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Consistent Labeling of Rotating Maps

Andreas Gemsa∗ Martin Nöllenburg? Ignaz Rutter?

Abstract

Dynamic maps that allow continuous map rotations
encounter new issues unseen in static map labeling
before. We study the following dynamic map label-
ing problem: Given a set of points P in the plane
with non-overlapping axis-aligned rectangular labels
attached to them, the goal is to find a consistent la-
beling of P under rotation that maximizes the number
of visible labels for all possible rotation angles. A la-
beling is called consistent if a single active interval
of angles is selected for each label such that no two
labels intersect at any rotation angle and no point in
P is ever occluded by a label.

We introduce a general model for labeling rotating
maps and derive basic geometric properties of con-
sistent solutions. We show NP-completeness of the
active interval maximization problem and present an
efficient polynomial-time approximation scheme.

1 Introduction

Dynamic maps, in which the user can navigate con-
tinuously through space, are becoming increasingly
important in scientific and commercial GIS applica-
tions as well as in personal mapping applications. In
particular GPS-equipped mobile devices offer various
new possibilities for interactive, location-aware maps.
A common principle in dynamic maps is that users
can pan, rotate, and zoom the map view—ideally in
a continuous fashion. Despite the popularity of sev-
eral commercial and free applications, relatively little
attention has been paid to provably good labeling al-
gorithms for dynamic maps.

Been et al. [2] identified a set of consistency desider-
ata for dynamic map labeling. Labels should nei-
ther “jump” (suddenly change position or size) nor
“pop” (appear and disappear more than once) during
monotonous map navigation; moreover, the labeling
should be a function of the selected map viewport and
not depend on the user’s navigation history. Previous
work on the topic has focused solely on supporting
zooming and/or panning of the map [2,3,10], whereas
consistent labeling under map rotations has not been
considered prior to this paper.

Most maps come with a natural orientation (usu-
ally the northern direction facing upward), but appli-
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cations such as car or pedestrian navigation often ro-
tate the map view dynamically to be always forward
facing. Still, the labels should remain horizontally
aligned for best readability regardless of the actual
rotation angle of the map. A basic requirement in
static and dynamic label placement is that labels are
pairwise disjoint, i.e., in general not all labels can be
placed simultaneously. For labeling point features, it
is further required that each label, usually modeled as
a rectangle, touches the labeled point on its boundary.
It is often not allowed that labels occlude the input
point of another label. Figure 1 shows an example
of a map that is rotated and labeled. The objective
in map labeling is usually to place as many labels as
possible. Translating this into the context of rotating
maps means that, integrated over one full rotation
from 0 to 2π, we want to maximize the number of vis-
ible labels. The consistency requirements of Been et
al. [2] can immediately be applied for rotating maps.
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Figure 1: Input map with five points (a) and two
rotated views with some occluded labels (b),(c).

Related Work. Most previous algorithmic research
efforts on automated label placement cover static la-
beling models for point, line, or area features. For
static point labeling, fixed-position models and slider
models have been introduced [4, 7], in which the la-
bel, represented by its bounding box, needs to touch
the labeled point along its boundary. The label num-
ber maximization problem is NP-hard even for the
simplest labeling models, whereas there are efficient
algorithms for the decision problem whether all points
can be labeled in some of the simpler models (see the
discussion by Klau and Mutzel [6]. Approximation
results [1, 7], heuristics [12], and exact approaches [6]
are known for many variants of the static label num-
ber maximization problem.

In recent years, dynamic map labeling has emerged
as a new research topic that gives rise to many un-
solved algorithmic problems. Petzold et al. [11] com-
pute a conflict-free labeling for any fixed scale and
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map region from preprocessed conflict information.
Mote [9] presents a fast heuristic method for dynamic
conflict resolution in label placement that does not
require preprocessing. The consistency desiderata of
Been et al. [2] for dynamic labeling, however, are not
satisfied by either of the methods. Been et al. [3]
showed NP-hardness of the label number maximiza-
tion problem in the consistent labeling model and pre-
sented several approximation algorithms for the prob-
lem. Nöllenburg et al. [10] recently studied a dynamic
version of the alternative boundary labeling model
and presented an algorithm that supports continous
zooming and panning. None of the existing dynamic
map labeling approaches supports map rotation.

2 Model

Let M be a labeled input map, i.e., a set of points
P = {p1, . . . , pn} in the plane together with a set of
pairwise disjoint and axis-aligned rectangular labels
L = {`1, . . . , `n}, where each point pi is a point on
the boundary ∂`i of its label `i. We say `i is anchored
in pi. As M is rotated, each label `i in L remains
horizontally aligned and anchored in pi. Thus, la-
bel intersections form and disappear during rotation
of M . We take the following alternative perspective.
Rather than rotating the points, say clockwise, and
keeping the labels fixed we may instead rotate each
label around its anchor point counterclockwise and
keep the set of points fixed. It is easy to see that
both rotations are equivalent.

A rotation of L is defined by a rotation angle
α ∈ [0, 2π); a rotation labeling of M is a function
φ : L × [0, 2π) → {0, 1} such that φ(`, α) = 1
if label ` is visible or active in the rotation of L
by α, and φ(`, α) = 0 otherwise. We call a label-
ing φ valid if for any rotation α the set of labels
L(α) = {` ∈ L | φ(`, α) = 1} consists of pairwise dis-
joint labels and no label in L(α) contains any point
in P (other than its anchor point). We note that
a valid labeling is not yet consistent in terms of the
definition of Been et al. [2, 3]: having a fixed anchor
point labels do not jump and the labeling is indepen-
dent on the rotation history, but labels may still pop
during a full rotation from 0 to 2π, i.e., appear and
disappear more than once. To avoid this, each label
must be active only in a single contiguous range of
[0, 2π), where ranges are circular ranges modulo 2π
so that they may span the input rotation α = 0. A
valid labeling φ, in which for every label ` the set
Aφ(`) = {α ∈ [0, 2π) | φ(`, α) = 1} is a contigu-
ous range modulo 2π, is called a consistent labeling.
For a consistent labeling φ the set Aφ(`) is called the
active range of `. The length |Aφ(`)| of an active
range Aφ(`) is defined as the length of the circular
arc {(cosα, sinα) | α ∈ Aφ(`)} on the unit circle.

The objective in static map labeling is usually to
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Figure 2: Two labels ` and `′ and two of their eight
possible boundary intersection events. Anchor points
are marked as black dots.

find a maximum subset of pairwise disjoint labels, i.e.,
to label as many points as possible. Generalizing this
objective to rotating maps means that integrated over
all rotations α ∈ [0, 2π) we want to display as many
labels as possible. This corresponds to maximizing
the sum

∑
`∈L |Aφ(`)| over all consistent labelings φ

of M ; we call this optimization problem MaxTotal.

3 Properties of consistent labelings

If two labels ` and `′ intersect in a rotation of α they
have a (regular) conflict at α, i.e., in a consistent la-
beling at most one of them can be active at α. The set
C(`, `′) = {α ∈ [0, 2π) | ` and `′ are in conflict at α}
is called the conflict set of ` and `′.

We show the following lemma in a slightly more
general model, in which the anchor point p of a label
` can be any point within ` and not necessarily a point
on the boundary ∂`.

Lemma 1 For any two labels ` and `′ with anchor
points p ∈ ` and p′ ∈ `′ the set C(`, `′) consists of at
most four disjoint contiguous conflict ranges.

Proof. The first observation is that due to the simul-
taneous rotation of all initially axis-parallel labels in
L, ` and `′ remain “parallel” at any rotation angle α.
Rotation is a continuous movement and hence any
maximal contiguous conflict range in C(`, `′) must be
a closed “interval” [α, β], where 0 ≤ α, β < 2π. Here
we explicitly allow α > β by defining, in that case,
[α, β] = [α, 2π) ∪ [0, β]. At a rotation of α (resp. β)
the two labels ` and `′ intersect only on their bound-
ary. Let l, r, t, b be the left, right, top, and bottom
sides of ` and let l′, r′, t′, b′ be the left, right, top, and
bottom sides of `′ (defined at a rotation of 0). Since
` and `′ are parallel, the only possible cases, in which
they intersect on their boundary but not in their in-
terior are t∩ b′, b∩ t′, l ∩ r′, and r ∩ l′. Each of those
four cases may appear twice, once for each pair of op-
posite corners contained in the intersection. Figure 2
illustrates two of at most eight boundary intersection
events. Each of those eight conflicts defines a unique
rotation angle and obviously at most four disjoint con-
flict ranges can be defined with these eight rotation
angles as their endpoints. �
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Figure 3: Parameters of
label ` anchored at p.

Figure 4: Conflict event
for t ∩ b′.

In the following we look more closely at the con-
ditions under which the boundary intersection events
(also called conflict events) occur and at the rotation
angles defining them. Let ht and hb be the distances
from p to t and b, respectively. Similarly, let wl and
wb be the distances from p to l and r, respectively
(see Figure 3). By h′t, h

′
b, w

′
l, and w′r we denote the

corresponding values for label `′. Finally, let d be the
distance of the two anchor points p and p′.

Lemma 2 Let ` and `′ be two labels anchored at
points p and p′. Assume without loss of generality
that p and p′ lie on a horizontal line and p is to the
left of p′. Then there is an even number of at most
eight conflict events; they depend on the distance d
of p and p′.

Proof. We start considering the intersection of the
two sides t and b′. If there is a rotation angle under
which t and b′ intersect then by simple trigonometric
reasoning the two rotation angles at which the conflict
events occur are 2π−arcsin((ht+h

′
b)/d) (see Figure 4)

and π + arcsin((ht + h′b)/d). Obviously, we need d ≥
ht+h

′
b. Furthermore, for the two intersection induced

by t ∩ b′ to be non-empty we need d2 ≤ (wr + w′l)
2 +

(ht + h′b)
2 for the case depicted in Figure 4 and d2 ≤

(wl + w′r)
2 + (ht + h′b)

2 for the other one. Similar
reasoning yields the three remaining pairs of conflict
events.

It remains to show that for any distance d between
p and p′ the number of actual conflict events is even.
Considering the distance constraints for all eight con-
flict events, we observe that when growing the dis-
tance d from 0 we initially have no conflict events and
in fact C(`, `′) = [0, 2π), i.e., the two labels intersect
at any rotation. Every time a lower bound on d is
reached, we add two conflict events to a set C of con-
flict events. Similarly, every time an upper bound on
d is reached, we remove two events from C and hence
the cardinality of C is always even. �

One of the requirements for a valid labeling is that
no label may contain a point in P other than its an-
chor point. For each label ` this gives rise to a special
class of conflict ranges, called hard conflict ranges, in
which ` may never be active. Obviously, every hard
conflict is also a soft conflict but not vice versa. Simi-
lar to (soft) conflict events we can define hard conflict

events and their union as the set of label events. If
we set the label `′ in Lemma 2 to have height and
width 0, we obtain a result analogous to Lemma 2 for
the number of hard conflict events.

Next we show that the MaxTotal problem can be
discretized in the sense that there exists an optimal
solution whose active ranges are defined as intervals
whose borders are label events. An active range border
of a label ` is an angle α that is characterized by the
property that the labeling φ is not constant in any
ε-neighborhood of α. We call an active range where
both borders are label events a regular active range.

Lemma 3 Given a labeled map M there is an opti-
mal rotation labeling of M consisting of only regular
active ranges.

Proof. Let φ be an optimal labeling with a mini-
mum number of active range borders that are no label
events. Assume that there is at least one active range
border β that is no label event. Let α and γ be the two
adjacent active range borders of β, i.e., α < β < γ,
where α and γ are active range borders, but not nec-
essarily label events. Then let Ll be the set of labels
whose active ranges have left border β and let Lr be
the set of labels whose active ranges have right border
β. For φ to be optimal Ll and Lr must have the same
cardinality since otherwise we could increase the ac-
tive ranges of the larger set and decrease the active
ranges of the smaller set by some ε > 0 and obtain a
better labeling.

We define a new labeling φ′ that coincides with φ
except for the labels in Ll and Lr. We set the left
border of the active ranges of all labels in Ll and the
right border of the active ranges of all labels to γ in-
stead of β. Since |Ll| = |Lr| we shrink and grow an
equal number of active ranges by the same amount.
Thus the two labelings φ and φ′ have the same objec-
tive values but φ′ has fewer active range borders that
are non-label events—a contradiction. �

4 Complexity

By a reduction from planar 3-SAT [8] it can be shown
that finding an optimal solution for MaxTotal is
NP-hard even if all labels are unit squares and their
anchor points are their lower-left corners. Due to
space constraints we omit the proof.

Theorem 4 MaxTotal is NP-complete.

5 Approximation Scheme

Initially we assume that labels are congruent unit-
height rectangles with constant width w > 1 and that
the anchor points are the lower-left corners of the la-
bels and afterwards explain how to adapt it to more
general labeling models.
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We present an efficient polynomial-time approxima-
tion scheme (EPTAS) that relies on four geometric
key properties; they hold for the restricted case of
congruent rectangles as well as for the general model
of Section 2, where anchor points are arbitrary points
within each label or on its boundary, and where the
ratio of the smallest and largest width and height, as
well as the aspect ratio are bounded by constants: i)
the number of anchor points contained in a rectan-
gle is proportional to its area, ii) any label has O(1)
conflicts with other labels, iii) any two conflicting la-
bels produce only O(1) conflict regions, and finally,
iv) there is an optimal MaxTotal solution where
the borders of all active ranges are events.

Properties (i) and (ii) can be proved by a simple
packing argument. Property (iii) follows from prop-
erty (ii) and Lemma 1. Property (iv) follows immedi-
ately from Lemma 3.

Our EPTAS uses the line stabbing technique of
Hochbaum and Maass [5]. Consider a grid G where
each grid cell is a square with side length 2d. We can
address every grid cell by its row and column index.
For any integer k we can remove every k-th row and
every k-th column of grid cells, starting at two offsets
i and j (0 ≤ i, j ≤ k − 1). This yields collections of
meta cells of side length (k− 1) · 2d that are pairwise
separated by a distance of at least 2d and thus no two
labels whose anchor points lie in different cells of the
same subset can have a conflict. In total we obtain k2

such collections of meta cells. We say that a grid cell
c covers a label ` if the anchor point of ` lies inside c.

Determining an optimal solution for the labels cov-
ered by a grid cell c works as follows. Calculate for the
set of labels Lc ⊆ L covered by c the set of events Ec.
Due to Lemma 3 we know that there exists an opti-
mal solution with only regular active ranges. Thus, to
compute an optimal active range assignment for the
labels in Lc we need to test all possible combinations
of active ranges for all labels ` ∈ Lc.

For a given ε ∈ (0, 1) we set k = d1/εe. Let c be a
meta cell for the given k and let Lc be the set of labels
covered by c. By a packing argument, we can prove
that the number of labels covered by c (and thus also
the number of events of labels in Lc) is in O(1/ε2).

Since we need to test all possible active ranges for
all labels in Lc we require O(2O(1/ε2 log 1/ε2)) time to
determine an optimal solution for the meta cell c.

The number of cells we need to consider is linear
and we use a range query data structure to locate all
points within a meta cell. So for one collection of
meta cells the time complexity for finding an optimal
solution is O(n2O(1/ε2 log 1/ε2) +n log n). There are k2

such collections and the optimal solution for at least
one of them is a (1− ε)-approximation.

This yields the result for the simple case of congru-
ent rectangles. In fact we have only used properties
(i)–(iv), and there is nothing special about congruent

rectangles anchored at their lower-left corners. Hence
we can extend the algorithm to the more general la-
beling model, in which the ratio of the label heights,
the ratio of the label widths, and the aspect ratios
of all labels are bounded by constants. Furthermore,
the anchor points can be any point on the boundary
or in the interior of the labels. Finally, we can even
ignore the distinction between hard and soft conflicts,
i.e., allow that anchor points of non-active labels are
occluded. All properties (i)–(iv) still hold. The only
change in the EPTAS is to set the width and height
of the grid cells to twice the maximum diameter of all
labels in L.

Theorem 5 There exists an efficient polynomial-
time approximation scheme that computes a (1− ε)-
approximation of MaxTotal. Its time complexity is
O((n2O(1/ε2 log 1/ε2) + n log n)/ε2).
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