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Abstract. We consider the following problem of labeling points in a dynamic
map that allows rotation. We are given a set of points in the plane labeled by a set
of mutually disjoint labels, where each label is an axis-aligned rectangle attached
with one corner to its respective point. We require that each label remains hori-
zontally aligned during the map rotation and our goal is to find a set of mutually
non-overlapping active labels for every rotation angle α ∈ [0, 2π) so that the
number of active labels over a full map rotation of 2π is maximized.
We discuss and experimentally evaluate several labeling models that define ad-
ditional consistency constraints on label activities in order to reduce flickering
effects during monotone map rotation. We introduce three heuristic algorithms
and compare them experimentally to an existing approximation algorithm and
exact solutions obtained from an integer linear program. Our results show that on
the one hand low flickering can be achieved at the expense of only a small re-
duction in the objective value, and that on the other hand the proposed heuristics
achieve a high labeling quality significantly faster than the other methods.

1 Introduction

Dynamic digital maps, in which users can navigate by continuously zooming, panning,
or rotating their personal map view, opened up a new era in cartography and geographic
information science (GIS) from professional applications to personal mapping services
on mobile devices. The continuously animated map view adds a temporal dimension
to the map layout and thus many traditional algorithms for static maps do not extend
easily to dynamic maps. Despite the popularity and widespread use of dynamic maps,
relatively little attention has been paid to provably good or experimentally evaluated
algorithms for dynamic maps.

In this paper we consider dynamic map labeling for points, i.e., the problem of de-
ciding when and where to show labels for a set of point features on a map in such a way
that visually distracting effects during map animation are kept to a minimum. In partic-
ular, we study rotating maps, where the mode of interaction is restricted to changing the
map orientation, e.g., to be aligned with the travel direction in a car navigation system.

Been et al. [2, 3] defined a set of consistency desiderata for labeling zoomable dy-
namic maps, which include that (i) labels do not pop or flicker during monotone zoom-
ing, (ii) labels do not jump during the animation, and (iii) the labeling only depends on
the current view and not its history. In our previous paper [8], we adapted the consis-
tency model of Been et al. to rotating maps, showed NP-hardness and other properties
of consistent labelings in this model, and provided efficient approximation algorithms.
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Fig. 1: Instance with 43 labeled cities in Germany. Input labeling (left), rotated by ∼ 25◦ (right).
Background picture is in public domain. Retrieved from Wikpedia [Link]

Similar to the (NP-hard) label number maximization problem in static map label-
ing [6], the goal in dynamic map labeling is to maximize the number of visible or active
labels integrated over one full rotation of 2π. The value of this integral is denoted as
the total activity and defines our objective function. Figure 1 shows an example seen
from two different angles. Without any consistency restrictions, we can select the active
labels for every rotation angle α ∈ [0, 2π) independently of any other rotation angles.
Clearly, this may produce an arbitrarily high number of flickering effects that occur
whenever a label changes from active to inactive or vice versa. Depending on the ac-
tual consistency model, the number of flickering events per label is usually restricted
to a very small number. Our goal in this paper is to evaluate several possible labeling
strategies, where a labeling strategy combines both a consistency model and a labeling
algorithm. First, we want to evaluate the loss in total activity caused by using a specific
consistent labeling model rather than an unrestricted one. Second, we are interested
in evaluating how close to the optimum total activity our proposed algorithms get for
real-world instances in a given consistency model.
Related Work. Most previous work on dynamic map labeling covers maps that allow
panning and zooming, e.g., [2, 3, 11, 12, 14]; there is also some work on labeling dy-
namic points in a static map [4, 5]. As mentioned above, the dynamic map labeling
problem for rotating maps has first been considered in our previous paper [8]. We intro-
duced a consistency model, and proved NP-completeness even for unit-square labels.
For unit-height labels we described an efficient 1⁄4-approximation algorithm as well as
a PTAS. Yokosuka and Imai [15] considered the label size maximization problem for
rotating maps, where the goal is to find the maximum font size for which all labels can
be constantly active during rotation. Finally Gemsa et al. [7] studied a trajectory-based
labeling model, in which a locally consistent labeling for a viewport moving along a
given smooth trajectory needs be computed. Their model combines panning and rota-
tion of the map view.
Our Contribution. In this paper we take a practical point of view on the dynamic map
labeling problem for rotating maps. In Section 2 we formally introduce the algorith-
mic problem and discuss our original rather strict consistency model [8], as well as two
possible relaxations that are interesting in practice. Section 3 introduces three greedy
heuristics (one of which is a 1⁄8-approximation for unit square labels) and presents a for-

http://commons.wikimedia.org/wiki/File:Germany_localisation_map_2008.svg
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mulation as an integer linear program (ILP), which provides us with optimal solutions
against which to compare the algorithms. Our main contribution is the experimental
evaluation in Section 4. We extracted several real-world labeling instances from Open-
StreetMap data and make them available as a benchmark set. Based on these data, we
evaluate both the trade-off between the consistency and the total activity, and the per-
formance of the proposed labeling algorithms. The experimental results indicate that
a high degree of labeling consistency can be obtained at a very small loss in activity.
Moreover, our greedy algorithms achieve a high labeling quality and outperform the
running times of the other methods by several orders of magnitude. We conclude with
a suggestion of the most promising labeling strategies for typical use cases.

Due to space constraints we omitted all proofs in this paper. They can be found,
together with a more detailed experimental analysis, in the full version [9].

2 Preliminaries

In this section we describe a general labeling model for rotating maps with axis-aligned
rectangular labels. This model extends our earlier model [8].

Let M be an (abstract) map, consisting of a set P = {p1, . . . , pn} of points in
the plane together with a set L = {`1, . . . , `n} of pairwise disjoint, closed, and axis-
aligned rectangular labels in the plane. Each point pi must coincide with a corner of
its corresponding label `i; we denote that corner (and the point pi) as the anchor of
label `i. Since each label has four possible positions with respect to pi this widely used
model is known in the literature as the 4-position model (4P) [6].

As M rotates, each label `i in L must remain horizontally aligned and anchored
at pi. Thus, new label intersections form and existing ones disappear during the rotation
of M . We take the following alternative perspective on the rotation of M . Rather than
rotating the points, say clockwise, and keeping the labels horizontally aligned we may
instead rotate each label counterclockwise around its anchor point and keep the set of
points fixed. Both rotations are equivalent in the sense that they yield exactly the same
intersections of labels and occlusions of points.

We consider all rotation angles modulo 2π. For convenience we introduce the in-
terval notation [a, b] for any two angles a, b ∈ [0, 2π]. If a ≤ b, this corresponds to the
standard meaning of an interval, otherwise, if a > b, we define [a, b] := [a, 2π] ∪ [0, b].
For simplicity, we refer to any set of the form [a, b] as an interval. We define the length
of an interval I = [a, b] as |I| = b− a if a ≤ b and |I| = 2π − a+ b if a > b.

A rotation of L is defined by a rotation angle α ∈ [0, 2π). We define L(α) as the set
of all labels, each rotated by an angle of α around its anchor point. A rotation labeling
of M is a function φ : L× [0, 2π)→ {0, 1} such that φ(`, α) = 1 if label ` is visible or
active in the rotation of L by α, and φ(`, α) = 0 otherwise. We call a labeling φ valid
if, for any rotation α, the set of labels Lφ(α) = {` ∈ L(α) | φ(`, α) = 1} consists of
pairwise disjoint labels. If two labels ` and `′ in L(α) intersect, we say that they have a
(soft) conflict at α, i.e., in a valid labeling at most one of them can be active at α. We
define the set C(`, `′) = {α ∈ [0, 2π) | ` and `′ are in conflict at α} as the conflict set
of ` and `′. Further, we call a contiguous range in C(`, `′) a conflict range. The begin
and end of a maximal conflict range are called conflict events.
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For a label ` we call each maximal interval I ⊆ [0, 2π) with φ(`, α) = 1 for
all α ∈ I an active range of label ` and define the setAφ(`) as the set of all active ranges
of ` in φ. We call an active range where both boundaries are conflict events a regular
active range. Our optimization goal is to find a valid labeling φ that shows a maximum
number of labels integrated over one full rotation from 0 to 2π. The value of this integral
is called the total activity t(φ) and can be computed as t(φ) =

∑
`∈L

∑
I∈Aφ(`) |I|. The

problem of optimizing t(φ) is called total activity maximization problem (MAXTOTAL).
A valid labeling is not yet consistent in terms of the definition of Been et al. [2, 3]:

while labels clearly do not jump and the labeling is independent of the rotation history,
labels may still flicker multiple times during a full rotation from 0 to 2π, depending
on how many active ranges they have in φ. In the most restrictive consistency model,
which avoids flickering entirely, each label is either active for the full rotation [0, 2π) or
never at all. We denote this model as 0/1-model. In our previous paper [8] we defined
a rotation labeling as consistent if each label has only a single active range, which
we denote here as the 1R-model. This immediately generalizes to the kR-model that
allows at most k active ranges for each label. Analogously, the unrestricted model, i. e.,
the model without restrictions on the number of active ranges per label, is denoted as
the∞R-model.

We may apply another restriction to our consistency models, which is based on the
occlusion of anchors. Among the conflicts in set C(`, `′) we further distinguish hard
conflicts, i.e., conflicts where label ` intersects the anchor point of label `′. If a labeling
φ sets ` active during a hard conflict with `′, the anchor of `′ is occluded. This may
be undesirable in some situation in practice, e.g., if every point in P carries useful
information in the map, even if it is unlabeled. Thus we may optionally require that
φ(`, α) = 0 during any hard conflict of a label ` with another label `′ at angle α. Note
that we can include other obstacles (e. g., important landmarks on a map) which must
not be occluded by a label in the form of hard conflicts. Note that a soft conflict is
always a label-label conflict, while a hard conflict is always a label-point conflict (in
our definition every label-point conflict induces also a label-label conflict). We showed
earlier [8] that MAXTOTAL is NP-hard in the 1R-model avoiding hard conflicts and
presented approximation algorithms.

3 Algorithmic Approaches

In this section we describe four algorithmic approaches for computing consistent ac-
tive ranges that we evaluate in our experiments. We also evaluate our previous 1⁄4-
approximation algorithm [8] for MAXTOTAL, but omit its description due to space
constraints; the full version [9] contains a sketch. Section 3.1 describes three simple
greedy heuristics and Section 3.2 formulates an exact ILP model that we use primarily
for evaluating the quality of the other solutions.

3.1 Greedy Heuristics

In this section we describe three new greedy algorithms to construct valid and consistent
labelings with high total activity. These algorithms are conceptually simple and easy to
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implement, but in general we cannot give quality guarantees for the solutions computed
by these algorithms.

All three greedy algorithms follow the same principle of iteratively assigning active
ranges to all labels. The algorithm first initializes a set L′ with all labels in L. Then it
computes for each label ` its maximum active range Imax(`), which is the active range
of maximum length |Imax(`)| such that (i) ` is not active while in conflict with another
active label that was already considered by the algorithm, and (optionally) such that
(ii) ` is not active while it has a hard conflict with another label. Initially the maximum
active range of each label is either the full interval [0, 2π] or the largest range that avoids
hard conflicts. Then the algorithm repeats the following steps. It selects and removes a
label ` from L′, assigns it the active range Imax(`), and updates those labels in L′ whose
maximum active range is affected by the assignment of `’s active range. If we consider
the kR-model with k > 1, we keep a counter for the number of selected active ranges
and add another copy of ` with the next largest active range to L′ if the counter value is
less than k. The three algorithms differ only in the criterion that determines which label
is selected from L′ in each iteration.

The first algorithm we propose is called GreedyMax. In each step the algorithm
selects the label with the largest maximum active range among all labels in L′. Ties are
broken arbitrarily. The second algorithm, GreedyLowCost, determines for the maxi-
mum active range of each label the cost of adding it to the solution. This means that for
each label ` ∈ L′ with maximum active range Imax(`) the algorithm determines for all
labels `′ ∈ L′ that are in conflict with ` during Imax(`) by how much their maximum
active range would shrink. The sum of this is the cost c(`) of assigning the active range
Imax(`) to `. Among all labels in L′ GreedyLowCost chooses the one with lowest
cost. Finally, the last algorithm, GreedyBestRatio is a combination of the two preced-
ing ones. In each step the algorithm chooses the label ` whose ratio |Imax(`)|/c(`) is
maximum among all labels in L′. We conclude with a brief performance analysis of our
algorithms.

Theorem 1. In the kR-model with constant k the algorithm GreedyMax can be im-
plemented to run in time O(cn · (c+ log n)) and the algorithms GreedyLowCost and
GreedyBestRatio can be implemented to run in time O(cn · (c2 + log n)), where n is
the number of labels and c is the maximum number of conflicts per label in the input
instance. The space consumption of all algorithms is in O(cn).

The running time of GreedyMax can be further improved to O(cn log n). More-
over, if all labels are unit squares, GreedyMax is a 1⁄8-approximation algorithm.

3.2 Integer Linear Program

In this section we present an ILP-based approach to find optimal solutions for MAXTO-
TAL. This is justified since MAXTOTAL is NP-hard and we cannot hope for an efficient
algorithm unless P = NP . We note that the same ILP formulation can also be used
in the 1⁄4-approximation algorithm to compute optimal solutions in the subinstances it
considers.

The key idea of the ILP presented here is to determine regular active ranges induced
by the ordered set of all conflict events. Our model contains for each label ` and each
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interval I a binary decision variable, which indicates whether or not ` is active during I .
We add constraints to ensure that (i) no two conflicting labels are active at the same time
within their conflict range and (ii) at most k disjoint contiguous active ranges can be
selected for each label as required in the kR-model.
Model. For simplicity we assume in this section that the length of each conflict range
is strictly larger than 0. This assumption is not essential for our ILP formulation, but
makes the description easier.

Let E be the ordered set of conflict events that also contains 0 and 2π, and let E[j]
be the interval between the j-th and the (j+1)-th element inE. We call such an interval
E[j] an atomic interval and always consider its index j modulo |E| − 1. For each label
`i ∈ L and for each atomic interval E[j] we introduce two binary variables xji and bji to
our model. We refer to the variables of the form xji as activity variables. The intended
meaning of xji is that its value is 1 if and only if the label `i is active during the j-th
atomic interval; otherwise xji has value 0. We use the binary variables bji to indicate the
start of a new active range and to restrict their total number to k. This is achieved by
adding the following constraints to our model.

xji − b
j
i ≤ x

j−1
i ∀`i ∈ L ∀j ∈ {0, . . . , |E| − 2} (1)∑

0≤j≤|E|−2

bji ≤ k ∀`i ∈ L (2)

The effect of constraint (1) is that it is only possible to start a new active range for label
`i with atomic interval E[j] (i.e., xj−1i = 0 and xji = 1) if we account for that range by
setting bji = 1. Due to constraint (2) this can happen at most k times per label. We can
also allow arbitrarily many active ranges per label as in the∞R-model by completely
omitting the variables bji and the above constraints.

It remains to guarantee that no two labels can be active when they are in conflict.
This can be done straightforwardly since we can compute for which atomic intervals
two labels are in conflict and we ensure that not both activity variables can be set to 1.
More specifically, for every pair of labels `i, `k and for every atomic interval j during
which they are in conflict, we add the constraint

xji + xjk ≤ 1. (3)

Optionally, incorporating hard conflicts can also be done easily as a hard conflict
simply excludes certain atomic intervals from being part of an active range. We de-
termine for each label all such atomic intervals in a preprocessing step and set the
corresponding activity variables to 0.

Among all feasible solutions that satisfy the above constraints, we maximize the ob-
jective function

∑
`i∈L

∑
0≤j≤|E|−2 x

j
i · |E[j]|, which is equivalent to the total activity

t(φ) of the induced labeling φ.
This ILP considers only regular active ranges, since label activities change states

only at conflict events. However, there always exists an optimal solution that is regu-
lar [8, Lemma 4], and hence we are guaranteed to find a globally optimal solution. Let e
be the number of conflict events and let c be the maximum number of conflict events
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per label in a MAXTOTAL instance, respectively. In the worst case the number of con-
straints that ensure that the solution is conflict-free (i. e., constraint (3)) is O(c · e) per
label, whereas we require only O(e) constraints of the other two types of constraints
per label.

Theorem 2. The ILP (1)–(3) solves MAXTOTAL and has at most O(e · n) variables
and O(c · e · n) constraints, where n is the number of labels, e the number of conflict
events, and c the maximum number of conflicts per label.

4 Experimental Evaluation

In this section we present the experimental evaluation of different labeling strategies
based on the consistency models and algorithms introduced in Sections 2 and 3. We
implemented our algorithms in C++ and compiled with GCC 4.7.1 using optimization
level -O3. As ILP solver we used Gurobi 5.6. The running time experiments were per-
formed on a single core of an AMD Opteron 2218 processor running Linux 2.6.34.10.
The machine is clocked at 2.6GHz, has 16GiB of RAM and 2 × 1MiB of L2 cache.
All reported running times are wall-clock times.

4.1 Benchmark Instances

Since our labeling problem is immediately motivated by dynamic mapping applica-
tions, we focus on gathering real-world data for the evaluation. As data source we used
the publicly available data provided by the OpenStreetMap project (www.osm.org).
We extracted the latitudes, longitudes and names of all cities with a population of at
least 50 000 for six countries (France, Germany, Italy, Japan, United Kingdom, and the
United States of America) and created maps at three different scales.

To obtain a valid labeling instance several additional steps are necessary. First, the
width and height of each label need to be chosen. Second, we need to map latitude
and longitude to the two-dimensional plane. Third, recall that the input is a statically
labeled map, and hence we need to compute such a static input labeling. For the first
issue we used the same font that is used in Google Maps, i. e., Roboto Thin. The
dimensions of each label were obtained by rendering the label’s corresponding city
name in Roboto Thin with font size 13, computing its bounding box, and adding
a small additional buffer. For obtaining two-dimensional coordinates from the latitude
and longitude of each point, we used a Mercator projection (where we approximate
the ellipsoid with a sphere of radius r = 6371km). For the map scales we again
wanted to be close to Google Maps. Hence, we derived instances in three different
scales (65 pixel =̂ 20km, 50km, 100km) for each country. For simplicity we refer to
the scale of 65 pixel =̂ 20km only by 20km (and likewise for the remaining scales).
The last remaining step was to compute a valid input labeling. For this we used the
4P fixed-position model [6] and solved a simple ILP model to obtain a weighted max-
imum independent set in the label conflict graph, in which any two conflicting label
positions are linked by an edge and weights are proportional to the population. Ta-
ble 1 shows the characteristics of our benchmark data, which can be downloaded from
i11www.iti.kit.edu/projects/dynamiclabeling/.

http://www.osm.org
http://i11www.iti.kit.edu/projects/dynamiclabeling/
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Table 1: Number of labels in each benchmark instance, the number of labels in the largest con-
nected component (lcc) and the number of connected components (cc) in the conflict graph.

countries
FR DE GB IT JP US

scales #labels (#labels in lcc / #cc)

20km 86 (12/51) 52 (20/26) 99 (73/19) 131 (28/48) 99 (12/34) 403 (26/203)
50km 80 (39/9) 43 (39/4) 68 (66/2) 111 (87/5) 80 (69/7) 359 (88/89)
100km 69 (69/1) 33 (33/1) 37 (37/1) 68 (68/1) 49 (44/3) 288 (213/16)

4.2 Evaluation of the Consistency Models

Here, we evaluate the different consistency models introduced in Section 2. The models
differ by the admissible number of active ranges per label and the handling of hard
conflicts. We begin by analyzing the effect of limiting the number of active ranges and
consider the five models 0/1, 1R, 2R, 3R, and∞R, all taking hard conflicts into account.
As discussed in Section 2, the 0/1-model is flicker-free but expected to have a low total
activity, especially in dense instances. On the other hand, the∞R-model achieves the
maximum possible total activity in any valid labeling, but is likely to produce a large
number of flickering effects. Still, it serves as an upper bound on the total activities of
the other models. The two most important quality criteria in our evaluation are (i) the
total activity of the solution, and (ii) the average length of the active ranges.

In Table 2 we report the total activity of the optimal solution for the tested models
relative to the solution in the ∞R-model. The results of the instances are aggregated
by scale. We observe that the total activity of the optimal solutions in the 0/1-model
drops significantly, namely to less than 55% compared to the optimal solution in the
∞R-model even for the least dense instance at scale 20km and to only 6% for a scale
of 100km. Hence this model is of very little interest in practice.

We see a strong increase in the average total activity values already for the 1R-model
compared to the optimal solution in the 0/1-model. For the large-scale instance 20km
1R reaches almost 95% of the∞R-model, which has more than 19 times the number of
flickering effects and active ranges of average length shorter by a factor of 1/9. For map
scales of 50km and 100km, the total activities drop to 88% and 81%, respectively, but
at the same time the number of flickering effects and the average active range lengths in
the∞R model are extremely poor. Thus the 1R-model achieves generally a very good
labeling quality by using only one active range per label.

Finally, we take a look at the middle ground between the 1R- and the∞R-models. It
turns out that total activity of the 2R-model is off from the∞R-model by less than 1%
at scale 20km and less than 5% at scale 100km, but this increase in activity over the 1R
model comes at the cost of producing twice as many flickering effects and decreasing
the average active range length by 30–40%. If we allow three active ranges per label,
the total activity increases to more than 99% of the upper bound in the ∞R-model at
all three scales, while having significantly fewer flickering effects and longer average
active ranges. The activity gain by considering the kR-model for k > 3 is negligible
and the disadvantage of increasing the number of flickering effects dominates.
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Table 2: Average total activity of the optimal solutions with respect to the maximum possible
objective value. Instances grouped by scale. Additionally we report the average interval length
normalized to one full rotation, and for the∞R-model the average number of intervals per label.

model 0/1 1R 2R 3R ∞R

scale total act. total act. ∼len total act. ∼len total act. ∼len ∼len ∼intervals

20km 54.04% 94.56% 0.76 99.36% 0.56 99.92% 0.47 0.08 19.13
50km 22.42% 87.79% 0.58 97.69% 0.35 99.54% 0.26 0.01 79.22
100km 6.19% 81.01% 0.44 95.83% 0.27 99.24% 0.19 < 0.01 128.4

We conclude that the 1R-model achieves the best compromise between total activity
value and low flickering, at least for maps at larger scales with lower feature density.
For dense maps the 2R- or even the 3R-models yield near-optimal activity values while
still keeping the flickering relatively low. Going beyond three active ranges per label
only creates more flickering but does not provide noticeable additional value.

It remains to investigate the impact of hard conflicts. For this we apply the 1R-model
and compare the variant where all conflicts are treated equally (soft-conflict model) with
the variant where hard conflicts are disallowed (hard-conflict model). We consider for
each map scale the average relative increase in activity value of the soft-conflict model
over the stricter hard-conflict model. For 20km instances the increase is 8.51%, for the
intermediate scale 50km it is 19.25%, and for the small-scale map 100km the increase
reaches 31.9%. These results indicate that, unsurprisingly, the soft-conflict model im-
proves the total activity at all scales, and in particular for dense configurations of point
features, where labels usually have several hard conflicts with nearby features. As dis-
cussed before, this improvement comes at the cost of temporarily occluding unlabeled
but possibly important points. It is an interesting open usability question to determine
user preferences for the two models and the actual effect of temporary point occlu-
sions on the readability of dynamic maps, but such a user study is out of scope of this
evaluation and left as an interesting direction for future work.

4.3 Evaluation of the Algorithms

In this section we evaluate the quality (total activity) and running time of the 1⁄4-approxi-
mation algorithm and the three greedy heuristics GreedyMax, GreedyLowCost, and
GreedyBestRatio (Section 3.1), which we abbreviate as QAPX, GM, GLC, and GBR,
respectively. Additionally, we include the ILP (Section 3.2) as the only exact method in
the evaluation. The ILP is also applied to optimally solve the independent subinstances
considered by QAPX. In our implementation we heuristically improve the running time
of the ILP by partitioning the conflict graph of the labels into its connected components
and solving each connected component individually; see Table 1 for the number of la-
bels in the largest connected component and the number of connected components in the
conflict graph of each instance. For the ILP we set a time limit of 1 hour and restrict the
ILP solver to a single thread. The same restrictions are applied to the ILP when solving
the small subinstances in algorithm QAPX. By the design of the algorithm, a solution
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obtained by QAPX will consist of many labels that have no active range, although they
could be assigned one (all labels that are discarded to obtain independent cells have
active range set to length 0). To overcome this drawback, we propose a combination
of QAPX with the greedy algorithms. More specifically, we apply one of our greedy
algorithms to each of the four solutions computed by the 1⁄4-approximation and deter-
mine among the four resulting solutions the best one. In the following we refer to the
combination of the 1⁄4-approximation with a greedy algorithm by adding a Q in front of
the greedy algorithm’s name (e. g., QGLC). We report the results of the 1R-soft-conflict
model, which turned out as a reasonable compromise between low flickering and high
total activity in Section 4.2.
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Fig. 2: Running time (log scale) and solution qual-
ity of the algorithms in the 1R soft-conflict model.

We give a general overview of
the performance of all evaluated al-
gorithms as a scatter plot (Fig. 2). In
this scatter plot each disk represents
the result of an algorithm (indicated
by color) applied to a single coun-
try instance. The size of the disk in-
dicates the scale of the instance (the
smaller the disk, the smaller the scale).
We omitted the algorithms QGM and
QGLC in this plot to increase read-
ability, because the difference in run-
ning time and quality of the solutions
between QGM, QGLC, and QGBR is negligible and creates extra overplotting.

We observe that the performance of the greedy algorithms is very good with re-
spect to running time as well as quality of the solutions. As expected, the total activity
of QAPX is always better than 25%, but generally much worse than for the remain-
ing algorithms. It never gets close to the solutions produced by the greedy algorithms
while being considerably slower. However, combining QAPX with a greedy algorithm
achieves better solutions than greedy algorithms and QAPX alone, while the increase
in running time over QAPX is negligible. Finally, we observe that the ILP solves the
tested instances in a reasonable time frame. To obtain the optimal solution, the ILP re-
quired on average 758s, with a median of only 30.65s. However, we concede that larger
instances may require significantly more time to solve, and may even be infeasible.

We now turn to a more detailed analysis of the two most promising approaches (i)
using the greedy algorithms, and (ii) combining QAPX with the greedy algorithms. For
a detailed depiction of the performance of the algorithms with respect to the quality
of the solution see the diagrams in Fig. 3. We observe that among the three greedy
algorithms GBR performs best with respect to quality with an average of 93.7%, but
the difference to the other greedy algorithms is small. Even the greedy algorithm GM
with the lowest total activity produces solution with an average of 91.8% of the optimal
solution. Each of the combinations of QAPX with subsequent execution of a greedy al-
gorithm outperforms each of the greedy algorithms alone in terms of quality. However,
since the solutions produced by the greedy algorithms are already very close to the op-
timal solution, we observe only a slight increase in total activity for QGM, QGLC, and
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Fig. 3: Performance of the greedy algorithms and QAPX with greedy postprocessing.

QGBR over the greedy algorithms. The difference between both approaches becomes
much more visible when considering the running time. While the average running time
for the three greedy algorithms is between 2.5ms and 3.9ms, the average running time
for the 1⁄4-approximation algorithms is roughly 46s. However, we note that this large dif-
ference is mostly caused by one instance, which required over 664s to find the solution.
The median running time for the enriched 1⁄4-approximation algorithms is about 1.08s.

Our observations in this section are strengthened by the additional experiments
(hard-conflict model and larger instances) reported in the full version of the paper [9],
in which the performance of the greedy algorithms is even better. In order to give a final
recommendation for an algorithm, it is necessary to make a choice on the time–quality
trade-off that is acceptable in a particular situation. If running time is not the primary
concern, e.g., for offline applications with high computing power available, we can rec-
ommend the ILP, which ran reasonably fast in our experiments. On the other hand, if
computing power is limited and real-time labeling is necessary, e.g., on a mobile de-
vice, all three greedy heuristics can be recommended as the methods of choice; a slight
advantage of GBR was observed in our experiments. All three algorithms run very fast
(a few milliseconds) and empirically produce high activities of more than 90% of the
optimum solution. If one wants to invest a few seconds of running time, the combina-
tion of QAPX with a greedy algorithm may be of interest as it produces slightly better
solutions than the stand-alone greedy algorithms.

5 Conclusion

In this work, we evaluated different strategies for labeling dynamic maps that allow
continuous rotation, where a labeling strategy consists of a consistency model and a la-
beling algorithm. In the first part of the evaluation, we considered the quality of optimal
solutions in different consistency models. It turned out that the restriction to one or two
active ranges per label (1R- and 2R-models) yields the best compromise in terms of low
flickering and high total activity value of more than 95% of the upper bound obtained
from the unrestricted model (∞R). Additionally, treating all pairwise label conflicts as
soft conflicts increased the total activity values between 8% and 32% at the cost of
occasional occlusion of unlabeled point features.
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In the second part of the evaluation, we investigated the performance of three new
greedy heuristics and our previous 1⁄4-approximation algorithm [8] in terms of labeling
quality and running time. It turned out that the greedy heuristics performed very well
in both total activity (well above 90%) and running time (a few ms). The unmodified
1⁄4-approximation performs much worse, but the combination of 1⁄4-approximation and
greedy heuristics yields slightly higher total activity than the greedy heuristics alone; the
running time, however, can grow to several seconds. In conclusion, we believe that the
1R model in combination with any of the three greedy algorithms is, in most cases, the
best labeling strategy for labeling dynamic rotating maps. Whether the soft-conflict or
the hard-conflict model is more appropriate depends on requirements of the application.
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