Automatic Generation of Route Sketches

Andreas Gemsa ${ }^{1}$, Martin Nöllenburg ${ }^{1,2}$, Thomas Pajor ${ }^{1}$ and Ignaz Rutter ${ }^{1}$.

${ }^{1}$ Institute of Theoretical Informatics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany ${ }^{2}$ Department of Computer Science, University of California, Irvine, USA

Model

Reducing the drawing complexity

Exact geographic details are not necessary: simplify the input while maintaining the overall shape using the Douglas-Peucker algorithm.

Use only a small set of admissible edge slopes, namely $\mathcal{C}_{d}=\left\{z \cdot 90^{\circ} / d \mid z \in \mathbb{Z}\right\}$ for a fixed $d \geq 1$, e.g., $d=2$ for multiples of 45°.

Maintaining the mental map

Maintain the orthogonal order, i.e., the top-bottom and left-right relationship between all vertex pairs.
 to the upper right of v.

For every edge use the edge slope closest to its original slope if possible.

The orthogonal order allows for embedding $u v$ with $0^{\circ}, 45^{\circ}$ and 90°. An angle of 45° is preferable as it is closest to the original slope.

Ensuring visibility of important edges Enforce that every edge has a

Route sketch generation problem

Given a path P with a plane embedding, an integer d for angular resolution and a minimum edge length $\ell_{\text {min }}$.
Generate a route sketch such that

- the orthogonal order of all vertex pairs is maintained,
- each edge slope is in \mathcal{C}_{d}, and
- each edge has length at least $\ell_{\text {min }}$

Theorem: The route sketch generation problem is NP-hard.

Algorithm

Compute Shortest Path(s)
Simplify Graph
Schematize with MIP

Heuristic Improvements

Preserving Length Order:

To retain some information about distances, we may require that the input length order of the edges is preserved.

Relaxation of the Orthogonal Order:

Preserving the orthogonal order for distant vertices is less important. For pairs of vertices whose distance in one coordinate is at least one third of the extent in that coordinate we do not preserve their order in the respective other coordinate.

Experiments

1000 random shortest path queries on the German road network:

Rectilinear Drawing:

51.3\% infeasible instances
107.36 ms avg. running time

Octilinear Drawing:

0.7\% infeasible instances
363.49 ms avg. running time

