On d-regular Schematization of Embedded Paths

Andreas Gemsa!, Martin N&llenburg*!»?, Thomas Pajor', and Ignaz Rutter!

I Institute of Theoretical Informatics, Karlsruhe Institute of Technology (KIT), Karlsruhe,
Germany
2 Department of Computer Science, University of California, Irvine, USA

Abstract. In the d-regular path schematization problem we are given an embed-
ded path P (e.g., a route in a road network) and an integer d. The goal is to find
a d-schematized embedding of P in which the orthogonal order of all vertices
in the input is preserved and in which every edge has a slope that is an integer
multiple of 90° /d. We show that deciding whether a path can be d-schematized
is NP-hard for any integer d. We further model the problem as a mixed-integer
linear program. An experimental evaluation indicates that this approach generates
reasonable route sketches for real-world data.

1 Introduction

Angular or ¥ -oriented schematizations of graphs refer to a class of graph drawings, in
which the admissible edge directions are limited to a given set 4" of (usually evenly
spaced) slopes. This includes the well-known class of orthogonal drawings and ex-
tends more generally to k-linear drawings, e.g., octilinear metro maps. Applications of
schematic drawings can be found in various domains such as cartography, VLSI layout,
and information visualization.

In many schematization scenarios the input is not just a graph but a graph with an
initial drawing that has to be schematized according to the given set of slopes. This
is the case, e.g., in cartography, where the geographic positions of network vertices
and edges are given [6], in sketch-based graph drawing, where a sketch of a drawing
is given and the task is to improve or schematize that sketch [3]], or in dynamic graph
drawing, where each drawing in a sequence of drawings must be similar to its prede-
cessor [5]. For such a redrawing task it is crucial that the mental map [[13]] of the user is
preserved, i.e., the output drawing must be as similar as possible to the input. Misue et
al. [13]] suggested preserving the orthogonal order of the input drawing as a simple cri-
terion for maintaining a set of basic spatial properties of the input, namely the relative
above/below and left/right positions of all pairs of input nodes. The orthogonal order
has been used successfully as a means for maintaining the mental map [4}/7,(9, 1 1].

The motivation behind the work presented here is the visualization of routes in road
networks as sketches for driving directions. An important property of a route sketch is
that it focuses on road changes and important landmarks rather than exact geography
and distances. Typically the start and destination lie in populated areas that are locally
reached via a sequence of relatively short road segments. On the other hand, the majority

* Supported by grant NO 899/1-1 of the German Research Foundation (DFG)

2 Andreas Gemsa, Martin Nollenburg, Thomas Pajor, and Ignaz Rutter

of the route typically consists of long highway segments with no or only few road
changes. This property makes it difficult to display driving directions for the whole
route in a single traditional map since some areas require much smaller scales than
others. The strength of route sketches for this purpose is that they are not drawn to scale
but rather use space proportionally to the route complexity.

Related Work. Geometrically, we can consider a route to be an embedded path in the
plane. The simplification of paths (or polylines) in cartography is well studied and the
classic line simplification algorithm by Douglas and Peucker [8]] is one of the most
popular methods. Two more recent algorithms were proposed for 4 -oriented line sim-
plification [[12}/14]. These line simplification algorithms, however, are not well suited
for drawing route sketches since they keep the positions of the input points fixed or
within small local regions around the input points and thus edge lengths are more or less
fixed. On the other hand, Agrawala and Stolte [|1] presented a system called LineDrive
that uses heuristic methods based on simulated annealing to draw route sketches. Their
method allows distortion of edge lengths and angles. It does not, however, restrict the
set of edge directions and does not give hard quality guarantees for the mental map such
as the preservation of the orthogonal order.

A graph drawing problem that has similar constraints as drawing route sketches is
the metro-map layout problem, in which an embedded graph is to be redrawn octilin-
early. The problem is known to be NP-hard [[15] but it can be solved successfully in
practice by mixed-integer linear programming [[16]]. The existing methods covered in a
survey by Wolff [[17] do aim to keep the mental map of the input but no strict criterion
like the orthogonal order is applied. Brandes and Pampel [4] studied the path schema-
tization problem in the presence of orthogonal order constraints in order to preserve
the mental map. They showed that deciding whether a rectilinear schematization exists
that preserves the orthogonal order of the input path is NP-hard. They also showed that
schematizing a path using arbitrarily oriented unit-length edges is NP-hard. Delling et
al. [[7] gave an efficient algorithm to compute ¢ -oriented drawings of monotone paths
that preserve the orthogonal order and have minimum schematization cost. The schema-
tization cost counts the number of edges that are not drawn with their closest ¢’-oriented
direction. The authors also sketch a heuristic approach for schematizing non-monotone
paths.

Contributions. In this paper we close the complexity gap of the path schematization
problem that remained open between the hardness result of Brandes and Pampel [4]
for rectilinear paths and the efficient algorithm of Delling et al. [7] for monotone %-
oriented paths. We prove that deciding whether a €-oriented orthogonal-order preserv-
ing drawing of an embedded input path exists is NP-hard, even if the path is simple. This
is true for every d-regular set € of slopes that have angles that are integer multiples of
90° /d for any integer d. The case d = 1 is covered by Brandes and Pampel [4] but their
proof relies on the absence of diagonal edges and hence does not extend to other values
of d. We show the hardness in the octilinear case d = 2 in Section [3] and subsequently,
in Section] how this result extends to the general d-regular case for d > 2. We finally
design and evaluate a mixed integer-linear program (MIP) for solving the d-regular path
schematization problem in Section[5] Our experimental results show that routes in prac-

On d-regular Schematization of Embedded Paths 3

tice usually consist of only a small number of relevant road segments and that our MIP
is indeed able to quickly generate reasonable sketches for those routes. Omitted proofs
and details about the MIP are found in the appendix.

2 Preliminaries

A plane embedding of a graph G = (V,E) is a mapping 7 : G — R? that maps every
vertex v € V to a distinct point w(v) = (xz(v),yz(v)) and every edge e = uv € E to
the line segment 7(e) = m(u)m(v) such that no two edges e, e cross in 7 except at
common endpoints. For simplicity we also use the terms vertex and edge to refer to
their images under an embedding.

We measure the slope of an edge uv as the counterclockwise angle formed between
the horizontal line through 7(u) and the line segment 7(uv). For a set of angles € we
say that a drawing is @ -oriented if the slope of every edge e € E is contained in 4. A
set of slopes ¥ is called d-regular for an integer d if €’ = 6; = {i-90°/d | i € Z}.

Let w and p be two embeddings of the same graph G. We say that p respects the
orthogonal order [4]) of m if for any two vertices u and v € V it holds that x, (1) < xp(v)
if xz(u) < xz(v) and yp(u) < yp(v) if yz(u) < yz(v). In other words, the orthogonal
order defines the relative above-below and left-right positions of any two vertices.

Let (G,) be a graph G with a plane input embedding n. A d-regular schematiza-
tion (or d-schematization) of (G,) is a plane embedding p that is €-oriented, that
preserves the orthogonal order of # and where no two vertices are embedded at the
same coordinates. We also call p valid if it is a d-schematization of (G, 7).

3 Hardness of 2-regular Path Schematization

In this section we show that the problem of deciding whether there is a 2-schematization
for a given embedded graph (G, m) is NP-hard, even if G is a simple path. In the lat-
ter case we denote the problem as the (d-regular) PATH SCHEMATIZATION PROBLEM
(PSP). We fix d = 2. To prove that 2-regular PSP is NP-hard we first show hardness of
the closely related 2-regular UNTON OF PATHS SCHEMATIZATION PROBLEM (UPSP),
where (G,) is a set & of k embedded disjoint paths & = {Py,...,F}.

We show that 2-regular UPSP is NP-hard by a reduction from MONOTONE PLA-
NAR 3-SAT, which is known to be NP-hard [2]. MONOTONE PLANAR 3-SAT is a spe-
cial variant of PLANAR 3-SAT where each clause either contains exactly three positive
literals or exactly three negative literals and additionally, the variable-clause graph ad-
mits a planar drawing such that all variables are on the x-axis, the positive clauses are
embedded below the x-axis and the negative clauses above the x-axis. An example in-
stance of MONOTONE PLANAR 3-SAT is depicted in Fig.[I] In a second step, we show
how to augment the set of paths & to form a single simple path P that has the same
properties as &2 and thus proves that PSP is NP-hard.

In the following, we assume that ¢ is a given MONOTONE PLANAR 3-SAT instance
with variables X = {xi,...,x,} and clauses C = {cy,...,cn}.

4 Andreas Gemsa, Martin Nollenburg, Thomas Pajor, and Ignaz Rutter

¢,

x1 Va3V ay

Fig.1. A MONOTONE PLANAR 3-SAT instance with four variables and three clauses.

3.1 Hardness of the UNION OF PATHS SCHEMATIZATION PROBLEM

In the following we first introduce the different types of required gadgets and then show
how to combine them in order to prove the hardness of UPSP.

Border Gadget. For all our gadgets we need to control the placement of vertices on
discrete positions. Thus our first gadget is a path whose embedding is unique up to
scaling and translation. This path will induce a grid on which we subsequently place
the remaining gadgets.

Let A, (u,v) be the x-distance between the two vertices u and v. Likewise, let Ay (u,v)
be the y-distance between u and v. We call a simple path P with embedding 7 rigid if a
2-schematization of (P, 7) is unique up to scaling and translations. Further, we call an
embedding 7 of P regular if there exists a length £ > 0 such that for any two vertices u, v
of Pitholds that Ay (u,v) =z,-£ and A, (u,v) = z, - £ for some z,,z, € Z. Thus in a regular
embedding of P all vertices are embedded on a grid whose cells have side length ¢. For
our border gadget we construct a simple path B of appropriate length with embedding
7 that is both rigid and regular. Hence, 7 is essentially the unique 2-schematization of
(B,7), and after rescaling we can assume that all points of B lie on an integer grid.
The border gadget consists of a horizontal component B, and a vertical component B,
which share a common starting vertex v; = v, see Fig. 2| The component By, alternates
between a 45° edge to the upper right and a vertical edge downwards. The vertices are
placed such that their y-coordinates alternate and hence all odd, respectively all even,
vertices have the same y-coordinate. The vertical component consists of a copy of the
horizontal component rotated by 90° in clockwise direction around v;. To form B, we
connect B, and By, by identifying their starting points v; and v}.

Lemma 1. The border gadget B with its given embedding 7 is rigid and regular.

In the following we define the length of a grid cell induced by B as 1 so that we
obtain an integer grid. We choose B long enough to guarantee that any vertex of our
subsequent gadgets lies vertically and horizontally between two pairs of vertices in B.

The grid in combination with the orthogonal order gives us the following properties:

1. If we place a vertex v with two integer coordinates, i.e., on a grid point, its position
in any valid embedding is unique;

2. if we place a vertex v with one integer and one non-integer coordinate, i.e., on a
grid edge, its position in any valid embedding is on that grid edge;

On d-regular Schematization of Embedded Paths 5

Fig. 2. Border gadget B that is rigid and reg- Fig. 3. The switch s is linked with edge e;
ular. The horizontal component is denoted by shows the input embedding, in e is pulled
By, and the vertical one by B,,. up and in[(c)]it is pulled down.

3. if we place a vertex v with two non-integer coordinates, i.e., in the interior of a
grid cell, then its position in any valid embedding is in that grid cell (including its
boundary).

Basic Building Blocks. We will frequently make use of two basic building blocks that
rely on the above grid properties.

The first one is a swifch, i.e., an edge that has exactly two valid embeddings. Let
s = uv be an edge within a single grid cell where u is placed on a grid point and v on
a non-incident grid edge. We call u the fixed and v the free vertex of s. Assume that u
is in the lower left corner and v on the right edge of the grid cell. Then in any valid
d-schematization s is either horizontal or diagonal, see Fig. 3| for an example.

The second basic concept is linking of vertices. We can synchronize two vertices
in different and even non-adjacent cells of the grid by assigning them the same x-
or y-coordinate. We call two vertices u and v linked, if in 7 either xz(u) = x5(v) or
yz(1) = y,(v). Then the orthogonal order requires that # and v remain linked in any
valid embedding. This concept allows us to transmit information on local embedding
choices over distances. Two edges e; = uu’ and ej = vV’ are linked if there is a vertex of
e; that is linked to a vertex of e;. We use linking of edges in combination with switches.
Namely, we link a switch s via its free vertex with another edge e, as illustrated in
Fig. 3| Then the choice of the embedding of s determines one of the two coordinates
of the linked vertices in e. In the case depicted in Fig. [3|the switch s determines the y-
coordinate of both vertices of e; we say that s pulls e up (Fig.[3(b)) or down (Fig.[3(c)).
Such a switch is called a vertical switch. Analogously, edges can be pulled to the left
and to the right by a horizontal switch.

Variable Gadgets. The variable gadget for a variable x is a simple structure consisting
of a horizontal switch and a number of linked connector vertices on consecutive grid
lines below the switch, one for each appearance of x or —x in a clause of ¢. We denote
the number of appearances as #(x). All connector vertices share the same x-coordinate in
7. Each one will be connected to a clause with a diagonal connector edge. A connector
edge spans the same number of grid cells horizontally and vertically and hence can only

6 Andreas Gemsa, Martin Nollenburg, Thomas Pajor, and Ignaz Rutter

N \\ L I \\\
» » »
«Q «Q «
QN LS N
RS os, ™
N \
(a) Input embedding (b) State true (c) State false

Fig. 4. A variable gadget with three connector vertices.

be embedded at a slope of 45°. In order to have the correct slope, the positions of both
endpoints within their grid cell must be the same. The upper vertices will connect to
the gadgets of the negative clauses and the lower vertices to the gadgets of the positive
clauses. The variable gadget has two states, one in which the switch pulls all vertices to
the left (defined as true), and one in which it pulls them to the right (defined as false).
Figure] shows an example. A variable gadget g, for a variable x takes up one grid cell
in width and #(x) + 1 grid cells in height.

Clause Gadgets. The general idea behind the clause gadget is to create a set of paths
whose embedding is influenced by three connector edges. Each of those edges carries
the truth value of the connected variable gadget. The gadget consists of three diagonal
edges er, e3,e4, two vertical edges e; and es and four switches sy, 52, 53,54, see Fig. E}
For positive clauses, we want that if all its connector edges are pulled to the right, i.e., all
literals are false, there is no valid embedding of the clause gadget. This is achieved by
placing the edges of the gadget in such a way that there are certain points, called critical
points, where two different non-adjacent edges can possibly place a vertex. Further, we
ensure with the help of switches that each of the three diagonal edges of the clause
gadget has exactly one vertex embedded on a critical point in a valid embedding.

Key to the gadget is the critical edge e3 that is embedded with one fixed vertex on a
grid point and one loose vertex in the grid cell A to the top left of the fixed vertex. Edge
e3 is linked with switches s, and s4. These switches ensure that the loose vertex must
be placed on a free corner of the grid cell. The three free corners are all critical points.
It is clear that there is a valid embedding of e3 if and only if one of the three critical
points is available.

We use the remaining edges of the gadget to block one of the critical points of A for
each literal that is false. The lower vertex of the middle connector edge is placed just
to the left of the upper left corner of A such that it occupies a critical point if it is pulled
to the right. Both of the left and right connector edges have another linked vertical edge
e1 and es appended each. Now if e; is pushed to the right by its connector edge, then
edge e is pushed upward since e; and e; share a critical point. Due to switch s edge e>
blocks the lower left critical point of A in that case. Similarly, edge e4 blocks the upper
right critical point of A if the third literal is false.

The clause gadget for a negative clause works analogously such that a critical point
is blocked for each connector edge that is pulled to the left instead of to the right. It
corresponds basically to the positive clause gadget rotated by 180°.

On d-regular Schematization of Embedded Paths 7

3 N

&
&
&

e S
S €4
wo o
2 IO
€2
hY
EAEE RN

Fig.5. Sketch of a clause gadget. Critical Fig. 6. Sketch of the gadgets for the instance
points are marked as white disks. ¢ from Fig[T}

Lemma 2. A clause gadget has a valid embedding if and only if at least one of its
literals is true.

The size of a clause gadget (not considering the switches) depends on the horizontal
distances A, A, between the left and middle connector edge and between the middle
and right connector edge, respectively. The width of a gadget is 6 and its height is
AL+ Ay —5.

Gadget Placement. The top and left part of our construction is occupied by the border
gadget that defines the grid. The overall shape of the remaining construction is similar
to a slanted version of the standard embedding of an instance of MONOTONE PLANAR
3-SAT as in Fig.[]

We place the individual variable gadgets horizontally aligned in the center of the
drawing. Since variable gadgets do not move vertically there is no danger of acci-
dentally linking vertices of different variable gadgets by placing them at the same y-
coordinates. For the clause gadgets to work as desired, we must make sure that any
two connector edges to the same clause gadget have a minimum distance of seven grid
cells. This can easily be achieved by spacing the variable gadgets horizontally so that
connector edges of adjacent variables cannot come too close to each other.

To avoid linking between different clause gadgets or clause gadgets and variable
gadgets, we place each of them in its own x- and y-interval of the grid with the negative
clauses to the top left of the variables and the positive clauses to the bottom right. The
switches of each clause gadget are placed at the correct positions just next to the border
gadget. Figure [6] shows a sketch of the full placement of the gadgets for a MONOTONE
PLANAR 3-SAT instance ¢. Since the size of each gadget is polynomial in the size of
the formula @, so is the whole construction. The above construction finally yields the
following theorem.

Theorem 1. The 2-regular UNION OF PATHS SCHEMATIZATION PROBLEM is NP-
hard.

8 Andreas Gemsa, Martin Nollenburg, Thomas Pajor, and Ignaz Rutter

€2
X
\" €1

(a) Variable gadget (b) Clause gadget (c) Sketch of full instance

Fig. 7. Augmented gadget versions. Additional path edges are highlighted in blue.

3.2 Hardness of the PATH SCHEMATIZATION PROBLEM

Finally, to prove that 2-regular PSP is also NP-hard we have to show that we can aug-
ment the union of paths constructed above to form a single simple path that still has
the property that it has a valid embedding if and only if the corresponding MONOTONE
PLANAR 3-SAT formula ¢ is satisfiable.

The general idea is to start the path at the lower end of the border gadget and then
collect all the switches next to the border gadget. From there we enter the upper parts
of the variable gadgets and walk consecutively along all the connector edges into the
negative clause gadgets. Once all negative connectors have been traversed, the path
continues along the positive connectors and into the positive clauses. The additional
edges and vertices must be placed such that they do not interfere with any functional
part of the construction.

The only major change is that we double the number of connector vertices in each
variable gadget and add a parallel dummy edge for each connector edge. That way
we can walk into a clause gadget along one edge and back into the variable gadget
along the other edge. We also need a clear separation between the negative and positive
connector vertices, i.e., the topmost positive connector vertices of all variable gadgets
are assigned the same y-coordinate and we adjust the required spacing of the variable
gadgets accordingly. Figure shows an example of an augmented variable gadget
with one positive and two negative connector edges.

The edges e;—es of each clause gadget are inserted into the path in between the
leftmost connector edge and its dummy edge and in between the rightmost connector
edge and its dummy edge, respectively. The details are illustrated in Fig. It is clear
that by this construction we obtain a single simple path P that contains all the gadgets of
our previous reduction. Moreover, the additional edges are embedded such that they do
not interfere with the gadgets themselves. Rather they can move along with the flexible
parts without occupying grid points that are otherwise used by the gadgets. Hence we
can summarize:

Theorem 2. The 2-regular PATH SCHEMATIZATION PROBLEM is NP-hard.

On d-regular Schematization of Embedded Paths 9
4 Hardness of d-regular PSP for d > 2

In the previous section we have established that 2-regular PSP is NP-hard. Here we
show that d-regular PSP remains NP-hard for all > 2 by modifying the gadgets of our
proof for d = 2.

An obvious problem for adapting the gadgets is that due to the presence of more
than one diagonal slope the switches do not work any more for uniform grid cells. In
a symmetric grid, we cannot ensure that the free vertex of a switch is always on a grid
point in any valid d-schematization. This means that we need to devise a different grid
in order to make the switches work properly. We construct a new border gadget that
induces a grid with cells of uniform width but non-uniform heights. We call the cells of
this grid minor cells and form groups of d — 1 vertically consecutive cells to form meta
cells. Then all meta cells again have uniform widths and heights.

The d — 1 different heights of the minor cells are chosen such that the segments
connecting the upper left corner of a meta cell to the lower right corners of its minor
cells have exactly the slopes that are multiplies of (90/d)° and lie strictly between
0° and 90°. This restores the functionality of switches whose fixed vertex is placed
on the upper left corner of a meta cell and whose free vertex is on a non-adjacent
grid line of the same meta cell. Although the underlying grid differs the functionality
of variable and clause gadgets as well as the overall structure stays the same. This
yields the following theorem. The detailed proof is included in the full version of this
paper [10]].

Theorem 3. The d-regular PATH SCHEMATIZATION PROBLEM is NP-hard for any
d>?2.

5 Design and Evaluation of a MIP for d-regular PSP

PSP can be formulated as a MIP that is similar to a MIP model for drawing octilinear
metro maps [16]. With a MIP we can not only decide PSP but also optimize the output
for resemblance with the input path if there is a feasible solution. We achieve this by (i)
minimizing for each edge the deviation between its input slope and its output slope, and
(i1) by minimizing the total path length subject to a certain minimum length for every
edge. See the full version of this paper [10] for the detailed MIP formulation.

We have implemented the MIP for simple input paths and evaluate its performance
by schematizing 1000 quickest routes in the German road network, where we select
source and target nodes uniformly at random. The average path length is 1020.7 nodes,
hence, a schematization would yield a route sketch with far too much detail. Therefore,
in a preprocessing step, we simplify the path using the Douglas-Peucker algorithm [8]]
but keep all important nodes such as points of road and road category changes. More-
over, we shortcut self-intersecting subpaths whose lengths are below a threshold. This
is to remove over- or underpasses near slip roads of highways, which are considered
irrelevant for route sketches or would be depicted as an icon rather than a loop. Figure[§]
illustrates an example of a route sketch obtained by our MIP. It clearly illustrates how a
schematic route sketch, unlike the geographic map, is able to depict both high-detail and

10 Andreas Gemsa, Martin Nollenburg, Thomas Pajor, and Ignaz Rutter

Fig. 8. A sample route from Bremen to Cuxhaven in Germany: output of Google Maps, |(b).
simplified route after preprocessing, [(c)] output of our MIP for d = 2, [(d)] output of our MIP for
d = 3, and[(e)] output of the algorithm by Delling et al. 7).

low-detail parts of the route in a single picture. Comparing Figures and [8(d)| indi-
cates that using the parameter d = 2 for the schematization process yields route sketches
with a very high level of abstraction while using d = 3 results in route sketches which
resemble the overall shape of the route much better. For example, the route sketch in
Fig. seems to suggest that there is a 90° turn while driving on the highway but this
is not the case. The route sketch depicted in Fig. [8(c)|resembles the original route much
better. Generally, we found that using the parameter d = 3 yields route sketches with a
higher degree of readability.

For comparison, we show the output computed by the method of Delling et al. [7]]
in Fig. Recall that their original algorithm takes as input only monotone paths.
They describe, however, a heuristic approach to schematize non-monotone paths by
subdividing them into maximal monotone subpaths that are subsequently merged into a
single route sketch. In order to avoid intersections of the bounding boxes of the mono-
tone subpaths, additional edges of appropriate length must be inserted into the path;
the orthogonal order is preserved only within the monotone subpaths. This may lead to
undesired effects in sketches of non-monotone routes, see Fig.

Evaluation. We performed two experiments that were executed on a single core of
an AMD Opteron 2218 processor running Linux 2.6.27.23. The machine is clocked at
2.6GHz, has 16 GiB of RAM and 2 x 1 MiB of L2 cache. Our implementation is written
in C++ and was compiled with GCC 4.3.2, using optimization level 3. As MIP solver
we use Gurobi 3.0.1.

In the first experiment we examine the performance of our MIP for d = 3 subject to
the amount of detail of the route, as controlled by the distance threshold € between input
and output path in the path simplification step. We also set the threshold for removing
self-intersecting subpaths to €. Table[I(a)|reports our experimental results for values of
€ between 27! and 277.

We observe that with decreasing &, the lengths of the paths increase from 20.04
nodes to 32.81 nodes on average. This correlates with the running time of our MIP
which is between 801.61 ms and 1102.20ms. Note that in practice a value of £ = 273

On d-regular Schematization of Embedded Paths 11
Table 1. Results obtained by running 1000 random queries in the German road network and
schematizing the simplified paths with our MIP. The tables reports average path lengths, percent-
age of infeasible instances, average number of iterations, and average running times.

(a) Varying € with d = 3. (b) Varying d with £ =273,

€ ‘ ~length % inf ~iter ~time [ms] d ‘ % inf ~iter ~time [ms]
2T 20.04 0.1 1.28 801.61 1] 51.3 1.03 107.36
22 20.50 0.1 1.29 621.66 0.7 1.19 363.49
273 21.81 0.1 1.29 649.49 0.1 1.29 649.49
2 4
2 5

25.16 02 1.26 772.57 0.1 1.25 1075.82
3281 03 1.27 1102.20 0.1 121 1347.86

wn W

is a good compromise between computation time and amount of detail. Further, we
observe that adding planarity constraints in a lazy fashion pays off since we need less
than 1.3 iterations on average. constraints at all. The number of infeasible instances,
i.e., paths without a valid 3-schematization, is 0.1 %. schematization respecting the
orthogonal order of the nodes together with the minimum edge lengths, or, if the input
path is not simple.

The second experiment evaluates the performance of our MIP when using different
values of d, see Table We fix £ = 273, While for rectilinear drawings with d = 1
we need 107.36ms to compute a solution, the running time increases to 1347.86ms
when using d = 5. Interestingly, more than half of the paths do not have a valid recti-
linear schematization. By allowing one additional diagonal slope (d = 2), the number
of infeasible instances significantly decreases to 0.7 % and for d = 3 only 0.1%, i.e.,
a single instance, is infeasible.

6 Conclusion

Motivated by drawing route sketches in road networks, we studied the d-regular path
schematization problem (PSP), which has two main goals: To preserve the user’s mental
map through maintaining the orthogonal order, and to reduce the visual complexity
using restricted edge slopes given by integer multiples of (90/d)°. We analyzed the
complexity of the problem and showed that PSP is NP-hard for d > 2, thus, closing
the complexity gap between the hardness result of Brandes and Pampel [4] for d = 1,
and the efficient algorithm of Delling et al. [[7]] for monotone paths. In the second part
of this work, we modeled and implemented the PSP as a mixed integer linear program
(MIP). An experimental evaluation with real-world data of the German road network
showed that we are indeed able to compute visually appealing route sketches within
approximately one second for values of d < 5.

Using ideas of Nollenburg and Wolff [[16], our MIP can be further generalized to
handle both non-simple paths and general graphs, e. g., a set of alternative routes.

Acknowledgments. We thank an anonymous referee for helpful comments.

12

Andreas Gemsa, Martin Nollenburg, Thomas Pajor, and Ignaz Rutter

References

10.

11.

12.

13.

14.

15.

16.

17.

M. Agrawala and C. Stolte. Rendering effective route maps: Improving usability through
generalization. Proc. 28th Ann. Conf. Computer Graphics and Interactive Techniques
(SIGGRAPH’01), pp. 241-249. ACM, 2001.

. M. de Berg and A. Khosravi. Finding perfect auto-partitions is NP-hard. Proc. 25th

European Workshop Comput. Geom. (EuroCG’08), pp. 255-258, 2008.

. U. Brandes, M. Eiglsperger, M. Kaufmann, and D. Wagner. Sketch-driven orthogonal graph

drawing. Proc. 10th International Symposium on Graph Drawing (GD’02), pp. 1-11.
Springer-Verlag, Lecture Notes Comput. Sci. 2528, 2002.

. U. Brandes and B. Pampel. On the hardness of orthogonal-order preserving graph drawing.

Proc. 16th Internat. Symp. Graph Drawing (GD’08), pp. 266-277. Springer-Verlag, Lecture
Notes Comput. Sci. 5417, 2009.

. J. Branke. Dynamic graph drawing. Drawing Graphs: Methods and Models, chapter 9,

pp. 228-246. Springer-Verlag, Lecture Notes Comput. Sci. 2025, 2001.

. S. Cabello, M. d. Berg, S. v. Dijk, M. v. Kreveld, and T. Strijk. Schematization of road

networks. Proc. 17th Annual Symposium on Computational Geometry (SoCG’01),
pp- 33-39. ACM Press, 3-5 June 2001.

. D. Delling, A. Gemsa, M. Nollenburg, and T. Pajor. Path schematization for route sketches.

Proc. 12th Scand. Symp. & Workshops on Algorithm Theory (SWAT’10), pp. 285-296.
Springer-Verlag, Lecture Notes Comput. Sci. 6139, 2010.

. D. H. Douglas and T. K. Peucker. Algorithms for the reduction of the number of points

required to represent a digitized line or its caricature. Cartographica 10(2):112-122, 1973.

. T. Dwyer, Y. Koren, and K. Marriott. Stress majorization with orthogonal ordering

constraints. Proc. 13th Internat. Symp. Graph Drawing (GD’05), pp. 141-152.
Springer-Verlag, Lecture Notes Comput. Sci. 3843, 2006.

A. Gemsa, M. Nollenburg, T. Pajor, and I. Rutter. On d-regular Schematization of
Embedded Paths. Tech. Rep. 2010-21, Faculty of Informatics, Karlsruhe Institute of
Technology, 2010.
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000020426

K. Hayashi, M. Inoue, T. Masuzawa, and H. Fujiwara. A layout adjustment problem for
disjoint rectangles preserving orthogonal order. Proc. 6th Internat. Symp. Graph Drawing
(GD’98), pp. 183-197. Springer-Verlag, Lecture Notes Comput. Sci. 1547, 1998.

D. Merrick and J. Gudmundsson. Path simplification for metro map layout. Proc. 14th
Internat. Symp. Graph Drawing (GD’06), pp. 258-269. Springer-Verlag, Lecture Notes
Comput. Sci. 4372, 2007.

K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout adjustment and the mental map. J.
Visual Languages and Computing 6(2):183-210, 1995.

G. Neyer. Line simplification with restricted orientations. Proc. 6th Int. Workshop on
Algorithms and Data Structures (WADS’99), pp. 13-24. Springer-Verlag, Lecture Notes
Comput. Sci. 1663, 1999.

M. Nollenburg. Automated drawing of metro maps. Tech. Rep. 2005-25, Fakultit fiir
Informatik, Universitit Karlsruhe, 2005,
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000004123|

M. Nollenburg and A. Wolff. Drawing and Labeling High-Quality Metro Maps by
Mixed-Integer Programming. IEEE Transactions on Visualization and Computer Graphics,
2010, http://dx.doi.org/10.1109/TVCG.2010. 81l Preprint available online.

A. Wolff. Drawing subway maps: A survey. Informatik - Forschung und Entwicklung
22(1):23-44, 2007.

http://digbib.ubka.uni-karlsruhe.de/volltexte/1000020426
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000004123
http://dx.doi.org/10.1109/TVCG.2010.81

	On d-regular Schematization of Embedded Paths

