
Efficient Computation of Jogging Routes?

Andreas Gemsa, Thomas Pajor, Dorothea Wagner, and Tobias Zündorf

Department of Computer Science, Karlsruhe Institute of Technology (KIT)
{gemsa,pajor,dorothea.wagner}@kit.edu, tobias.zuendorf@student.kit.edu

Abstract. We study the problem of computing jogging (running) routes
in pedestrian networks: Given source vertex s and length L, it asks for
a cycle (containing s) that approximates L while considering niceness
criteria such as the surrounding area, shape of the route, and its complex-
ity. Unfortunately, computing such routes is NP-hard, even if the only
optimization goal is length. We therefore propose two heuristic solutions:
The first incrementally extends the route by joining adjacent faces of the
network. The other builds on partial shortest paths and is even able to
compute sensible alternative routes. Our experimental study indicates
that on realistic inputs we can compute jogging routes of excellent quality
fast enough for interactive applications.

1 Introduction

We study the problem of computing jogging routes in pedestrian networks. Given
a source vertex s (the user’s starting point), and a desired length L (in kilometers),
the problem asks for a cycle of length (approximately) L that contains the vertex s.
A “good” jogging route is, however, not only determined by its length; other
criteria are just as important. An ideal route might follow paths through nice
areas of the map (e. g., forests, parks, etc.), has rather circular shape, and not
too many intersection at which the user is required to turn. A practical algorithm
must, therefore, take all of these criteria into account.

Much research focused on efficient methods for the related, but simpler,
problem of computing point-to-point (shortest) paths. In fact, a plethora of
algorithms exist, many of which are surveyed in [3, 9]. They usually employ
sophisticated preprocessing to speed up query performance. In contrast, much
less practical work exists for computing cycles. Graphs may contain exponentially
many (in the number of vertices) cycles, even if they are planar [1]. If the length
of the cycles is restricted by L, they can be enumerated in time O((n+m)(c+1)),
where c is the number of cycles of length at most L [8]. If one is interested in
computing cycles with exactly k edges, the problem can be solved in O(2km)
expected time [10]. Unfortunately, none of these methods seem practical in our
scenario. To the best of our knowledge, no efficient algorithms that quickly
compute sensible jogging routes exist.

This work introduces the Jogging Problem. It turns out to be NP-hard,
hence, we propose two heuristic approaches. The first, Greedy Faces is based
? Partially supported by DFG grant WA 654/16-1.

2 A. Gemsa, T. Pajor, D. Wagner, T. Zündorf

on building the route by successively joining adjacent faces of the network. The
second, Partial Shortest Paths, exploits the intuition of constructing equilateral
polygons via shortest paths. The latter can be easily parallelized and has the
inherent property of providing sensible alternative routes. The result of our
algorithms are routes of length within (1± ε)L, but also consider other important
criteria that optimize the surrounding area, shape, and route complexity. An
experimental study justifies our approaches: Using OpenStreetMap data, we are
able to compute jogging routes of excellent quality in under 200ms time, which
is fast enough for interactive applications.

The paper is organized as follows. Section 2 defines variants of the problem
and shows NP-hardness. Section 3 introduces our two algorithmic approaches.
Section 4 presents experiments, and Section 5 contains concluding remarks.

2 Problems

Before we formally define the considered problems, we need to develop some
notation. We model pedestrian networks as undirected graphs G = (V,E) with
nonnegative integral edge costs ` : E → Z≥0. Usually, vertices correspond to
intersections and edges to walkable segments. Also, we assume that our graphs
admit straight-line embeddings, since vertices have associated latitude/longitude
coordinates. For simplicity, our graphs are always connected. A path P is a
sequence of vertices P = [u1, . . . , uk] for which uiui+1 ∈ E must hold. Note that
we sometimes just write u1-uk-path or Pu1,uk

for short. If the first and last vertices
coincide, we call P a cycle. The cost of a path, denoted by `(P), is the sum of
its edge-costs. A shortest path between two vertices u1 and u2 is a u1-u2-path
with minimum cost. At some places we require intervals around a value x ∈ Z≥0
with error ε ∈ R≥0. We define them by I(x, ε) = [b(1− ε)xc, d(1 + ε)xe].

Simple Jogging Problem. The first problem we consider is the Simple Jogging
Problem (SJP): We are given a graph G, source vertex s ∈ V , and a targeted
cost L ∈ Z≥0 as input. The goal is to compute a cycle P through s with
cost `(P) = L. In practical scenarios, cost usually represent geographical length.
It turns out that SJP is NP-hard by reduction from Hamiltonian Cycle. Note
that from this, NP-hardness follows for the respective optimization problem, i. e.,
finding a cycle that minimizes |`(P)− L|.

If we allow running time in the order of L, one can solve SJP by a dynamic
program, similarly as it is known for the Subset Sum Problem [5]. The
algorithm maintains a boolean matrix Q : V × Z≥0 → {0, 1} of size |V | × L,
which indicates whether a path to vertex u with cost ` exists. Initially, Q is
set to all-zero, except for the entry Q(s, 0), which is set to 1. It then considers
subsequent cost values ` in increasing order (beginning at 0). In each step, the
algorithm checks for all edges uv ∈ E if an existing path can be extended to v
with cost `. It does so by looking if Q(u, `− `(uv)) is set to 1, updating Q(v, `)
accordingly. The algorithm stops as soon as ` exceeds the input cost L. Then,
the requested jogging route exists iff Q(s, L) = 1 holds. The running time of the
algorithm is O(L|E|), and thus we conclude that the SJP is weakly NP-hard [5].

Efficient Computation of Jogging Routes 3

Relaxed Jogging Problem. In practice, solely optimizing length (or cost) may result
in undesirable routes. Jogging is a recreational activity, therefore, one usually
also considers the surrounding area (parks and forests), the shape (preferably
edge-disjoint), and the complexity of the route (small number of turns). We argue
that the primary goal remains geographical length. However, we allow some (user-
specified) slack on the length to take the aforementioned criteria into account.
This motivates the Relaxed Jogging Problem (RJP): Given a graph G, a
source vertex s ∈ V , input length L ∈ Z≥0, and a parameter ε ∈ [0, 1], the goal
is to compute a cycle P through s with cost `(P) ∈ I(L, ε) while optimizing a
set of soft criteria. We identify three important criteria in the following.

To account for the surrounding area, we introduce badness as a mapping on the
edges bad: E → [0, 1]. Smaller values indicate “nicer” areas (e. g., parks). Badness
values on the edges are provided by the input data. To extend badness to paths,
we combine it with the path’s length. (Note that we assume costs to represent
geographical length for the remainder of the paper.) That is, for a path P =
[u1, . . . , uk] its badness is defined by bad(P) =

∑
bad(uiui+1)`(uiui+1)/`(P). By

these means, badness values are scaled by their edge lengths, but are still in the
interval [0, 1]. This enables comparing paths (wrt. badness) of different lengths.

To optimize edge-disjointness of paths, we consider sharing. It counts edges
that appear at least twice on P , scaled by their length. Formally, it first ac-
cumulates into a set D all indices i, j for which either uiui+1 = ujuj+1 or
uiui+1 = ujuj−1 hold. (Note that edges are undirected.) The sharing of path P
is then sh(P) =

∑
i∈D `(uiui+1)/`(P). Sharing values are also in [0, 1].

To evaluate route complexity, we consider turns. For two edges a and b, we
measure their angle](a, b), and regard them as a turn, iff](a, b) /∈ I(180◦, α)
holds. We usually set α to 15%.

3 Algorithms

We now introduce our two approaches for the Relaxed Jogging Problem:
Greedy Faces and Partial Shortest Paths. We present each approach in turn,
starting with a basic version, then, proposing optimizations along the way.

3.1 Greedy Faces

Assume that we are already given a tentative jogging route (i. e., a cycle in G that
contains s). A natural way to extend it, is to attach one of its adjacent “blocks”
that lie on the “outer” side of the route. Then, repeat this step, until a route of
desired size and shape has been grown. In a planar graph, blocks correspond
to faces. But our inputs may contain intersecting edges (such as bridges and
tunnels), albeit only few in practice. We, therefore, propose preprocessing G to
identify blocks (we still call them faces). These are used by our greedy faces
algorithm. Finally, we present smoothening techniques to reduce route complexity
in a quick postprocessing step.

4 A. Gemsa, T. Pajor, D. Wagner, T. Zündorf

Identifying Faces. For our algorithm to work, we must precompute a set F of faces
in G. We identify each face f ∈ F with its enclosing path Pf . Our preprocessing
involves several steps. First, we delete the 1-shell of G by iteratively removing
vertices (and their incident edges) from G that have degree one. The resulting
graph is 2-connected and no longer contains dead-end streets (which we want
to avoid, anyway). Next, we consider all remaining edges uv ∈ E. For each, we
perform a right-first search, thereby, constructing an enclosing path Pf for a new
face f . More precisely, we run a depth-first search, beginning at uv. Whenever it
reaches a vertex x (via an edge a), it identifies the unique edge b that follows a
in the (counterclockwise) circular edge ordering at x. (Note that this ordering is
always defined for embedded graphs.) It adds b to Pf . If b = uv, the algorithm
stops, and adds f to F , discarding duplicates. However, since G is not necessarily
planar, the edge b might intersect with one of its preceding edges on Pf . In this
case, it removes b from Pf , and considers the next edge (after b) in the circular
order at x for expansion. While constructing F , the algorithm remembers for each
edge a list of its incident faces. It uses them to build a dual graph G∗ = (V ∗, E∗):
Vertices correspond to faces (of G), and two faces are connected in G∗, iff they
share at least one edge in G. This definition of G∗ extends the well-known graph
duality for planar graphs, however, as G may not be planar, so may not be G∗.
The running time of the preprocessing is dominated by the face-detection step.
For every edge it runs a right-first search, each in time O(|E|). Whenever it
expands an edge, it must perform intersection tests with up to O(|V |) preceding
edges. This results in a total running time of O(|V ||E|2). Note that we expect
much better running times in practice: On realistic inputs we may assume faces
to have constant size.

Greedy Faces Algorithm. Our greedy faces algorithm, short GF, now uses G∗ as
input. Its basic idea is to run a (modified) breadth first search (BFS) on G∗. It
starts by selecting an arbitrary face f ∈ V ∗ that contains the source vertex s, i. e.,
where s ∈ Pf holds. It then grows a BFS-tree T (rooted at f), until a stopping
condition is met. When it stops, the jogging route P is retrieved by looking at
the set of cut edges that separate T from V ∗−T : Their corresponding edges in G
constitute a cycle. (Note that this is a well-known property on planar graphs,
but carries over to our definition of G∗.) However, to make P a feasible jogging
route, we must ensure two properties: The cycle must be (a) simple, and (b) still
contain s. We ensure both while growing T . Regarding (a), we know that the
corresponding cycle P in G is simple iff the subgraph induced by V ∗ − T is
connected. We check this condition when expanding an edge fg ∈ E∗ during the
BFS, discarding fg if adding g to T would disconnect V ∗ − T . Regarding (b),
The vertex s is still part of the jogging route as long as at least one incident
face of s remains in V ∗ − T . We also perform this check while expanding edges,
discarding them whenever necessary. The result of every iteration of the BFS
is a potential jogging route P . The algorithm stops as soon as the cost of P
exceeds (1 + ε)L. It then returns, among all discovered routes whose length is
in I(L, ε), the one with minimum total badness.

Efficient Computation of Jogging Routes 5

However, up to now, GF does not optimize badness. To guide the search
towards “nice” areas of the graph, we propose a force-directed approach. Therefore,
consider a face f and the geometric center C(f) of its enclosing path. Inspired
by Newton’s law of gravity, we define a force vector φ(f, p) acting upon a point p
of the map by φ(f, p) = (bad(f) − 0.5)`(f)/|d|2 · d/|d|, where d = p − C(f).
Note that, depending on bad(f), the force is repelling/attracting. Also, the
vector φ(f, p) is directed, and its intensity decreases with the distance squared.
Now, the force that acts upon a face g is the sum of the forces over all (other) faces
in the graph (toward g). More precisely, φ(g) =

∑
f∈V ∗ φ(f, C(g)). In practice,

we quickly precompute these values restricted to reachable faces (i. e., faces within
a radius of L/2 from s). The BFS in our algorithm now extends the edge fg ∈ E∗
next, for which g has the highest force in direction of extension. More precisely,
it extends fg, iff g maximizes the term φ(g) cos(](φ(g), C(f) − C(P))). Note
that C(P) is the geometric center of the current (tentative) jogging route P in
the algorithm, and](·, ·) measures the angle of two vectors. In principle, further
criteria can be added to the BFS (e. g., via linear combinations): The roundness
considers the ratio of the route’s perimeter to its area (lower values are better);
convexity takes the distance between a candidate face and the current route into
account (higher values are better). However, preliminary experiments showed
that (on realistic inputs) the effect of these criteria is limited. The running
time of GF is bounded by the BFS on G∗. In the worst case, it scans O(|V ∗|)
faces. The next face it expands to can be determined in time O(|V ∗|), yielding a
total running time of O(|V ∗|2). Finally, recall that our preprocessing removes
the 1-shell of G. For the case that the source vertex s is part of the 1-shell, we
quickly find the (unique) path P ′ to the first vertex s′ that is not in the 1-shell.
We then run our algorithm, but initialized with s′ and L′ = L− 2`(P), simply
attaching P ′ to the route afterward. Also note that routes obtained by GF are
optimal with respect to sharing: The only (unavoidable) place it may occur is
on P ′ (in case s is in the 1-shell).

Route Smoothening. By default, GF provides no guarantee on route complex-
ity (i. e., on the number of turns). We, therefore, propose reducing it by smoothing
the route in a postprocessing step. To do so, we first select a small subse-
quence P ′ ⊂ P of the route’s vertices. (Note that s must be part of P ′.) Then,
for each two subsequent vertices uv ∈ P ′, we compute a shortest u-v-path (e. g.,
by Dijkstra’s algorithm [4]). Finally, concatenating these paths produces the
smoothened route. To also take badness into account, we use a custom met-
ric ω : E → Z≥0, defined by ω(a) = bad(a)`(a), when computing shortest paths.

It remains to discuss how we choose the subsequence P ′ from P . We propose
three rules. The first, called equidistant rule (es), simply selects the k (an
input parameter) vertices from P , which are distributed equally regarding their
subsequent distances. More precisely, vertex u ∈ P is selected as the i-th vertex
on P ′ if it minimizes `(P)i/k− `(Ps,u) (here, Ps,u denotes the subpath of P up to
vertex u). Unfortunately, this rule may select vertices at arbitrary (with respect
to the route’s shape) positions. Therefore, our second rule, called convex rule (cs),
obtains P ′ by computing the convex hull of P , e. g., by running Graham’s Scan

6 A. Gemsa, T. Pajor, D. Wagner, T. Zündorf

s

u v

Ps,u

Pu,v

Pv,s

s

Rs

u

v

s
m

u′

v′

u

v

Fig. 1. Left: Intuition of constructing 2-via-routes. Middle: Shortest path tree rooted
at s and ring Rs with candidate vertices u, v forming a feasible route (dotted). Right: Se-
lecting middle vertices m that lie “behind” u, v in the shortest path trees of u′, v′.

algorithm [6] on P . In case the source vertex s is not part of the convex hull,
we must still add it to P ′: We set its position next to the first vertex of P that
is contained in P ’s convex hull. Finally, the third rule, called important vertex
rule (ivs), tries to identify k (again, an input parameter) “important” vertices
of P : At first, it slices P into k subpaths of equal length. From each, it then selects
the vertex u whose incident edges have lowest total badness (i. e.,

∏
uv∈E bad(uv)

is minimized). This rule follows the intuition that vertices that share many edges
of low badness are more likely in “nicer” areas. Note that while smoothening
helps to reduce route complexity, its drawback is that the route’s length may
change arbitrarily. We address this issue by our next approach.

3.2 Partial Shortest Paths

As discussed, GF provides no guarantee on the deviation from the requested
route length, if they are smoothened. We, therefore, propose a second approach:
It directly computes a set of via vertices, connected by shortest paths, but such
that the length of the resulting routes is guaranteed to be in I(L, ε). In the
following, we refer to jogging routes that use k via vertices by k-via-routes.

2-via-routes. For our basic version, we exploit the intuition of constructing
equilateral triangles (see Fig. 1, left), thus, obtaining 2-via-routes. We know
that s must be part of the route. Therefore, we choose s as one of the trian-
gle’s vertices. It now remains to compute two vertices u, v (and related paths),
such that `(Ps,u), `(Pu,v), `(Pv,s) ∈ I(L/3, ε). From this, we obtain the required
total length of I(L, ε). To select u and v, we, at first, define a metric on the
edges ω : E → Z≥0 that takes the edge’s badness into account. As in Section 3.1,
we set ω(a) = bad(a)`(a). We now run a shortest path computation on G from s
using this metric with Dijkstra’s algorithm [4]. To limit the search, we do not
relax edges out of vertices x for whom `(Ps,x) exceeds (1 + ε)L/3. (Note that
`(Px,s) can be stored with x during the algorithm with negligible overhead.)
The resulting shortest path tree Ts (rooted at s) accounts for “nice” paths by
optimizing ω, and provably contains all feasible candidate vertices u (and v). We
refer to this subset of candidate vertices as ring around s with distance I(L/3, ε),
in short Rs. We must now find two vertices of the ring that have a connecting

Efficient Computation of Jogging Routes 7

path with length I(L/3, ε). To do so, we pick a vertex u from the ring Rs, and,
compute its ring Ru (also with respect to length I(L/3, ε)) by running Dijkstra’s
algorithm from u, similarly to before. Now, the intersection of Rs with Ru exactly
contains the matching vertices v, that is, concatenating Ps,u, Pu,v, Pv,s yields
an admissible jogging route (i. e., of length I(L, ε)). See Fig. 1 (middle) for an
illustration. The algorithm repeats this step for all vertices in Rs, and selects
among all admissible routes it discovers the one minimizing badness. We call this
algorithm PSP2 (partial shortest paths with two vias). We remark that distances
other than L/3 are possible when computing rings. This varies the route’s shape,
and corresponds to constructing “triangles” with nonuniform side lengths. The
running time of PSP2 is dominated by up to O(|V |) shortest path computations,
thus, it is bounded by O(|V |2 log |V |+ |V ||E|). Note that we expect much better
performance in practice, as the shortest path computations are local.

We now propose two optimizations for PSP2. First, the algorithm can be
sped up by a stopping criterion. For it to work, it must pick vertices u from Rs in
order of increasing value ω(Ps,u). Note that this order is automatically provided
by Dijkstra’s algorithm. It then only needs to consider paths Pv,s as third leg
of the route, for whom ω(Pv,s) ≥ ω(Ps,u) holds (all others have been evaluated
earlier). By this, the total badness of any route P the algorithm may still find
is lower-bound by badlb = 2ω(Ps,u)/(1 + ε)L. If we keep track of the route Popt
minimizing badness, the algorithm may stop as soon as badlb exceeds bad(Popt)—
it will provably not find any route with lower badness. Up to now, PSP2 has no
guarantee on the sharing of P . In fact, it can be up to 100% in extreme cases,
thus, we propose the following optimization. When the algorithm computes Ru

for a vertex u ∈ Rs, we forbid it to relax any edges from Ps,u. This ensures
that Ps,u and Pu,v are edge-disjoint. To also make Pu,v and Pv,s edge-disjoint,
we disregard routes whose last edges of Pu,v and Pv,s coincide. Note that we still
allow sharing wrt. to the first and last legs of the route (around s).

3-via-routes. Jogging routes obtained by PSP2 follow shortest paths for each of
its three legs Ps,u, Pu,v, and Pv,s. However, no such guarantee exists around u
and v, which might be undesirable. We now propose an optimized variant of our
algorithm, PSP3. It aims to smoothen the route around u and v. Moreover, it
uses three via-vertices, which, in general, produces more circular shaped routes.

The algorithm follows the intuition of constructing regular quadrilaterals.
Taking the source vertex s as one of the quadrilateral’s vertices, it must therefore
compute vertices u, m, and v, connected by paths Ps,u, Pu,m, Pm,v, and Pv,s,
each with length I(L/4, ε). We refer to m as middle vertex. The algorithm
starts, again, by first computing a ring Rs of vertices from s, but now with
distance I(L/4, ε). (It does so by using Dijkstra’s algorithm with metric ω.) To
smoothen the route around u and v, we do not use u and v directly as sources for
the subsequent shortest path computations (like we did with PSP2). Instead, we
consider the (tighter) ring R′s of vertices around s with distance I(αL/4, ε). Here,
the parameter α takes values from [0.5, 1], and controls smoothness around u
and v. We obtain the ring R′s by traversing the shortest path tree from each
vertex u ∈ Rs upward, until the distance condition is met. Moreover, the vertex u

8 A. Gemsa, T. Pajor, D. Wagner, T. Zündorf

remembers which vertex u′ it created in R′s (this is required later). Next, the
algorithm picks vertices u′ from R′s (in any order), and computes, for each, a
ring Ru′ around u′. To account for α, we set the distance of Ru′ to I((2−α)L/4, ε).
It follows that vertices in Ru′ have distance I(L/2, ε) from s, containing potential
middle vertices. Having computed all rings, we then consider for each pair of
vertices u′, v′ in R′s the intersection M of their rings, i. e., M = Ru′ ∩Rv′ . The
algorithm now selects only such middle vertices m ∈ M that result in smooth
paths around u and v. More precisely, a vertexm ∈M is selected, iff the smoothing
condition holds, i. e., the path Pu′,m contains u and the path Pv′,m contains v.
Intuitively, we are only interested in the part of M that lies “behind” u (resp. v)
on the shortest path tree of Ru′ (Rv′). See Fig. 1 (right) for an illustration. Each
vertex m that fulfills the smoothing condition represents an admissible jogging
route by concatenating Ps,u, Pu,m, Pm,v, and Pv,s. The algorithm returns, among
those, the one with minimum badness. With PSP3, the only vertex around which
sharing may occur is m (besides s). We avoid it by discarding middle vertices m,
for which the last edges of Pu′,m and Pv′,m coincide. This can be efficiently
checked during the algorithm.

We now propose two optimizations to speed up PSP3. The first avoids the
costly computation of set-intersections: Instead of storing (and intersecting)
rings Ru′ , the algorithm maintains a vertex-set Mm at each vertex m of the
graph. Whenever Dijkstra’s algorithm scans a potential middle vertex m, it
adds u to Mm (iff the smoothing condition holds). Moreover, it suffices to keep
the (at most) two vertices u, v with lowest associated badness values in each
set Mm. As a result, managing middle vertices is a constant time operation. The
second optimization avoids some calls to Dijkstra’s algorithm: If the ring R′s
contains vertices u′ and v′ for which u′ is an ancestor of v′ in the shortest path
tree, a single Dijkstra run from u′ suffices to handle both u′ and v′. Including
these optimizations, PSP3 essentially runs O(|V |) times Dijkstra’s algorithm. Its
total running time is thus O(|V |2 log |V |+ |V ||E|), as well as PSP2’s.

Bidirectional Search. To allow more flexibility for selecting the middle vertex, we
propose the algorithm PSP3-Bi which is an extension of PSP3 using bidirectional
search [2]. As PSP3, it starts by computing Rs, and from that, R′s. However, it
now runs (in turn) for each pair of vertices u′, v′ a bidirectional search. Whenever
it scans a vertex m that has already been scanned by the opposite direction, it
checks (a) whether u (resp. v) are ancestors of m in the forward (resp. backward)
shortest path tree, and (b) if the total length of the combined route is in I(L, ε).
If both hold true, it stops, and considers the just-found jogging route as output (it
keeps track of the one that minimizes badness). Note that by design, sharing
around m cannot occur. Since PSP3-Bi must run a bidirectional search for each
pair of vertices in R′s, its running time is bounded by O(|V |3 log |V |+ |V |2|E|).

Parallelization. All PSP-based algorithms can be parallelized quite easily in a
shared memory setup: They, first, sequentially compute the ring Rs (resp. R′s).
Subsequent Dijkstra runs may then be distributed among the available processors.
Each processor computes its locally optimal route, and the globally optimal route

Efficient Computation of Jogging Routes 9

is selected in a sequential postprocessing step. To avoid race conditions, we use
locking as synchronization primitive, whenever necessary.

Alternative Routes. All PSP-based algorithms provide alternative routes without
significant computational overhead. Instead of just outputting the route with
minimum badness, we may output the k best routes. However, these routes tend
to be too similar. We, therefore, only consider routes as alternatives that are
pairwise different in their via-vertices u and v from Rs (still selecting the k best
regarding badness). By these means, we obtain jogging routes that cover different
regions of the graph around the source vertex s.

4 Experiments

We implemented all algorithms from Section 3 in C++ compiled with GCC 4.7.1
and flag -O3. Experiments were run on one core of a dual 8-core Intel Xeon E5-2670
clocked at 2.6GHz with 64GiB of DDR3-1600 RAM. We focus on the pedestrian
network of the greater Karlsruhe region in Germany. We extracted data from a
snapshot of the freely available OpenStreetMap1 (OSM) on 5 August 2012. We
only keep walkable street segments and use OSM’s highway and landuse (of the
surrounding polygon, if available) tags to define sensible badness values (see [11]
for details). The resulting graph has 104 759 vertices and 118 671 edges.

Our first experiment evaluates quality and performance of our algorithms.
For each, we ran (the same) 1 000 queries with source vertex s chosen at random.
We request routes of 10 km length and ε set to 10%. Results are summarized
in Table 1. We report the average length (in km) of the computed routes, the
standard deviation (Std.-Dev.) of their length, their average badness values (Bad.),
their average amount of sharing (Sh.), the number of turns on them (No. Trn.),
and the average running time of the algorithm on one, and where applicable, also
on four and eight processors (Time-x). Sometimes our algorithms may not find
any feasible solution. Therefore, we also report their success rates (Succ. Rate).

Algorithms in Table 1 are grouped into blocks. The first evaluates the greedy
faces approach from Section 3.1. We observe that GF succeeds in approximating
the required route length of 10 km with very little error. However, for 7% of
our queries no solution was found. One reason is that GF is unable to recover
from local optima. However, sharing is almost nonexistent with an average value
of 0.2%. This is expected, since by design sharing for GF only occurs around s, iff
it lies in a dead-end street. On the downside, route complexity is quite high with 51
turns on average. This justifies our smoothening rules by shortest paths. We set
the number of selected vertices to 6 for GF-es and to 9 for GF-ivs. Interestingly,
figures are quite similar for all rules: They reduce route complexity by a factor of
almost two, which comes with little increase in sharing (up to 6.9%). Recall that
smoothening may arbitrarily change route lengths. Our experiments indicate that
the average route length deviates little (it is still 9.5–9.7 km, depending on the
specific rule). However, the figure is much less stable: The mean error (Std.-Dev.)
1 http://openstreetmap.org

10 A. Gemsa, T. Pajor, D. Wagner, T. Zündorf

Table 1. Solution quality and performance on our Karlsruhe input for both the Greedy
Faces (GF) and Partial Shortest Paths (PSP) algorithms. For smoothening, we apply
the equidistant rule (es), convex hull rule (cs), and important vertex rule (ivs) to GF.

Length Std.- Bad. Sh. No. Succ. Time-1 Time-4 Time-8
Algorithm [km] Dev. [%] [%] Trn. Rate [ms] [ms] [ms]

GF 9.89 0.58 48.7 0.2 51 93% 285 — —
GF-es 9.61 2.07 43.8 6.5 28 93% 289 — —
GF-cs 9.73 2.23 43.0 6.9 29 93% 296 — —
GF-ivs 9.48 1.98 41.7 6.0 30 93% 293 — —

PSP2 9.99 0.58 27.3 52.5 16 98% 179 84 63
PSP3 10.14 0.41 31.0 23.6 20 98% 155 78 72
PSP3-Bi 10.06 0.53 33.4 13.9 21 98% 446 177 140

increases to around 2 km. Regarding running times, GF runs in 285ms on average,
with a mild increase up to 296ms (≈ 4%), if we enable smoothening.

The second block evaluates the PSP approach from Section 3.2 (we set α to
0.6, where applicable). Again, we succeed approximating the required route length
of 10 km with little error (≈ 0.5 km on average for all algorithms). Because PSP
considers more route combinations than GF, it is more likely to find a feasible
solution. This is reflected by the excellent success rate of 98% (for all PSP
algorithms). Regarding badness, PSP finds “nicer” routes (lower average badness)
than any of the GF algorithms. However, their sharing (still only possible around s)
is much higher. On average, sharing is 52% for PSP2’s, though, we are able to
reduce it to 14% with PSP3-Bi. This is well acceptable in practice. An important
advantage of PSP over GF is route complexity: With 16–21 turns on average, this
figure is lower than any of the GF algorithms, even with applied smoothening.
Enabling the stopping criterion decreases running times from 3 579ms (not
reported in the table) to 179ms, a factor of 20. The fastest algorithm is PSP3
with 155ms on average. PSP3-Bi is slower by a factor of 2.9. (Recall that it must
run a bidirectional search for every pair of vertices from Rs; cf. Section 3.2.)
Regarding parallelism, we observe speedups of factor 2.1 (PSP2) and 1.9 (PSP3)
on four processors over a sequential execution. As expected, with a speedup of 2.5,
PSP3-Bi benefits most from parallelization. Increasing the number of processors
to eight, improves little. Still, PSP3-Bi benefits most, with a total speedup of 3.1.

We now present two detailed experiments. The first concerns our smoothening
rules, the second evaluates variations of the input parameter ε. Each datapoint is
based on (the same) 1 000 queries with s selected at random, and L set to 10 km.
Fig. 2 shows results of our first experiment. We set ε to 10%, and vary (on
the abscissa) the number of vertices between which the smoothening process
computes shortest paths. The left plot reports, for each smoothening rule, how
much it affects the length of the routes. We report the average amount (in percent)
it changes. The right plot shows the same figure, but for badness. We observe
that our routes tend to get shorter after smoothening. This is expected, since we

Efficient Computation of Jogging Routes 11
E�cient Computation of Jogging Routes 11

#Chosen Vertices

R
el
.
L
en

gt
h
[%

]

5 10 15 20

50
70

90
11

0

equidistant rule

convex rule

imp. vertex rule

#Chosen Vertices

R
el
.
B
ad

n
es
s
[%

]

5 10 15 20

75
80

85
90

Fig. 3: Evaluating the e↵ect of the smoothening rules on GF. We report the relative
amount by which the route’s length (left) and badness (right) change while varying the
number of vertices the algorithm selects to compute shortest paths (cf. Section 3.1).
The legend of the left figure also applies to the right.

shows results of our first experiment. We set " to 10%
-18-

, and vary (on the abscissa) [18]: TP:
Tobias:
checkthe number of vertices between which the smoothening process computes shortest

paths. The left plot reports, for each smoothening rule from Section 3.1, how
much it a↵ects the length of the routes. We report the average amount (in percent)
it changes. The right plot shows the same figure, but for badness. We observe
that our routes tend to get shorter after smoothening. This is expected, since we
rebuild routes using shortest paths. However, selecting too few vertices shortens
routes severely (to below 50%). Their length eventually stabilizes above 90% for
six vertices and more. Badness generally improves when using smoothening, but
continuously increases with more vertices. Interestingly, the convex rule (which
is independent of the number of vertices) seems very good regarding both length
and badness, making it the preferred rule in practice.

-19-

[19]: TP: Is
this
consistent
with our
“manual” ob-
servations?

Our final experiment evaluates all algorithms for varying input parameter ".
Results are summarized in Fig. 4, which evaluates, for each ", the average success
rate (left plot) and the resulting route’s badness (right plot). Note that applying
smoothening to GF does not a↵ect the success rate, therefore, we do not enumerate
the smoothening rules in the left figure. We observe that too much restriction
on the allowed length (small "-values), may result in a low success rate (down
to 75%) and high badness values (more than 50% for GF). Setting " > 0.07
already significantly improves the success rate. Unsurprisingly, badness values
gradually improve with increasing ", as this gives the algorithms more room for
optimization. Here, a good tradeo↵ seems setting " to 0.1. Interestingly, PSP3-Bi’s
success rate seems almost una↵ected by ", even for tiny values of " below 0.7.

5 Conclusion

Acknowledgments. We thank Ignaz Rutter for discussions on the NP-hardness.

E�cient Computation of Jogging Routes 11

#Chosen Vertices

R
el
.
L
en

gt
h
[%

]

5 10 15 20

50
70

90
11

0

equidistant rule

convex rule

imp. vertex rule

#Chosen Vertices

R
el
.
B
ad

n
es
s
[%

]

5 10 15 20

75
80

85
90

Fig. 3: Evaluating the e↵ect of the smoothening rules on GF. We report the relative
amount by which the route’s length (left) and badness (right) change while varying the
number of vertices the algorithm selects to compute shortest paths (cf. Section 3.1).
The legend of the left figure also applies to the right.

shows results of our first experiment. We set " to 10%
-18-

, and vary (on the abscissa) [18]: TP:
Tobias:
checkthe number of vertices between which the smoothening process computes shortest

paths. The left plot reports, for each smoothening rule from Section 3.1, how
much it a↵ects the length of the routes. We report the average amount (in percent)
it changes. The right plot shows the same figure, but for badness. We observe
that our routes tend to get shorter after smoothening. This is expected, since we
rebuild routes using shortest paths. However, selecting too few vertices shortens
routes severely (to below 50%). Their length eventually stabilizes above 90% for
six vertices and more. Badness generally improves when using smoothening, but
continuously increases with more vertices. Interestingly, the convex rule (which
is independent of the number of vertices) seems very good regarding both length
and badness, making it the preferred rule in practice.

-19-

[19]: TP: Is
this
consistent
with our
“manual” ob-
servations?

Our final experiment evaluates all algorithms for varying input parameter ".
Results are summarized in Fig. 4, which evaluates, for each ", the average success
rate (left plot) and the resulting route’s badness (right plot). Note that applying
smoothening to GF does not a↵ect the success rate, therefore, we do not enumerate
the smoothening rules in the left figure. We observe that too much restriction
on the allowed length (small "-values), may result in a low success rate (down
to 75%) and high badness values (more than 50% for GF). Setting " > 0.07
already significantly improves the success rate. Unsurprisingly, badness values
gradually improve with increasing ", as this gives the algorithms more room for
optimization. Here, a good tradeo↵ seems setting " to 0.1. Interestingly, PSP3-Bi’s
success rate seems almost una↵ected by ", even for tiny values of " below 0.7.

5 Conclusion

Acknowledgments. We thank Ignaz Rutter for discussions on the NP-hardness.

Fig. 2. Evaluating the effect of the smoothening rules on GF. We report the relative
amount by which the route’s length (left) and badness (right) change while varying the
number of vertices the algorithm selects to compute shortest paths (cf. Section 3.1).
The legend of the left figure also applies to the right.

rebuild routes using shortest paths. Selecting too few vertices shortens routes
severely (to below 50%). Their length eventually stabilizes above 90% for six
vertices and more. Badness generally improves when using smoothening, but
continuously increases with more vertices. Interestingly, the convex rule (which
is independent of the number of vertices) seems good regarding both length and
badness, which makes it the preferred rule in practice.

Our final experiment evaluates all algorithms for varying input parameter ε.
Results are summarized in Fig. 3, which evaluates, for each ε, the average success
rate (left plot) and the resulting route’s badness (right plot). Note that applying
smoothening to GF does not affect the success rate, therefore, we do not enumerate
smoothening rules in the left figure. We observe that too much restriction on the
allowed length (small ε-values), may result in a low success rate (down to 75%)
and high badness values (more than 50% for GF). Setting ε > 0.07 already
significantly improves the success rate. Unsurprisingly, badness values gradually
improve with increasing ε, as this gives the algorithms more room for optimization.
Here, a good tradeoff seems setting ε to 0.1. Interestingly, PSP3-Bi’s success rate
is almost unaffected by ε, even for tiny values below 0.07.

5 Conclusion

In this work, we introduced the NP-hard Jogging Problem. To compute useful
jogging routes, we presented two novel algorithmic approaches that solve a relaxed
variant of the problem. Besides length, both explicitly optimize two important
criteria: Badness (i. e., surrounding area) and sharing (i. e., shape of the route).
The methods are based on different intuitions. The first incrementally extends
routes by carefully joining adjacent faces of the graph, possibly smoothened by a
quick postprocessing step. The second computes sets of alternative routes that
resemble equilateral polygons via shortest path computations. Experiments on
real-world data reveal that our algorithms are indeed practical: They compute

12 A. Gemsa, T. Pajor, D. Wagner, T. Zündorf
12 A. Gemsa, T. Pajor, D. Wagner, T. Zündorf

"

S
u
cc
es
s
R
at
e
[%

]

0.1 0.2 0.3 0.4 0.5

75
80

85
90

95
10

0

GF

GF-es

GF-cs

GF-ivs

PSP2

PSP3

PSP3-Bi

"

B
ad

n
es
s
[%

]

0.0 0.1 0.2 0.3 0.4 0.5

25
30

35
40

45
50

Fig. 4: Evaluating success rate and badness (of the obtained routes) on all algorithms
for varying ". The legend of the left figure also applies to the right. Note that, regarding
the greedy facets approach, smoothening does not a↵ect the success rate, hence, we
only report it for GF.

References

1. G. B. Dantzig. Linear Programming and Extensions. Princeton University Press,
1962.

2. E. W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerische

Mathematik 1:269–271, 1959.
3. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.
4. R. L. Graham. An e�cient algorithm for determining the convex hull of a finite

planar set. Information Processing Letters 1(4):132–133, 1972.
5. T. Zündorf. E�ziente Berechnung guter Joggingrouten. Bachelor thesis, Karlsruhe

Institute of Technology, October 2012.

A Omitted Proofs

B Illustrations

This appendix provides accompanying examples of the output for our algorithms
from Section 3.

-20-
Fig. 5 generally motivates the greedy faces approach, while Fig. 6

[20]: TP:
Tobias:
Check the
captions of
the figures
in Ap-
pendix B,
whether the
input
parameters
to the
examples
are correct.

shows the e↵ect of adding force-direction to the algorithm. Fig. 7 demonstrates
the e↵ect of our smoothening rules on GF. Regarding the partial shortest paths
approach, Fig. 8 shows two examples of the same query using the PSP2 algorithm:
without (left) and with (right) reduced sharing. Fig. 9 illustrates the PSP3
algorithm without (left) and with (right) avoiding sharing around m. Fig. 10
shows an example of the three best alternatives route obtained by the PSP3-Bi
algorithm.

12 A. Gemsa, T. Pajor, D. Wagner, T. Zündorf

"

S
u
cc
es
s
R
at
e
[%

]

0.1 0.2 0.3 0.4 0.5

75
80

85
90

95
10

0

GF

GF-es

GF-cs

GF-ivs

PSP2

PSP3

PSP3-Bi

"

B
ad

n
es
s
[%

]

0.0 0.1 0.2 0.3 0.4 0.5

25
30

35
40

45
50

Fig. 4: Evaluating success rate and badness (of the obtained routes) on all algorithms
for varying ". The legend of the left figure also applies to the right. Note that, regarding
the greedy facets approach, smoothening does not a↵ect the success rate, hence, we
only report it for GF.

References

1. G. B. Dantzig. Linear Programming and Extensions. Princeton University Press,
1962.

2. E. W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerische

Mathematik 1:269–271, 1959.
3. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.
4. R. L. Graham. An e�cient algorithm for determining the convex hull of a finite

planar set. Information Processing Letters 1(4):132–133, 1972.
5. T. Zündorf. E�ziente Berechnung guter Joggingrouten. Bachelor thesis, Karlsruhe

Institute of Technology, October 2012.

A Omitted Proofs

B Illustrations

This appendix provides accompanying examples of the output for our algorithms
from Section 3.

-20-
Fig. 5 generally motivates the greedy faces approach, while Fig. 6

[20]: TP:
Tobias:
Check the
captions of
the figures
in Ap-
pendix B,
whether the
input
parameters
to the
examples
are correct.

shows the e↵ect of adding force-direction to the algorithm. Fig. 7 demonstrates
the e↵ect of our smoothening rules on GF. Regarding the partial shortest paths
approach, Fig. 8 shows two examples of the same query using the PSP2 algorithm:
without (left) and with (right) reduced sharing. Fig. 9 illustrates the PSP3
algorithm without (left) and with (right) avoiding sharing around m. Fig. 10
shows an example of the three best alternatives route obtained by the PSP3-Bi
algorithm.

Fig. 3. Evaluating success rate and badness on all algorithms for varying ε. The legend
of the left figure also applies to the right. Note that, regarding the greedy faces approach,
smoothening does not affect the success rate, hence, we only report it for GF.

jogging routes of excellent quality in under 200ms time, which is fast enough for
interactive applications. Future work includes comparing our algorithms to exact
solutions, and better methods for selecting via vertices—either as smoothening
rules, or for computing routes directly. Also, providing via vertices (or “areas”)
as input is an interesting scenario. Finally, we like to accelerate our algorithms
further. Especially, PSP may benefit from speedup techniques [3, 9]. This, however,
requires adapting them to compute rings instead of point-to-point paths.

References

1. K. Buchin, C. Knauer, K. Kriegel, A. Schulz, and R. Seidel. On the number of
cycles in planar graphs. COCOON, pp. 97–107, 2007.

2. G. Dantzig. Linear Programming and Extensions. Princeton University Press, 1962.
3. D. Delling, P. Sanders, D. Schultes, and D. Wagner. Engineering Route Planning

Algorithms. Algorithmics of Large and Complex Networks, pp. 117–139. Springer,
Lecture Notes in Computer Science 5515, 2009.

4. E. W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik 1:269–271, 1959.

5. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

6. R. L. Graham. An efficient algorithm for determining the convex hull of a finite
planar set. Information Processing Letters 1(4):132–133, 1972.

7. R. M. Karp. Reducibility among Combinatorial Problems. Complexity of Computer
Computations, pp. 85–103. Plenum Press, 1972.

8. H. Liu and J. Wang. A new way to enumerate cycles in graph. AICT and ICIW,
pp. 57-60. IEEE Computer Society, AICT-ICIW ’06, 2006.

9. C. Sommer. Shortest-Path Queries in Static Networks, 2012, Submitted. Preprint
available at http://www.sommer.jp/spq-survey.htm.

10. R. Yuster and U. Zwick. Color-coding. Journal of the ACM 42(4):844–856, 1995.
11. T. Zündorf. Effiziente Berechnung guter Joggingrouten. Bachelor thesis, Karlsruhe

Institute of Technology, October 2012.

