u, w)

∑
x∈V

∑
w∈V
w�x

p(w, x)
(4.6)

p(ξinsert) =

∑
x∈V

∑
w∈V
w�x

p(w, x)

∑
x∈V

∑
w∈V
w�x

p(w, x)

︸ ︷︷ ︸
all possible edge insertions

+
∑
x∈V

∑
w∈V
w∼x

(1− p(w, x))

︸ ︷︷ ︸
all possible edge deletions

(4.7)

Equation (4.7) is not based on the arguments about trees but derives directly from Algorithm 8. Combining
Equations (4.5)-(4.7) we obtain the lemma.
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Figure 14: Decision tree of the standalone generator
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5 Conclusion

The necessity to have dynamic instances for the evaluation of algorithms for dynamic graph clustering
gave birth to this project. In a number of laborious cooperations we have collected several reliable real-
world instances, which are very valuable for a representative assessment of the how algorithms behave in
practice. However, these instances are still few in number, they are very specific and are often subject
to a confidentiality agreement. For controlled and focused experiments a highly customizable generator
is inevitable. The motivation behind this implementation was to have each parameter represent a proper
stochastic value with an intuitive interpretation on the one hand and an effect which can precisely and
mathematically be explained on the other hand.

In its current version, the generator is an easy-to-use java package, which by the choice of reasonable
default values can be used without first having to study this document in full length. Its compact binary
output can be parsed with a simple procedure as detailed in Section 3.1.

5.1 Download

Our dynamic generator for dynamic clustered random graphs can freely be downloaded and used. The
site that hosts a downloadable jar-file is maintained is http://i11www.iti.uni-karlsruhe.de/projects/
spp1307/dyngen. Additional information and updates will also be posted there, in particular, this includes
any news on an upcoming implementation as a module in an official release of visone.

5.2 Future Work

As promised in Section 2, a GUI-version of the generator as a module for visone (a tool for the visualization
and analysis of social networks) is waiting in the wings, but has to hang on until dynamic graphs are fully
incorporated into an upcoming official release. Apart from engineering to reduce both space and running
time consumption, there are two main issues that we plan to address in the near future: First, while the
specification of values for pin and pout is very handy it might sometimes be more convenient to set values for
the average degree of a node, both for intra- and for inter-cluster edges. This option will soon be integrated
as it can easily be incorporated into the current data structures. Second, an aspect of dynamics that has
not yet been realized is a gradual densification or sparsification of the network—or of parts of it. While a
quick implementation of global densification is very easily done by manipulating Equation 4.4, a careful,
customizable and statistically traceable implementation will entail changes in the source and target trees.
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6 Pseudocode

In this section we list a collection of procedures described in previous sections as pseudocode. We generally
assume that the function rand returns a real number drawn uniformly at random from the interval [0, 1),
as, e.g., implemented by the function java.lang.Math.random() in Java. Moreover we assume that binary
trees are stored in an array in the usual way, i.e., such that the left and the right children of a node at index
i are stored at index 2i and 2i + 1 respectively.

Algorithm 1 describes how a node of a tree used for randomized selection is chosen in logarithmic time in
the size of the tree, which is a complete binary tree. Since a change to the dynamic graph is performed after
each such choice, we require procedures that keep a tree consistent after nodes are deleted or added. We
only give pseudocode for the case of deleting a node from a tree in Algorithm 2; the case for the addition of
a tree node is even simpler and omitted. Note that the weight structure of a tree is updated in logarithmic
time per tree by the call to Algorithm 3. Four trees in total are affected per edge modification, and all trees
need updates if a node is added to or deleted from the graph.
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Algorithm 1: weightedTreeSelect

Input: weighted binary tree T (elements qi = (ei, wi, li, ri), root q0)
Output: random element qr with probability that qr is picked ∼ wr

x← rand() · (w0 + l0 + r0)1

i← 02

while true do3

switch x do // branch at current node4

case x ≤ wi5

return ei // terminate and return current node6

case wi < x ≤ (wi + li)7

x← x− wi8

i← 2i // branch to index of left child9

case wi + li < x10

x← x− wi − li11

i← 2i + 1 // branch to index of right child12

Algorithm 2: weightedTreeDelete

Input: weighted binary tree T (elements qi = (ei, wi, li, ri), root q0), idel ∈ N
Output: updated tree T with idelth element deleted
if idel = imax then1

updateWeight(T ,idel, 0)2

remove qidel
3

else4

qtmp ← qimax5

weightedTreeDelete(T ,imax)6

qidel
← qitmp7

updateWeight(T ,qidel
, widel

)8
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Note that Algorithm 2, which performs the deletion of elements, retains the tree’s properties of be-
ing binary and complete; thus, the logarithmic time bounds for searching through the changing tree are
maintained. In fact, we observed that for the two source trees a simpler method was consistently quicker
in practice: on a deletion, simply set the node’s weight to 0. This method only virtually keeps the tree
complete, but saves the effort of restructuring at the cost of gradually letting it grow larger.

Algorithm 3: updateWeight

Input: weighted binary tree T (elements qi = (ei, wi, li, ri), root q0), i ∈ N, w ∈ R
Output: propagates new weight from ei to e0, to make T consistent
wi ← w1

while i > 0 do2

iparent ← bi/2c // compute the index of the parent node3

if i ≡ 0 mod 2 then // in this case qi is its parent’s left child4

liparent ← wi + li + ri5

else // otherwise qi is its parent’s left child6

riparent ← wi + li + ri7

i← iparent8

Algorithm 4: initial DCR graph

Input: n ∈ N, k ∈ N, β ∈ R or [s1, s2, . . . , sk] ∈ Rk, pout ∈ [0, 1], pin ∈ [0, 1] or
[pin(C1), . . . , pin(Ck)] ∈ [0, 1]k

Output: initial state G of a dynamic graph
G = (V,E)← ({}, {})1

for i← 0 to n do2

V ← V + new node u3

ζ = {C1, . . . , Ck} ← {{}, . . . , {}}4

for v in V do5

Ci ← biasedSelect(ζ, β) or Ci ← weightedSelect(ζ, [s1, s2, . . . , sk])6

Ci ← Ci + v7

for {u, v} in
(
V
2

)
do8

if rand() ≤ p(u, v) then9

E ← E + {u, v}10

In the following we list the rough pseudocode of the whole dynamic graph generator. Please not that for
reasons of readability we do not delve into catching pathological cases such as setting pin = pout = 0. We
omit the domains and meaningful names of the input parameters in the following and refer the reader to
Tables 1, 2 and 3 for more information; however, we naturally stick to the variables used throughout this
work.
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Algorithm 5: DCR Generator Prototype (Visone)
Input: n(0), k, β or [s1, s2, . . . , sk], pout, pin or [pin(C1), . . . , pin(Ck)], tmax, σ, pν , pχ, pµ, pω, θ, enp
Output: dynamic graph G
t0 ← 01

G = (V,E)← initialDCRGraph2

for t← 1 to tmax do3

for event A→ B in ongoing cluster events do4

if completed(A→ B) then5

update(ζref , A→ B)6

if rand() ≤ pω then7

if rand() ≤ pµ then8

if 2 clusters available then9

{Ci, Cj} ← randomPair(ζ)10

Ck+1 ← Ci ∪ Cj11

ζ ← ζ \ {Ci, Cj} ∪ Ck+112

if use gaussian estimate then pin(Ck+1)← gauss() else pin(Ck+1)←
pin(Ci)+pin(Cj)
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else14

if cluster available then15

Ci ← randomElement(ζ)16

Ck+1 ∪ Ck+2 ← Ci17

ζ ← ζ \ {Ci} ∪ {Ck+1, Ck+2}18

if use gaussian estimate then pin(Ck+1)← gauss() else pin(Ck+1)← pin(Ci)19

if rand() ≥ pχ then20

if rand() ≤ pν then21

V ← V ∪ {new node u}22

Ci ← biasedSelect(ζ, 1)23

Ci ← Ci + u24

for {u,v} in {{u,v} : v ∈ V \ {u}} do25

if rand() ≤ p(u, v) then26

E ← E + {u, v}27

else28

u← randomElement(V )29

C(u)← C(u)− u30

V ← V − u31

E ← E \ {{u, v} : v ∈ V }32

else33

r ← m
E[m]34

if rand() ≤ fσ(r) then35

{u, v} ← weightedSelect(E, 1− p)36

E ← E − {u, v}37

else38

{u, v} ← weightedSelect(Ē, p)39

E ← E + {u, v}40

return G(t)41
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Algorithm 6: DCR Generator (Standalone)
Input: n, k, β or [s1, s2, . . . , sk], pout, pin or [pin(C1), . . . , pin(Ck)], tmax, σ, pν , pχ, pµ, pω, θ,

gauss. est.
Output: dynamic graph G(t)
G0 = (V,E)← initialDCRGraph()1

for t← 1 to tmax do2

for event A→ B in ongoing events do3

if completed(A→ B) then update(ζref , A→ B)4

if rand() ≤ pω then5

if rand() ≤ pµ then6

if 2 clusters available then7

{Ci, Cj} ← randomPair(ζ)8

Ck+1 ← Ci ∪ Cj9

ζ ← ζ \ {Ci, Cj} ∪ Ck+110

if use gaussian estimate then pin(Ck+1)← gauss() else pin(Ck+1)←
pin(Ci)+pin(Cj)
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else12

if cluster available then13

Ci ← randomElement(ζ)14

Ck+1 ∪ Ck+2 ← Ci15

ζ ← ζ \ {Ci} ∪ {Ck+1, Ck+2}16

if use gaussian estimate then pin(Ck+1)← gauss() else pin(Ck+1)← pin(Ci)17

i← 018

while i < η do19

if rand() ≥ pχ then20

if rand() ≤ pν then21

V ← V + new node u22

Ci ← randomElement(ζ); Ci ← Ci ∪ {u}23

for {u,v} in {{u,v} : v ∈ V \ {u}} do24

if rand() ≤ p(u, v) then E ← E + {u, v}; i← i + 125

else26

u← randomElement(V )27

C(u)← C(u)− u ; V ← V − u28

i← i + deg(v); E ← E \ {{u, v} : v ∈ V }29

else30

if n ≥ 2 and not (Gt consists of disjoint cliques and ongoing events = ∅) then31

op← weightedSelect({create, remove}, {PE , PĒ})32

if op is remove then33

s← weightedTreeSelect(Ts)34

t← weightedTreeSelect(Tt(s))35

E ← E − {s, t}; i← i + 136

else37

s← weightedTreeSelect(T̄s)38

t← weightedTreeSelect(T̄t(s))39

E ← E + {s, t}; i← i + 140

update all trees involved in the changes41

return G(t)42
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Algorithm 7: binaryRangeSearch

Input: x ∈ R, a ∈ Rn, h ∈ N, l ∈ N
if l > h then1

return − 1 // element not found2

m← b l+h
2 c3

if a[m] ≥ x then4

if m = 0 or a[m− 1] < x then5

return m6

else7

return binaryRangeSearch(x, a, l,m− 1)8

else9

if m = n− 1 or a[m + 1] ≥ x then10

return m + 111

else12

return binaryRangeSearch(x, a,m + 1, h)13

Algorithm 8: weightedSelection(A,ω) (ws)
Input: A: set of elements, ω : A→ R+: weight function
Output: e: selected element
a[i]← ei ∈ A1

b[i]←
∑i

j=0 ω(a[j])2

x← rand() ·
∑

j ω(a[j])3

i← binaryRangeSearch(x, b, 0, |b|)4

return a[i]5
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