Consistent Labeling of Rotating Maps

Andreas Gemsa, Martin Nollenburg, and Ignaz Rutter

Institute of Theoretical Informatics, Karlsruhe Institute of Technology (KIT), Germany

Abstract. Dynamic maps that allow continuous map rotations, e.g., on mobile
devices, encounter new issues unseen in static map labeling before. We study the
following dynamic map labeling problem: The input is a static, labeled map, i.e.,
a set P of points in the plane with attached non-overlapping horizontal rectangular
labels. The goal is to find a consistent labeling of P under rotation that maximizes
the number of visible labels for all rotation angles such that the labels remain
horizontal while the map is rotated. A labeling is consistent if a single active
interval of angles is selected for each label such that labels neither intersect each
other nor occlude points in P at any rotation angle.

We first introduce a general model for labeling rotating maps and derive basic ge-
ometric properties of consistent solutions. We show NP-completeness of the ac-
tive interval maximization problem even for unit-square labels. We then present
a constant-factor approximation for this problem based on line stabbing, and re-
fine it further into an EPTAS. Finally, we extend the EPTAS to the more general
setting of rectangular labels of bounded size and aspect ratio.

1 Introduction

Dynamic maps, in which the user can navigate continuously through space, are be-
coming increasingly important in scientific and commercial GIS applications as well
as in personal mapping applications. In particular GPS-equipped mobile devices offer
various new possibilities for interactive, location-aware maps. A common principle in
dynamic maps is that users can pan, rotate, and zoom the map view. Despite the pop-
ularity of several commercial and free applications, relatively little attention has been
paid to provably good labeling algorithms for dynamic maps.

Been et al. [2] identified a set of consistency desiderata for dynamic map labeling.
Labels should neither “jump” (suddenly change position or size) nor “pop” (appear and
disappear more than once) during monotonous map navigation; moreover, the labeling
should be a function of the selected map viewport and not depend on the user’s nav-
igation history. Previous work on the topic has focused solely on supporting zooming
and/or panning of the map [2}3l/12], whereas consistent labeling under map rotations
has not been considered prior to this paper.

Most maps come with a natural orientation (usually the northern direction facing
upward), but applications such as car or pedestrian navigation often rotate the map view
dynamically to be always forward facing [|6]. Still, the labels must remain horizontally
aligned for best readability regardless of the actual rotation angle of the map. A basic
requirement in static and dynamic label placement is that labels are pairwise disjoint,
i.e., in general not all labels can be placed simultaneously. For labeling point features,
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Fig. 1: Input map with five points (a) and three rotated views with some partially oc-
cluded labels (b)—(d).

it is further required that each label, usually modeled as a rectangle, touches the labeled
point on its boundary. It is often not allowed that labels occlude the input point of
another label. Figure [I] shows an example of a map that is rotated and labeled. The
objective in map labeling is usually to place as many labels as possible. Translating this
into the context of rotating maps means that, integrated over one full rotation from 0 to
2w, we want to maximize the number of visible labels. The consistency requirements
of Been et al. [|2] can immediately be applied for rotating maps.

Our Results. Initially, we define a model for rotating maps and show some basic prop-
erties of the different types of conflicts that may arise during rotation. Next, we prove
that consistently labeling rotating maps is NP-complete, for the maximization of the to-
tal number of visible labels in one full rotation and NP-hard for the maximization of the
visibility range of the least visible label. Finally, we present a new 1/4-approximation
algorithm and an efficient polynomial-time approximation scheme (EPTAS) for unit-
height rectangles. A PTAS is called efficient if its running time is O(f(€) - poly(n)).
Both algorithms can be extended to the case of rectangular labels with the property that
the ratio of the smallest and largest width, the ratio of the smallest and largest height,
as well as the aspect ratio of every label is bounded by a constant, even if we allow
the anchor point of each label to be an arbitrary point of the label. This applies to most
practical scenarios where labels typically consist of few and relatively short lines of
text.

Related Work. Most previous algorithmic research efforts on automated label placement
cover static labeling models for point, line, or area features. For static point labeling,
fixed-position models and slider models have been introduced [4}9]], in which the label,
represented by its bounding box, needs to touch the labeled point along its boundary.
The label number maximization problem is NP-hard even for the simplest labeling mod-
els, whereas there are efficient algorithms for the decision problem that asks whether all
points can be labeled in some of the simpler models (see, e.g., the discussion by Klau
and Mutzel [_8]). Approximation results [1,[9], heuristics [14]], and exact approaches 8]
are known for many variants of the static label number maximization problem.

In recent years, dynamic map labeling has emerged as a new research topic that
gives rise to many unsolved algorithmic problems. Petzold et al. [13]] used a prepro-
cessing step to generate a reactive conflict graph that represents possible label overlaps
for maps of all scales. For any fixed scale and map region, their method computes a
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conflict-free labeling using heuristics. Mote [[11] presents another fast heuristic method
for dynamic conflict resolution in label placement that does not require preprocessing.
The consistency desiderata of Been et al. [2] for dynamic labeling (no popping and
jumping effects when panning and zooming), however, are not satisfied by either of the
methods. Been et al. [3]] showed NP-hardness of the label number maximization prob-
lem in the consistent labeling model and presented several approximation algorithms
for the problem. Nollenburg et al. [[12] recently studied a dynamic version of the alter-
native boundary labeling model, in which labels are placed at the sides of the map and
connected to their points by leaders. They presented an algorithm to precompute a data
structure that represents an optimal one-sided labeling for all possible scales and thus
allows continuous zooming and panning. None of the existing dynamic map labeling
approaches supports map rotation.

2 Model

In this section we describe a general model for rotating maps with axis-aligned rectan-
gular labels. Let M be a labeled input map, i.e., a set P = {py,...,pn} of points in the
plane together with a set L = {{1,...,¢,} of pairwise disjoint, closed, and axis-aligned
rectangular labels, where each point p; is a point on the boundary d¢; of its label ¢;.
We say ¢; is anchored at p;. As M is rotated, each label ¢; in L remains horizontally
aligned and anchored at p;. Thus, label intersections form and disappear during rotation
of M. We take the following alternative perspective on the rotation of M. Rather than
rotating the points, say clockwise, and keeping labels horizontal we may instead rotate
each label around its anchor point counterclockwise and keep the set of points fixed. It
is easy to see that both rotations are equivalent and yield exactly the same results.

A rotation of L is defined by a rotation angle a € [0,27); a rotation labeling of
M is a function ¢: L x [0,27) — {0,1} such that ¢(¢,a) = 1 if label ¢ is visible or
active in the rotation of L by o, and ¢ (¢, o) = 0 otherwise. We call a labeling ¢ valid
if, for any rotation @, the set of labels L(a) ={¢ € L | ¢ (¢, ¢) = 1} consists of pairwise
disjoint labels and no label in L( ) contains any point in P (other than its anchor point).
We note that a valid labeling is not yet consistent in terms of the definition of Been
et al. [2,|3]]: given fixed anchor points, labels clearly do not jump and the labeling is
independent of the rotation history, but labels may still pop during a full rotation from
0 to 27, i.e., appear and disappear more than once. In order to avoid popping effects,
each label may be active only in a single contiguous range of [0,27), where ranges
are circular ranges modulo 27 so that they may span the input rotation ¢ = 0. A valid
labeling ¢, in which for every label ¢ the set Ay (¢) = {a € [0,27) | ¢({, ) = 1} is a
contiguous range modulo 27, is called a consistent labeling. For a consistent labeling ¢
the set Ay () is called the active range of {. The length |A4(¢)| of an active range Ay (¢)
is defined as the length of the circular arc {(cos a,sin@) | & € Ay(€)} on the unit circle.

The objective in static map labeling is usually to find a maximum subset of pairwise
disjoint labels, i.e., to label as many points as possible. Generalizing this objective to
rotating maps means that integrated over all rotations a € [0,27) we want to display
as many labels as possible. This corresponds to maximizing the sum Y ¢ |A4(€)| over
all consistent labelings ¢ of M; we call this optimization problem MAXTOTAL. An
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Fig. 2: Two labels £ and ¢’ and three of their eight possible boundary intersection events.
Anchor points are marked as black dots.

alternative objective is to maximize over all consistent labelings ¢ the minimum length
ming |Ay (¢)] of all active ranges; this problem is called MAXMIN.

3 Properties of consistent labelings

In this section we show basic properties of consistent labelings. If two labels ¢ and
¢’ intersect in a rotation of o they have a (regular) conflict at @, i.e., in a consistent
labeling at most one of them can be active at a. The set C(¢,¢') = {a € [0,27) |
£ and ¢ are in conflict at ot} is called the conflict set of £ and ¢'.

We show the following lemma in a more general model, in which the anchor point
p of alabel £ can be any point within ¢ and not necessarily a point on the boundary d¢.

Lemma 1. For any two labels £ and {' with anchor points p € £ and p' € ' the set
C(£,0") consists of at most four disjoint contiguous conflict ranges.

Proof. The first observation is that due to the simultaneous rotation of all initially axis-
parallel labels in L, £ and ¢’ remain “parallel” at any rotation angle . Rotation is a
continuous movement and hence any maximal contiguous conflict range in C(¢,¢') must
be a closed “interval” [, 8], where 0 < o, B < 2. Here we explicitly allow o > 3 by
defining, in that case, [0, ] = [@,27) U[0, B]. At arotation of o (resp. ) the two labels
£ and ¢’ intersect only on their boundary. Let [, r,z,b be the left, right, top, and bottom
sides of £ and let I',7,¢', b’ be the left, right, top, and bottom sides of ¢’ (defined at a
rotation of 0). Since £ and ¢’ are parallel, the only possible cases, in which they intersect
on their boundary but not in their interior are t N &', bN ¢, INY, and rN/I’. Bach of
those four cases may appear twice, once for each pair of opposite corners contained in
the intersection. Figure [2| illustrates three of these eight boundary intersection events.
Each of the conflicts defines a unique rotation angle and obviously at most four disjoint
conflict ranges can be defined with these eight rotation angles as their endpoints. a

In the following we look more closely at the conditions under which the boundary
intersection events (also called conflict events) occur and at the rotation angles defining
them. Let /; and £y, be the distances from p to t and b, respectively. Similarly, let w; and
wp, be the distances from p to [ and r, respectively (see Figure . By h;, h;, w;, and w/.
we denote the corresponding values for label £, Finally, let d be the distance of the two
anchor points p and p’. To improve readability of the following lemmas we define two
functions f;(x) = arcsin(x/d) and g, (x) = arccos(x/d).
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¢ anchored at p.

Lemma 2. Let ¢ and ¢’ be two labels anchored at points p and p'. Then the conflict
events in C(0,0") are a subset of C = {2 — fy(hy +h)), 7w+ fa(hi + 1)), fa(hp+h;), T —
Ja(hy +hp), 270 — ga(wr +wp), 8a(Wr +w)), T — ga(wi + W), T+ ga(wi +w)) }.

Proof. Assume without loss of generality that p and p’ lie on a horizontal line. First
we show that the possible conflict events are precisely the rotation angles in C. We
start considering the intersection of the two sides ¢ and b'. If there is a rotation angle
under which ¢ and b’ intersect then we have the situation depicted in Figure E] and
by simple trigonometric reasoning the two rotation angles at which the conflict events
occur are 27t — arcsin((h; + h),)/d) and 7 + arcsin((h, 4 h},)/d). Obviously, we need
d>h+ h;, Furthermore, for the intersection in Figure [4al to be non-empty, we need
d> < (w,+ w;)2 + (he + h’b)z; similarly, for the intersection in Figure we need d? <
(wi+wi)2 + (b + H))2

From an analogous argument we obtain that the rotation angles under which b and
t' intersect are arcsin((h, + h,)/d) and 7 — arcsin((hy + k) /d). Clearly, we need d >
hy + hj. Furthermore, we need d* < (w, +w})? + (hy + h,)? for the first intersection
and d? < (w; +w.)? 4 (hy + h})? for the second intersection to be non-empty under the
above rotations.

The next case is the intersection of the two sides r and . Here the two rotation
angles at which the conflict events occur are 27t —arccos((w,+w})/d) and arccos((w, +
w})/d). For the first conflict event we need d* < (w, +w})* + (h, + h))?, and for the
second we need d* < (w, +w})? + (h, + h})?. For each of the intersections to be non-
empty we additionally require that d > w, +wy.

Similar reasoning for the final conflict events of /N ¢’ yields the rotation angles
1t — arccos((w; +w).)/d) and 7+ arccos((w; +w/)/d). The additional constraints are
d > w; +w'. for both events and d?> < (w; +w.)? + (hy, + h})? for the first intersection
and d? < (w; +w/.)? + (h; + h},)*. Thus, C contains all possible conflict events. O

One of the requirements for a valid labeling is that no label may contain a point
in P other than its anchor point. For each label ¢ this gives rise to a special class of
conflict ranges, called hard conflict ranges, in which ¢ may never be active. The rotation
angles at which hard conflicts start or end are called hard conflict events. Every angle
that is a (hard) conflict event is called a label event. Obviously, every hard conflict
is also a regular conflict. Regular conflicts that are not hard conflicts are also called
soft conflicts. We note that by definition regular conflicts are symmetric, i.e., C(¢,¢') =
C(¢',£), whereas hard conflicts are not symmetric. The next lemma characterizes the
hard conflict ranges.
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Lemma 3. For a label ¢ anchored at point p and a point q¢ # p in P, the hard conflict
events of £ and q are a subset of H = {21 — fy(hy), 7+ fa(he), fa(hp), ® — fua(hp), 27 —
8a(Wr);8a(Wr), T — ga(W1), T+ ga(wi)}.

Proof. We define a label of width and height 0 for g, i.e., we set by = h, =w) =w, =0.
Then the result follows immediately from Lemma 2] O

A simple way to visualize conflict ranges and hard conflict ranges is to mark, for
each label ¢ anchored at p and each of its (hard) conflict ranges, the circular

arcs on the circle centered at p and en- hard conflict range

closing /. Figure[5]shows an example.

In the following we show that the ‘
MAXTOTAL problem can be discretized ’
in the sense that there exists an opti- 4\
mal solution whose active ranges are de-

fined as intervals whose borders are label
events. An active range border of a la- ,'
bel ¢ is an angle o that is characterized
by the property that the labeling ¢ is not
constant in any €-neighborhood of o.. We
call an active range where both borders are label events a regular active range.

O

Fig. 5: Conflict ranges of two labels £ and ¢’
marked in bold on the enclosing circles.

K
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Lemma 4. Given a labeled map M there is an optimal rotation labeling of M consisting
of only regular active ranges.

Proof. Let ¢ be an optimal labeling with a minimum number of active range borders
that are no label events. Assume that there is at least one active range border 3 that is no
label event. Let o and 7 be the two adjacent active range borders of ,i.e., x < < ¥,
where o and 7y are active range borders, but not necessarily label events. Then let L; be
the set of labels whose active ranges have left border § and let L, be the set of labels
whose active ranges have right border 3. For ¢ to be optimal L; and L, must have the
same cardinality since otherwise we could increase the active ranges of the larger set
and decrease the active ranges of the smaller set by an £ > 0 and obtain a better labeling.

So define a new labeling ¢’ that is equal to ¢ except for the labels in L; and L,:
define the left border of the active ranges of all labels in L; and the right border of the
active ranges of all labels in L, as y instead of B. Since |L;| = |L,| we shrink and grow
an equal number of active ranges by the same amount. Thus the two labelings ¢ and ¢’
have the same objective value Ysc7 [Ag(£)] = Yser |Ag(¢)]. Because ¢ uses as active
range borders one non-label event less than ¢ this number was not minimum in ¢—a
contradiction. As a consequence ¢ has only label events as active range borders. a

4 Complexity

In this section we show that finding an optimal solution for MAXTOTAL (and also
MAXMIN) is NP-hard even if all labels are unit squares and their anchor points are
their lower-left corners. We present a gadget proof reducing from the NP-complete
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problem planar 3-SAT [10]. Proofs of the lemmas in this section are found in the full
version of the paper [5]]. Before constructing the gadgets, we show a special property of
unit-square labels.

Lemma 5. If two unit-square labels { and ' whose anchor points are their lower-left
corners have a conflict at a rotation angle o, then they have conflicts at all angles
o+i-nw/2 foricZ.

For every label ¢ we define the outer circle of ¢ as the circle of radius /2 centered
at the anchor point of /. Since the top-right corner of ¢ traces the outer circle we will use
the locus of that corner to visualize active ranges or conflict ranges on the outer circle.
Note that due to the fact that at the initial rotation of O the diagonal from the anchor
point to the top-right corner of ¢ forms an angle of 7 /4 all marked ranges are actually
offset by 7 /4.

4.1 Basic Building Blocks

Chain. A chain consists of at least four labels anchored at collinear points that are
evenly spaced with distance v/2. Hence, each point is placed on the outer circles of its
neighbors. We call the first and last two labels of a chain ferminals and the remaining
part inner chain, see Figure[6a] We denote an assignment of active ranges to the labels
as the state of the chain. The important observation is that in any optimal solution of
MAXTOTAL an inner chain has only two different states, whereas terminals have mul-
tiple optimal states that are all equivalent for our purposes; see Figure[6a] In particular,
in an optimal solution each label of an inner chain has an active range of length 7 and
active ranges alternate between adjacent labels. We will use the two states of chains as
a way to encode truth values in our reduction.

Lemma 6. In any optimal solution, any label of an inner chain has an active range of
length . The active ranges of consecutive labels alternate between (0,7) and (70,27).

Inverter. The second basic building block is an inverter. It consists of five collinear
labels that are evenly spaced with distance 3/4 - /2 as depicted in Figure This
means that the five labels together take up the same space as four labels in a usual inner
chain. Similar to Lemma [6] the active ranges in an optimal solution also alternate. By
replacing four labels of an inner chain with an inverter we can alter the parity of an
inner chain.

Turn. The third building block is a turn that consists of four labels, see Figure [6b] The
anchor points p, and p;, are at distance v/2 and the pairwise distances between pp, pe,
and py are also v/2 such that the whole structure is symmetric with respect to the line
through p, and p;. The central point py, is called turn point, and the two points p, and
pa are called outgoing points. Due to the hard conflicts created by the four points we
observe that the outer circle of p, is divided into two ranges of length 57/6 and one
range of length /3. The outer circles of the outgoing points are divided into ranges of
length 7, 27 /3, and 7 /3. The outer circle of p, is divided into two ranges of length 7.
The outgoing points serve as connectors to terminals, inner chains, or further turns.
Note, by coupling multiple turns we can divert an inner chain by any multiple of 30°.
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Fig. 6: Basic Building Blocks.

Lemma 7. A turn has only two optimal states and allows to split an inner chain into
two equivalent parts in an optimal solution.

4.2 Gadgets of the Reduction

Variable Gadget. The variable gadget consists of an alternating sequence of two build-
ing blocks: horizontal chains and literal readers. A literal reader is a structure that
allows us to split the truth value of a variable into one part running towards a clause
and the part that continues the variable gadget, see Figure [6d} The literal reader con-
sists of four turns, the first of which connects to a literal pipe and the other three are
dummy turns needed to lead the variable gadget back to our grid. Note that some of the
distances between anchor points in the literal reader need to be slightly less than v/2 in
order to reach a grid point at the end of the structure.

In order to encode truth values we define the state in which the first label of the first
horizontal chain has active range (0, 7) as true and the state with active range (7,27)
as false.

Clause Gadget. The clause gadget consists of one inner and three outer labels, where
the anchor points of the outer labels split the outer circle of the inner label into three
equal parts of length 27 /3, see Figure Each outer label further connects to an incom-
ing literal pipe and a terminal. These two connector labels are placed so that the outer
circle of the outer label is split into two ranges of length 37 /4 and one range of length
/2.

The general idea behind the clause gadget is as follows. The inner label obviously
cannot have an active range larger than 27t/3. Each outer label is placed in such a way
that if it carries the value false it has a soft conflict with the inner label in one of the
three possible active ranges of length 27 /3. Hence, if all three labels transmit the value
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Fig. 7: Clause gadget with one  Fig. 8: Sketch of the gadget placement for the reduc-
inner and three outer labels. tion.

false then every possible active range of the inner label of length 27 /3 is affected by a
soft conflict. Consequently, its active range can be at most 7 /2.

On the other hand, if at least one of the pipes transmits true, the inner label can be
assigned an active range of maximum length 27 /3.

Lemma 8. There must be a label in a clause or one of the incoming pipes with an
active range of length at most 1t /2 if and only if all three literals of that clause evaluate
to false.

Pipes. Pipes propagate truth values of variable gadgets to clause gadgets. We use three
different types of pipes, which we call left arm, middle arm, and right arm, depending
on where the pipe attaches to the clause.

One end of each pipe attaches to a variable at the open outgoing label of a literal
reader. Initially, the pipe leaves the variable gadget at an angle of 30°. By using se-
quences of turns, we can route the pipes at any angle that is an integer multiple of 30°.
Thus we can make sure that for a clause above the variables the left arm enters the
clause gadget at an angle of 150°, the middle arm at an angle of 270°, and the right arm
at an angle of 30° with respect to the positive x-axis. For clauses below the variables
the pipes are mirrored.

In order to transmit the correct truth value into the clause we first need to place the
literal reader such that the turn point of the first turn corresponds to an even position in
the variable chain. Next, for a positive literal we need a pipe of even length, whereas
for a negative literal the pipe must have odd length. Note that we can always achieve
the correct parity by making use of the inverter gadgets.

Gadget Placement. We place all variable gadgets on the same y-coordinate such that
each anchor point of variable labels (except for literal readers) lies on integer x- and
y-coordinates with respect to a grid of width and height v/2. Clause gadgets and pipes
lie below and above the variables and form three-legged “combs”. The overall structure
of the gadget arrangement is sketched in Figure[§]

Theorem 1. MAXTOTAL is NP-complete.

Proof. For a given planar 3-SAT formula ¢ we construct the MAXTOTAL instance as
described above. For this instance we can compute the maximum possible sum K of
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active ranges assuming that each clause is satisfiable. By Lemma [§] every unsatisfied
clause forces one label to have an active range of only /2. Thus we know that ¢ is
satisfiable if and only if the MAXTOTAL instance has a total active range sum of at least
K. Constructing and placing the gadgets can be done in polynomial time and space.
Due to Lemma[]we can discretize the MAXTOTAL problem. Thus we can construct
an oracle that guesses an active range assignment, which we can verify in polynomial
time. So MAXTOTAL is in N'P. O

We note that the same construction as for the NP-hardness of MAXTOTAL can also
be applied to prove NP-hardness of MAXMIN. The maximally achievable minimum
length of an active range for a satisfiable formula is 27t /3, whereas for an unsatisfiable
formula it is /2 due to Lemrna This observation also yields that MAXMIN cannot
be efficiently approximated within a factor of 3 /4.

Corollary 1. MAXMIN is NP-hard and it has no efficient approximation algorithm
with an approximation factor larger than 3 /4 unless P = N'P.

S Approximation Algorithms

In the previous section we have established that MAXTOTAL is NP-complete. Unless
P = NP we cannot hope for an efficient exact algorithm to solve the problem. In
the following we devise a 1/4-approximation algorithm for MAXTOTAL and refine it
to an EPTAS. For both algorithms we initially assume that labels are congruent unit-
height rectangles with constant width w > 1 and that the anchor points are the lower-left
corners of the labels. Let d be the length of the label’s diagonal, i.e., d = vVw? + 1.

Before we describe the algorithms we state four important properties that apply even
to the more general labeling model, where anchor points are arbitrary points within the
label or on its boundary, and where the ratio of the smallest and largest width and
height, as well as the aspect ratio are bounded by constants: i) the number of anchor
points contained in a square is proportional to its area, ii) the number of conflicts a
label can have with other labels is bounded by a constant, iii) any two conflicting labels
produce only O(1) conflict regions, and finally, iv) there is an optimal MAXTOTAL
solution where the borders of all active ranges are events.

Properties (i) and (ii) can easily be proved with a simple packing argument (see
full version of the paper [5]] for details). Property (iii) follows from property (ii) and
Lemmal[I] Property (iv) follows immediately from Lemma [4]

5.1 A 1/4-approximation for MAXTOTAL

The basis for our algorithm is the line stabbing or shifting technique by Hochbaum and
Maass [7]], which has been applied before to static labeling problems for (non-rotating)
unit-height labels [1,/9]. Consider a grid G where each grid cell is a square with side
length 2d. We can address every grid cell by its row and column index. Now we can
partition G into four subsets by deleting every other row and every other column with
either even or odd parity. Within each of these subsets we have the property that any
two grid cells have a distance of at least 2d. Thus no two labels whose anchor points lie
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in different cells of the same subset can have a conflict. We say that a grid cell ¢ covers
a label ¢ if the anchor point of ¢ lies inside ¢. By property (i) only O(1) labels are
covered by a single grid cell. Combining this with property (ii) we see that the number
of conflicts of the labels covered by a single grid cell is constant. This implies that the
number of events in that cell (cf. Lemmafd)) is also constant.

The four different subsets of grid cells dividle a MAXTOTAL instance into four
subinstances, each of which decomposes into independent grid cells. If we solve all
subsets optimally, at least one of the solutions is a 1/4-approximation for the initial
instance due to the pigeon-hole principle.

Determining an optimal solution for the labels covered by a grid cell ¢ works as
follows. We compute, for the set of labels L. C L covered by c, the set E. of label
events. Due to Lemmald] we know that there exists an optimal solution where all borders
of active ranges are label events. Thus, to compute an optimal active range assignment
for the labels in L. we need to test all possible combinations of active ranges for all
labels ¢ € L. For a single cell this requires only constant time.

We can precompute the non-empty grid cells by simple arithmetic operations on
the coordinates of the anchor points and store those cells in a binary search tree. Since
we have n anchor points there are at most n non-empty grid cells in the tree, and each
of the cells holds a list of the covered anchor points. Building this data structure takes
O(nlogn) time and then optimally solving the active range assignment problem in the
non-empty cells takes O(n) time.

Theorem 2. There exists an O(nlogn)-time algorithm that yields a 1 /4-approximation
of MAXTOTAL for congruent unit-height rectangles with their lower-left corners as
anchor points.

5.2 An Efficient Polynomial-Time Approximation Scheme for MAXTOTAL

We extend the technique for the 1/4-approximation to achieve a (1 — €)-approximation.
Let again G be a grid whose grid cells are squares of side length 2d. For any integer k
we can remove every k-th row and every k-th column of the grid cells, starting at two
offsets i and j (0 <i,j < k—1). This yields collections of meta cells of side length
(k— 1) - 2d that are pairwise separated by a distance of at least 2d and thus independent.
In total, we obtain k% such collections of meta cells.

For a given € € (0,1) we set k = [2/¢€]. Let ¢ be a meta cell for the given k and let
again L. be the set of labels covered by ¢, and E. the set of label events for L.. Then,
by properties (i) and (ii), both |L.| and |E.| are O(1/€?). Since we need to test all
possible active ranges for all labels in L, it takes O(20(1/¢*1¢1/€%) time to determine
an optimal solution for the meta cell c.

For a given collection of disjoint meta cells we determine (as in Section all
O(n) non-empty meta cells and store them in a binary search tree such that each cell
holds a list of its covered anchor points. This requires again O(nlogn) time. So for
one collection of meta cells the time complexity for finding an optimal solution is
0(n20(1/£%1081/€%) | p1ogn). There are k2 such collections and, by the pigeon hole
principle, the optimal solution for at least one of them is a (1 — €)-approximation of
the original instance. This yields the following theorem.
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Theorem 3. There exists an EPTAS that computes a (1 — €)-approximation of MAX-
TOTAL for congruent unit-height rectangles with their lower-left corners as anchor

points. Its time complexity is 0((?120(1/82 log1/¢?) nlogn)/€?).

We note that this EPTAS basically relies on properties (i)—(iv) and that there is
nothing special about congruent rectangles anchored at their lower-left corners. Hence
we can generalize the algorithm to the more general labeling model, in which the ratio
of the label heights, the ratio of the label widths, and the aspect ratios of all labels
are bounded by constants. Furthermore, the anchor points are not required to be label
corners; rather they can be any point on the boundary or in the interior of the labels.
Finally, we can even ignore the distinction between hard and soft conflicts, i.e., allow
that anchor points of non-active labels are occluded. Properties (i)—(iv) still hold in this
general model. The only change in the EPTAS is to set the width and height of the grid
cells to twice the maximum diameter of all labels in L.

Corollary 2. There exists an EPTAS that computes a (1 — €)-approximation of MAX-
TOTAL in the general labeling model with rectangular labels of bounded height ratio,
width ratio, and aspect ratio, whose anchor points are arbitrary points in the respective

labels. The time complexity of the EPTAS is 0((1120“/‘921"5%1/82> +nlogn)/e?).
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