
Label Placement in Road Maps

Andreas Gemsa, Benjamin Niedermann, and Martin Nöllenburg

Institute of Theoretical Informatics, Karlsruhe Institute of Technology, Germany

Abstract. A road map can be interpreted as a graph embedded in the plane, in
which each vertex corresponds to a road junction and each edge to a particular
road section. We consider the cartographic problem to place non-overlapping road
labels along the edges so that as many road sections as possible are identified by
their name, i.e., covered by a label. We show that this is NP-hard in general, but
the problem can be solved in polynomial time if the road map is an embedded tree.

1 Introduction

Map labeling is a well-known cartographic problem in computational geometry [12,
Chapter 58.3.1], [14]. Depending on the type of map features, one can distinguish
labeling of points, lines, and areas. Common cartographic quality criteria are that labels
must be disjoint and clearly identify their respective map features [8]. Most of the
previous work concerns point labeling, while labeling line and area features received
considerably less attention. In this paper we address labeling linear features, namely
roads in a road map.

Geometrically, a road map is the representation of a road graph G as an arrangement
of fat curves in the plane R2. Each road is a connected subgraph of G (typically a simple
path) and each edge belongs to exactly one road. Roads may intersect each other in
junctions, the vertices of G, and we denote an edge connecting two junctions as a road
section. In road labeling the task is to place the road names inside the fat curves so that
the road sections are identified unambiguously, see Fig. 1.

Chirié [1] presented a set of rules and quality criteria for label placement in road
maps based on interviews with cartographers. This includes that (C1) labels are placed
inside and parallel to the road shapes, (C2) every road section between two junctions
should be clearly identified, and (C3) no two road labels may intersect. Further, he
gave a mathematical description for labeling a single road and introduced a heuristic
for sequentially labeling all roads in the map. Imhof’s foundational cartographic work
on label positioning in maps lists very similar quality criteria [4]. Edmondson et al. [2]
took an algorithmic perspective on labeling a single linear feature (such as a river).
While Edmondson et al. considered non-bent labels, Wolff et al. [13] introduced an
algorithm for single linear feature that places labels following the curvature of the linear
feature. Strijk [10] considered static road labeling with embedded labels and presented a
heuristic for selecting non-overlapping labels out of a set of label candidates. Seibert and
Unger [9] considered grid-shaped road networks. They showed that in those networks it
is NP-complete and APX-hard to decide whether for every road at least one label can
be placed. Yet, Neyer and Wagner [7] introduced a practically efficient algorithm that



2 Andreas Gemsa, Benjamin Niedermann, and Martin Nöllenburg

T
u
r ng St.

K
nuth St.

Dijkstra St.

i

K
nuth St.

T
u
ri
n
g
S
t.

H
am

m
in
g
S
t.

H
am

m
in
g
S
t.

Hamming St.

H
am

m
in
g
S
t.

Hamming St.

road section

junction
edge

label

junction
vertex

regular
vertex

(b)(a) (c)

Fig. 1. a–b): Two ways to label the same road network. Each road section has its own color.
Junctions are marked gray. Fig. b) identifies all road sections. c) Illustration of the road graph and
relevant terms.

finds such a grid labeling if possible. Maass and Döllner [6] presented a heuristic for
labeling the roads of an interactive 3D map with objects (such as buildings). Apart from
label-label overlaps, they also resolve label-object occlusions. Vaaraniem et al. [11] used
a force-based labeling algorithm for 2D and 3D scenes including road label placement.

Contribution. While in grid-shaped road networks it is sufficient to place a single
label per road to clearly identify all its road sections, this is not the case in general road
networks. Consider the example in Fig. 1. In Fig. 1a), it is not obvious whether the orange
road section in the center belongs to Knuth St. or to Turing St. Simply maximizing the
number of placed labels, as often done for labeling point features, can cause undesired
effects like unnamed roads or clumsy label placements (e.g., around Dijkstra St. and
Hamming St. in Fig. 1a)). Therefore, in contrast to Seibert and Unger [9], we aim for
maximizing the number of identified road sections, i.e., road sections that can be clearly
assigned to labels; see Fig. 1b).

Based on criteria (C1)–(C3) we introduce a new and versatile model for road labeling
in Section 2. In Section 3 we show that the problem of maximizing the number of
identified road sections is NP-hard for general road graphs, even if each road is a path.
For the special case that the road graph is a tree, we present a polynomial-time algorithm
in Section 4. This special case is not only of theoretical interest, but our algorithm
in fact provides a very useful subroutine in exact or heuristic algorithms for labeling
general road graphs. Our initial experiments, sketched in the full version [3], show that
real-world road networks decompose into small subgraphs, a large fraction of which
(more than 85.1%) are actually trees, and thus can be labeled optimally by our algorithm.

2 Preliminaries

As argued above, a road map is a collection of fat curves in the plane, each representing
a particular piece of a named road. If two (or more) such curves intersect, they form
junctions. A road label is again a fat curve (the bounding shape of the road name) that is
contained in and parallel to the fat curve representing its road. We observe that labels of
different roads can intersect only within junctions and that the actual width of the curves



Label Placement in Road Maps 3

is irrelevant, except for defining the shape and size of the junctions. These observations
allow us to define the following more abstract but equivalent road map model.

A road mapM is a planar road graph G = (V,E) together with a planar embedding
E(G), which can be thought of as the geometric representation of the road axes as thin
curves; see Fig 1c). We denote the number of vertices of G by n, and the number of
edges by m. Observe that since G is planar m = O(n). Each edge e ∈ E is either a road
section, which is not part of a junction, or a junction edge, which is part of a junction.
Each vertex v ∈ V is either a junction vertex incident only to junction edges, or a regular
vertex incident to one road section and at most one junction edge, which implies that
each regular vertex has degree at most two. A junction vertex v and its incident edges
are denoted as a junction. The edge set E decomposes into a set R of edge-disjoint
roads, where each road R ∈ R induces a connected subgraph of G. Without loss of
generality we assume no two road sections G are incident to the same vertex. Thus, a
road decomposes into road sections, separated by junction vertices and their incident
junction edges. In realistic road networks the number of roads connected passing through
a junction is small and does not depend on the size of the road network. We therefore
assume that each vertex in G has constant degree. We assume that each road R ∈ R has
a name whose length we denote by λ(R).

For simplicity, we identify the embedding E(G) with the points in the plane covered
by E(G), i.e. E(G) ⊆ R2. We also use E(v), E(e), and E(R) to denote the embeddings
of a vertex v, an edge e, and a road R.

We model a label as a simple open curve ` : [0, 1] → E(G) in E(G). Unless men-
tioned otherwise, we consider a curve ` always to be simple and open, i.e., ` has no
self-intersections and its end points do not coincide. In order to ease the description, we
identify a curve ` in E(G) with its image, i.e., ` denotes the set {`(t) ∈ E(G) | t ∈ [0, 1]}.
The start point of ` is denoted as the head h(`) and the endpoint as the tail t(`). The
length of ` is denoted by len(`). The curve ` identifies a road section r if ` ∩ E(r) 6= ∅.
For a set L of curves ω(L) is the number of road sections that are identified by the curves
in L. For a single curve ` we use ω(`) instead of ω({`}). For two curves `1 and `2 it is
not necessarily true that ω({`1, `2}) = ω(`1) + ω(`2), because they may identify the
same road section twice.

A label ` for a road R is a curve ` ⊆ E(R) of length λ(R) whose endpoints must lie
on road sections and not on junction edges or junction vertices. Requiring that labels end
on road sections avoids ambiguous placement of labels in junctions where it is unclear
how the road passes through it. A labeling L for a road map with road setR is a set of
mutually non-overlapping labels, where we say that two labels ` and `′ overlap if they
intersect in a point that is not their respective head or tail.

Following the cartographic quality criteria (C1)–(C3), our goal is to find a labeling L
that maximizes the number of identified road sections, i.e., for any labeling L′ we have
ω(L′) ≤ ω(L). We call this problem MAXIDENTIFIEDROADS.

Note that assuming the road graph G to be planar is not a restriction in practice.
Consider for example a road section r that overpasses another road section r′, i.e., r is a
bridge over r′, or r′ is a tunnel underneath r. In order to avoid overlaps between labels
placed on r and r′, we either can model the intersection of r and r′ as a regular crossing
of two roads or we split r′ in smaller road sections that do not cross r. In both cases



4 Andreas Gemsa, Benjamin Niedermann, and Martin Nöllenburg

the corresponding road graph becomes planar. In the latter case we may obtain more
independent roads created by chopping r′ into smaller pieces.

3 Computational Complexity

We first study the computational complexity of road labeling and prove NP-hardness of
MAXIDENTIFIEDROADS in the following sense.

Theorem 1. For a given road mapM and an integer K it is NP-hard to decide if in
total at least K road sections can be identified.

Proof. We perform a reduction from the NP-complete PLANAR MONOTONE 3-SAT
problem [5]. An instance of PLANAR MONOTONE 3-SAT is a Boolean formula ϕ with n
variables and m clauses (disjunctions of at most three literals) that satisfies the following
additional requirements: (i) ϕ is monotone, i.e., every clause contains either only positive
literals or only negative literals and (ii) the induced variable-clause graph Hϕ of ϕ is
planar and can be embedded in the plane with all variable vertices on a horizontal line,
all positive clause vertices on one side of the line, all negative clauses on the other side
of the line, and the edges drawn as rectilinear curves connecting clauses and contained
variables on their respective side of the line. We construct a road mapMϕ that mimics

x4 ∨ x1 ∨ x5

x̄2 ∨ x̄1 ∨ x̄3 x̄3 ∨ x̄5 ∨ x̄4

x2 ∨ x4 ∨ x3

F F

(a) Sketch of Mϕ (b) Clause

x2 x3 x4 x5 x1
false false

false

true

true false

(c) Chain

F

(d) Fork

Fig. 2. Illustration of NP-hardness proof. (a) 3-Sat formula ϕ = (x4 ∨ x1 ∨ x5) ∧ (x2 ∨ x4 ∨
x3) ∧ (x̄2 ∨ x̄1 ∨ x̄3) ∧ (x̄3 ∨ x̄5 ∨ x̄4) represented as road graphMϕ. Truth assignment is
x1 = true, x2 = true, x3 = false, x4 = false and x5 = false. (b) Clause gadget in two states.
(c) The chain is the basic building block for the proof. (d) Schematized fork gadget.

the shape of the above embedding of Hϕ by defining variable and clause gadgets, which
simulate the assignment of truth values to variables and the evaluation of the clauses.
We refer to Fig. 2 for a sketch of the construction.

Chain Gadget. The basic building block is the chain gadget, which consists of an
alternating sequence of equally long horizontal and vertical roads with identical label



Label Placement in Road Maps 5

lengths that intersect their respective neighbors in the sequence and form junctions with
them as indicated in Fig. 2c). Assume that the chain consists of k ≥ 3 roads. Then
each road except the first and last one decomposes into three road sections split by two
junctions, a longer central section and two short end sections; the first and last road
consist of only two road sections, a short one and a long one, separated by one junction.
(These two roads will later be connected to other gadgets; indicated by dotted squares in
Fig. 2c).) The label length and distance between junctions is chosen so that for each road
either the central and one end section is identified, or no section at all is identified. For
the first and last road, both sections are identified if the junction is covered and otherwise
only the long section can be identified. We have k roads and k − 1 junctions. Each label
must block a junction, if it identifies two sections. So the best possible configuration
blocks all junctions and identifies 2(k − 1) + 1 = 2k − 1 road sections.

The chain gadget has exactly two states, in which 2k − 1 road sections are identified.
Either the label of the first road does not block a junction and identifies a single section
and all subsequent roads have their label cover the junction with the preceding road in
the sequence, or the label of the last road does not block a junction and all other roads
have their label cover the junction with the successive road in the sequence. In any other
configuration there is at least one road without any identified section and thus at most
2k − 2 sections are identified. We use the two optimal states of the gadget to represent
and transmit the values true and false from one end to the other.

Fork Gadget. The fork gadget allows to split the value represented in one chain into
two chains, which is needed to transmit the truth value of a variable into multiple clauses.
To that end it connects to an end road of three chain gadgets by sharing junctions. The
detailed description of the fork gadget is found in the full version [3].

Variable Gadget. We define the variable gadgets simply by connecting chain and fork
gadgets into a connected component of intersecting roads. This construction already has
the functionality of a variable gadget: it represents (in a labeling identifying the maximum
number of road sections) the same truth value in all of its branches, synchronized by the
fork gadgets, see the blue chains and yellow forks in Fig. 2a). More precisely, we place a
sequence of chains linked by fork gadgets along the horizontal line on which the variable
vertices are placed in the drawing Hϕ. Each fork creates a branch of the variable gadget
either above or below the line. We create as many branches above (below) the line as
the variable has occurrences in positive (negative) clauses in ϕ. The first and last chain
on the line also serve as branches. The synchronization of the different branches via the
forks is such that either all top branches have their road labels pushed away from the
line and all bottom branches pulled towards the line or vice versa. In the first case, we
say that the variable is in the state false and in the latter case that it is in the state true.
The example in Fig. 2 has two variables set to true and three variables set to false.

Clause Gadget. Finally, we need to create the clause gadget, which links three
branches of different variables. The core of the gadget is a single road that consists
of three sub-paths meeting in one junction. Each sub-path of that road shares another
junction with one of the three incoming variable branches. Beyond each of these three
junctions the final road sections are just long enough so that a label can be placed on
the section. However, the section between the central junction of the clause road and the
junctions with the literal roads is shorter than the label length. The road of the clause



6 Andreas Gemsa, Benjamin Niedermann, and Martin Nöllenburg

gadget has six sections in total and we argue that the six sections can only be identified
if at least one incoming literal evaluates to true. Otherwise at most five sections can be
identified. By construction, each road in the chain of a false literal has its label pushed
towards the clause, i.e., it blocks the junction with the clause road. As long as at least
one of these three junctions is not blocked, all sections can be identified; see Fig. 2b).
But if all three junctions are blocked, then only two of the three inner sections of the
clause road can be identified and the third one remains unlabeled; see Fig. 2b).

Reduction. Obviously, the size of the instanceMϕ is polynomial in n and m. If we
have a satisfying variable assignment for ϕ, we can construct the corresponding road
labeling and the number of identified road sections is six per clause and a fixed constant
number K ′ of sections in the variable gadgets, i.e., at least K = K ′ + 6m. On the other
hand, if we have a road labeling with at least K identified sections, each variable gadget
is in one of its two maximum configurations and each clause road has at least one label
that covers a junction with a literal road, meaning that the corresponding truth value
assignment of the variables is indeed a satisfying one. This concludes the reduction.

Since MAXIDENTIFIEDROADS is an optimization problem, we only present the NP-
hardness proof. Still, one can argue that the corresponding decision problem is NP-
complete by guessing which junctions are covered by which label and then using linear
programming for computing the label positions. We omit the technical details. Further,
most roads in the reduction are paths, except for the central road in each clause gadget,
which is a degree-3 star. In fact, we can strengthen Theorem 1 by using a more complex
clause gadget instead that uses only paths; see full version [3].

4 An Efficient Algorithm for Tree-Shaped Road Maps

In this section we assume that the underlying road graph of the road map is a tree
T = (V,E). In Section 4.1 we present a polynomial-time algorithm to optimally solve

horizontal

ρ

vertical

head of `

tail of `

=
child of `

ρ

curve `

curve `

Fig. 3. Basic definitions.

MAXIDENTIFIEDROADS for trees; Section 4.2 shows
how to improve its running time and space consump-
tion. Our approach uses the basic idea that remov-
ing the vertices, whose embeddings lie in a curve
c ⊆ E(T ), splits the tree into independent parts. In
particular this is true for labels. We assume that T is
rooted at an arbitrary leaf ρ and that its edges are
directed away from ρ; see Fig. 3. For two points
p, q ∈ E(T ) we define d(p, q) as the length of the
shortest curve in E(T ) that connects p and q. For two
vertices u and v of T we also write d(u, v) instead
of d(E(u),E(v)). For a point p ∈ E(T ) we abbre-
viate the distance d(p, ρ) to the root ρ by dp. For a
curve ` in E(T ), we call p ∈ ` the lowest point of `
if dp ≤ dq, for any q ∈ `. As T is a tree, p is unique.
We distinguish two types of curves in E(T ). A curve `

is vertical if h(`) or t(`) is the lowest point of `; otherwise we call ` horizontal (see



Label Placement in Road Maps 7

Fig. 3). Without loss of generality we assume that the lowest point of each vertical
curve ` is its tail t(`). Since labels are modeled as curves, they are also either vertical or
horizontal. For a vertex u ∈ V let Tu denote the subtree rooted at u.

4.1 Basic Approach

We first determine a finite set of candidate positions for the heads and tails of labels,
and transform T into a tree T ′ = (V ′, E′) by subdividing some of T ’s edges so that it
contains a vertex for every candidate position. To that end we construct for each regular
vertex v ∈ V a chain of tightly packed vertical labels that starts at E(v), is directed
towards ρ, and ends when either the road ends, or adding the next label does not increase
the number of identified road sections. More specifically, we place a first vertical label `1
such that h(`1) = E(v). For i = 2, 3, . . . we add a new vertical label `i with h(`i) =
t(`i−1), as long as h(`i) and t(`i) do not lie on the same road section and none of `i’s
endpoints lie on a junction edge. We use the tails of all those labels to subdivide the
tree T . Doing this for all regular vertices of T we obtain the tree T ′, which we call the
subdivision tree of T . The vertices in V ′ \ V are neither junction vertices nor regular
vertices. Since each chain consists of O(n) labels the cardinality of V ′ is O(n2). We
call an optimal labeling L of T an canonical labeling if for each label ` ∈ L′ there
exists a vertex v in T ′ with E(v) = h(`) or E(v) = t(`). The next lemma proves that is
sufficient to consider canonical labelings.

Lemma 1. For any road graph T that is a tree, there exists a canonical labeling L.

The idea behind the proof is to push the labels of an optimal labeling L as far as
possible towards the leaves of T without changing the identified road sections; see Fig. 4.

u

T ′
u

added
vertex

(a)

(b)

e
e′

`

chain

Fig. 4. Canonical la-
beling.

The labels then start or end either at a leaf, a regular vertex or at
an endpoint of another label, which yields a canonical labeling.
For the full proof see the full version [3].

We now explain how to construct such a canonical labeling.
To that end we first introduce some notations. For a vertex u ∈ V ′
let L(u) denote a labeling that identifies a maximum number
of road sections in T only using valid labels in E(T ′u), where
T ′u denotes the subtree of T ′ rooted at u. Note that those labels
also may identify the incoming road section of u, e.g., label ` in
Fig. 4b) identifies the edge e′.

Further, the children of a vertex u ∈ V ′ are denoted by the
set N(u); we explicitly exclude the parent of u from N(u).
Further, consider an arbitrary curve ` in E(T ) and let `′ =
` \ {t(`), h(`)}. We observe that removing all vertices of T ′

contained in `′ together with their incident outgoing edges creates
several independent subtrees. We call the roots of these subtrees
(except the one containing ρ) children of ` (see Fig. 3). If no vertex
of T ′ lies in `′, the curve is contained in a single edge (u, v) ∈ E′.
In that case v is the only child of `. We denote the set of all
children of ` as N(`).



8 Andreas Gemsa, Benjamin Niedermann, and Martin Nöllenburg

For each vertex u in T ′ we introduce a set C(u) of candidates, which model potential
labels with lowest point E(u). If u is a regular vertex of T or u ∈ V ′ \ V , the set C(u)
contains all vertical labels ` with lowest point E(u). If u is a junction vertex, C(u)
contains all horizontal labels that start or end at a vertex of T ′ and whose lowest point
is E(u). In both cases we assume that C(u) also contains the degenerated curve ⊥u =
E(u), which is the dummy label of u. We set N(⊥u) = N(u) and ω(⊥u) = 0.

For a curve ` we define L(`) =
⋃

v∈N(`) L(v) ∪ {`}. Thus, L(`) is a labeling
comprising ` and the labels of its children’s optimal labelings. We call a label ` ∈ C(u)
with ` = argmax{ω(L(`)) | ` ∈ C(u)} an optimal candidate of u. Next, we prove that
it is sufficient to consider optimal candidates to construct a canonical labeling.

Lemma 2. Given a vertex u of T ′ and an optimal labeling L(u) and let ` be an optimal
candidate of u, then it is true that ω(L(u)) = ω(L(`)).

Proof. First note that ω(L(u)) ≥ ω(L(`)) because both labelings L(u) and L(`) only
contain labels that are embedded in E(T ′u). By Lemma 1 we can assume without loss of
generality that L(u) is a canonical labeling. Let ` be the label of L(u) with E(u) as the
lowest point of ` (if it exists).

If ` exists, then the vertices in N(`) are roots of independent subtrees, which directly
yields ω(L(u)) = ω(L(`)). By construction of C(u) we further know that ` is contained
in C(u). Hence, ` is an optimal candidate of u, which implies ω(`) = ω(`).

If ` does not exist, then we have

ω(L(u)) = ω(
⋃

v∈N(u)

L(v)) (1)
= ω(

⋃
v∈N(⊥u)

L(v) ∪ {⊥u}) = ω(L(⊥u)).

Equality (1) follows from N(⊥u) = N(u) and the definition that ⊥u does not identify
any road section. Since ⊥u is contained in C(u), the dummy label ⊥u is the optimal
candidate `. ut

Algorithm 1 first constructs the subdivision tree T ′ = (V ′, E′) from T . Then
starting with the leaves of T ′ and going to the root ρ of T ′, it computes an optimal
candidate ` =OptCandidate (u) for each vertex u ∈ V ′ in a bottom-up fashion. By
Lemma 2 the labeling L(`) is an optimal labeling of T ′u. In particular L(ρ) is the optimal
labeling of T .

Algorithm 1: Computing an optimal labeling of T .
Input: Road graph T , where T is a tree with root ρ.
Output: Optimal labeling L(ρ) of T .

1 T ′ ← compute subdivision tree of T
2 for each leaf v of T ′ do L(v)← ∅
3 for each vertex u of T ′ considered in a bottom-up traversal of T ′ do
4 L(u)← L(OptCandidate(u))

5 return L(ρ)



Label Placement in Road Maps 9

Due to the size of the subdivision tree T ′ we consider O(n2) vertices. Implement-
ing OptCandidate(u), which computes an optimal candidate ` for u, naively, cre-
ates C(u) explicitly. We observe that if u is a junction vertex, C(u) may contain O(n2)
labels; O(n2) pairs of road sections of different subtrees of u can be connected by
horizontal labels. Each label can be constructed in O(n) time using a breadth-first search.
Thus, for each vertex u the procedure OptCandidate needs in a naive implementation
O(n3) time, which yields O(n5) running time in total. Further, we need O(n2) storage
to store T ′. Note that we do not need to store L(u) for each vertex u of T ′, but by
Lemma 2 we can reconstruct it using L(`), where ` is the optimal candidate of u. To that
end we store for each vertex of T ′ its optimal candidate ` and w(L(`)).
Theorem 2. For a road map with a tree as underlying road graph, MAXIDENTIFIED-
ROADS can be solved in O(n5) time using O(n2) space.

In case that all roads are paths, Algorithm 1 runs in O(n4) time, because for each
u ∈ V ′ the set C(u) contains O(n) labels. Further, besides the primary objective
to identify a maximum number of road sections, Chirié [1] also suggested several
additional secondary objectives, e.g., labels should overlap as few junctions as possible.
Our approach allows us to easily incorporate secondary objectives by changing the
weight function ω appropriately.

4.2 Improvements on Running Time

In this part we describe how the running time of Algorithm 1 can be improved to O(n3)
time by speeding up OptCandidate(u) to O(n) time.

For an edge e = (u, v) ∈ E∪E′ we call a vertical curve ` ⊆ E(T ) an e-rooted curve,
if t(`) = E(u), h(`) lies on a road section, and len(E(e)∩ `) = min{len(`), len(E(e))},
i.e., ` emanates from E(u) passing through e; for example the red label in Fig. 4b)
is an e-rooted curve. An e-rooted curve ` is maximal if there is no other e-rooted
curve `′ with len(`) = len(`′) and ω(L(`′)) > ω(L(`)). We observe that in any
canonical labeling each vertical label ` is a (u, v)-rooted curve with (u, v) ∈ E′, and
each horizontal label ` can be composed of a (u, v1)-rooted curve `1 and a (u, v2)-
rooted curve `2 with (u, v1), (u, v2) ∈ E′ and E(u) is the lowest point of `; see Fig. 6
and Fig. 7, respectively. Further, for a vertical curve c in E(T ) its distance interval
I(c) is [dt(c),dh(c)]. Since T is a tree, for every point p of c we have dp ∈ I(c).

3

1

2

4
5

6
75

6

7

5
6

7

8

9

4

3

7

6

0 105

c1

I(c1)
c2 I(c2)

c3

I(c3)

I(c4)

c4
c5

I(c5)

ρ

Fig. 5. Superposing curves, e.g., c1 and c2 super-
pose each other, while c1 and c5 do not. The tree
is annotated with distance marks.

Two vertical curves c and c′ superpose
each other if I(c) ∩ I(c′) 6= ∅; see Fig 5.

Next, we introduce a data structure
that encodes for each edge (u, v) of T
all maximal (u, v)-rooted curves as O(n)
superposition-free curves in E(Tu). In par-
ticular, each of those curves lies on a sin-
gle road section such that all (u, v)-rooted
curves ending on that curve are maximal
and identify the same number of road sec-
tions. We define this data structure as fol-
lows.



10 Andreas Gemsa, Benjamin Niedermann, and Martin Nöllenburg

Definition 1 (Linearization). Let e = (u, v) be an edge of T . A tuple (L, ω) is called
a linearization of e, if L is a set of superposition-free curves and ω : L→ R such that
(1) for each curve c ∈ L there is a road section e′ in Tu with c ⊆ E(e′),
(2) for each e-rooted curve ` there is a curve c ∈ L with len(`) + du ∈ I(c),
(3) for each point p of each curve c ∈ L there is a maximal e-rooted curve ` with

h(`) = p and ω(c) = ω(L(`)).
Assume that we apply Algorithm 1 on T ′ and that we currently consider the vertex

u of T ′. Hence, we can assume that for each vertex v 6= u of T ′u its optimal candi-
date and ω(L(v)) is given. We first explain how to speed up OptCandidate using
linearizations. Afterwards, we present the construction of linearizations.

Application of linearizations. Here we assume that the linearizations are given for the
edges of T . Concerning the type of u we describe how to compute its optimal candidate.

Case 1, u is regular. If u is a leaf, the set C(u) contains only ⊥u. Hence, assume
that u has one outgoing edge e = (u, v) ∈ E′, which belongs to a road R. Let P be the
longest path of vertices in T ′u that starts at u and does not contain any junction vertex.
Note that the path must be unique. Further, by construction of T ′ the last vertex w of
P must be a regular vertex in V , but not in V ′ \ V . We consider two cases; see Fig 6.

ρ

c

u

x
w

`

e′

e

ρ
u

w{P
≥ λ(R) < λ(R)

e
`

Fig. 6. Case 1

If d(u,w) ≥ λ(R), the optimal candidate is either ⊥u or
the e-rooted curve ` of length λ(R) that ends on E(P ). By
assumption and due to ω(L(⊥u)) = ω(L(v)), we decide in
O(1) time whether ω(L(⊥u)) ≥ ω(L(`)), obtaining the optimal
candidate.

If d(u,w) < λ(R), the optimal candidate is either ⊥u or
goes through a junction. Since w is regular, it has only one
outgoing edge e′ = (w, x). Further, by the choice of P the
edge e′ is a junction edge in T ; therefore the linearization (L, ω)
of e′ is given. In linear time we search for the curve c ∈ L such
that there is an e-rooted curve ` of length λ(R) with its head
on c. To that end we consider for each curve c ∈ L its distance

interval I(c) and check whether there is t ∈ I(c) with t− du = λ(R). Note that using a
binary search tree for finding c speeds this procedure up to O(log n) time, however, this
does not asymptotically improve the total running time. The e-rooted curve ` then can
be easily constructed in O(n) time by walking from c to u in E(T ).

If such a curve c exist, by definition of a linearization the optimal candidate is
either ⊥u or `, which we can decide in O(1) time by checking ω(L(⊥u)) ≥ ω(L(`)).

v1v2

u
ρ

e1e2

`1`1

Fig. 7. Case 2

Note that we have ω(L(⊥u)) = ω(L(v)) and ω(L(`)) = ω(c).
If c does not exist, again by definition of a linearization there is
no vertical label ` ∈ C(u) and ⊥u is the optimal candidate.

Case 2, u is a junction vertex. The set C(u) contains hor-
izontal labels. Let ` be such a label and let e1 = (u, v1)
and e2 = (u, v2) be two junction edges in E covered by `;
see Fig. 7. Then there is an e1-rooted curve `1 and an e2-
rooted curve `2 whose composition is `. Further, we have

ω(L(`)) = ω(L(`1) ∪ L(`2)) +
∑

v∈N(u)\{v1,v2} ω(L(v)). We use this as follows.



Label Placement in Road Maps 11

Let e1 and e2 be two outgoing edges of u that belong to the same road R, and let
(L1, ω1) and (L2, ω2) be the linearizations of e1 and e2, respectively. We define for e1
and e2 and their linearizations the operation opt-cand(L1, L2) that finds an optimal
candidate of u restricted to labels identifying e1 and e2.

For i = 1, 2 let di = max{du | u is vertex of Tvi} and let fu(t) = du−(t −
du) = 2 du−t be the function that “mirrors” the point t ∈ R2 at du. Applying fu(t)
on the boundaries of the distance intervals of the curves in L1, we first mirror these
intervals such that they are contained in the interval [2 du−d1,du]; see Fig. 8. Thus, the
curves in L1 ∪ L2 are mutually superposition-free such that their distance intervals lie
in J = [2 du−d1, d2].
We call an interval [x, y] ⊆ J a window, if it has length λ(R), du ∈ [x, y] and there
are curves c1 ∈ L1 and c2 ∈ L2 with x ∈ I(c1) and y ∈ I(c2); see Fig. 8. By
the definition of a linearization there is a maximal e1-rooted curve `1 ending on c1
and a maximal e2-rooted curve `2 ending on c2 such that len(`1) + len(`2) = λ(R).
Consequently, the composition of `1 and `2 forms a horizontal label ` with ω(L(`)) =
ω(L(`1) ∪ L(`2)) +

∑
v∈N(u)\{v1,v2} L(v); we call ω(L(`)) the value of the window.

Using a simple sweep from left to right we compute for the distance interval I(c) of
each curve c ∈ L1 ∪ L2 a window [x, y] that starts or ends in I(c) (if such a window
exists). The result of opt-cand(L1, L2) is then the label ` of the window with maximum
value. For each pair e1 and e2 of outgoing edges we apply opt-cand(L1, L2) computing
a label `. By construction either the label ` with maximum ω(`) or ⊥u is the optimal
candidate for u, which we can check in O(1) time. Later on we prove that we consider
only linearizations of linear size. Since each vertex of T ′ has constant degree, we obtain
the next lemma.

Lemma 3. For each u ∈ V ′ the optimal candidate can be found in O(n) time.

Construction of linearizations. It remains to show that a linearization of an edge e =
(u, v) can be constructed in O(n) time assuming that the linearizations

I(c1) I(c3)

I(c2) I(c4)

31
2

4
5

5

6

5
6 7 8 94

3

7

6

3

1

2

4

55

6

5

6

7

8

9

4 3

7
6

u
ρ

p

d(p, u)=5

dudu−5du−10 du+10du+5

I(c5)

I(c6)

I(c7)

I(c8)

I(c9)

du:=d(u, ρ)

window [x, y]

c1

c2
c3

c4

c5
c6

c7

c8
c9

L1={c1, c2, c3, c4, c5}
L2={c6, c7, c8, c9}

Fig. 8. Constructing the optimal candidate of u
based on the linearizations (L1, ω1) and (L2, ω2).
The tree is annotated with distance marks.

(L1, ω1), . . . , (Lk, ωk) of the outgoing
edges e1 = (v, w1), . . . , ek = (v, wk)
of v are given. Due to space restrictions
we only give a rough sketch; the de-
tails can be found in the full version [3].
For 1 ≤ i ≤ k let Ti be the tree in-
duced by the edges e, ei and the edges
of Twi . We first extend each lineariza-
tion (Li, ωi) to a linearization restricted
to the tree Ti, i.e., conceptually we as-
sume that Tu only consists of the edges
of Ti. To that end we basically extend Li

by disjoint sub-curves of E(e) if e is a
road section and update ωi. Afterwards
we merge those constructed lineariza-
tions to one linearization (L, ω) of ewith-
out any restrictions on Tu. In particular



12 Andreas Gemsa, Benjamin Niedermann, and Martin Nöllenburg

we enforce that L is a set of superposition-free curves, which we achieve by splitting
superposing curves c and c′ into three superposition-free curves c1, c2, c3 such that each
of them is either contained in c or c′ and

⋃3
i=1 I(ci) = I(c)∪ I(c′). The choice of c1, c2

and c3 depends on the number of road sections identified by an e-rooted curve that ends
on c and c′, respectively. We prove that this merging runs in O(n) time per edge e ∈ E
and (L, ω) has size O(n). This and Lemma 3 yield the next proposition.

Proposition 1. For a road mapM with a tree T as underlying road graph, MAXIDEN-
TIFIEDROADS can be solved in O(n3) time.

Since T ′ contains O(n2) vertices, the algorithm needs O(n2) space. This can be im-
proved to O(n) space. To that end T ′ is constructed on the fly while executing Algo-
rithm 1. Parts of T ′ that become unnecessary are discarded. In the full version [3] we
prove that it is sufficient to store O(n) vertices of T ′ at any time such that the optimal
labeling can still be constructed. We summarize in the following theorem.

Theorem 3. For a road mapM with a tree T as underlying road graph, MAXIDENTI-
FIEDROADS can be solved in O(n3) time using O(n) space.

5 Conclusions and Outlook

In this paper we investigated the problem of maximizing the number of identified road
sections in a labeling of a road map; we showed that it is NP-hard in general, but can be
solved in O(n3) time and linear space for the special case of trees.

The underlying road graphs of real-world road maps are rarely trees. Initial exper-
imental evidence indicates, however, that road maps can be decomposed into a large
number of subgraphs by placing trivially optimal road labels and removing the cor-
responding edges from the graph. It turns out that between 85.1% and 97.7% of the
resulting subgraphs are actually trees, which we can label optimally by our proposed
algorithm. As a consequence, this means that a large fraction (between 88.6% and 96.1%)
of all road sections in our real-world road graphs can be labeled optimally by combining
this simple preprocessing strategy with the tree labeling algorithm. We are investigating
further heuristic and exact approaches for labeling the remaining non-tree subgraphs
(e.g., by finding suitable spanning trees and forests) for a separate companion paper.



Label Placement in Road Maps 13

References

1. F. Chirié. Automated name placement with high cartographic quality: City street maps.
Cartography and Geo. Inf. Science, 27(2):101–110, 2000.

2. S. Edmondson, J. Christensen, J. Marks, and S. M. Shieber. A general cartographic labelling
algorithm. Cartographica, 33(4):13–24, 1996.

3. A. Gemsa, B. Niedermann, and M. Nöllenburg. Label placement in road maps. CoRR,
abs/1501.07188, 2015.

4. E. Imhof. Positioning names on maps. Amer. Cartogr., pages 128–144, 1975.
5. D. Lichtenstein. Planar formulae and their uses. SIAM J. Comput., 11(2):329–343, 1982.
6. S. Maass and J. Döllner. Embedded labels for line features in interactive 3d virtual envi-

ronments. In Proc. 5th Int. Conf. Computer Graphics, Virtual Reality, Visualisation and
Interaction in Africa, AFRIGRAPH ’07, pages 53–59. ACM, 2007.

7. G. Neyer and F. Wagner. Labeling downtown. In Algorithms and Complexity (CIAC’00),
volume 1767 of LNCS, pages 113–124. Springer, 2000.

8. A. Reimer and M. Rylov. Point-feature lettering of high cartographic quality: A multi-criteria
model with practical implementation. In EuroCG’14, Ein-Gedi, Israel, 2014.

9. S. Seibert and W. Unger. The hardness of placing street names in a Manhattan type map.
Theor. Comp. Sci., 285:89–99, 2002.

10. T. Strijk. Geometric Algorithms for Cartographic Label Placement. Dissertation, Utrecht
University, 2001.

11. M. Vaaraniemi, M. Treib, and R. Westermann. Temporally coherent real-time labeling of
dynamic scenes. In Proc. 3rd Int. Conf. Comput. Geospatial Research Appl., COM.Geo ’12,
pages 17:1–17:10. ACM, 2012.

12. M. van Kreveld. Geographic information systems. In Handbook of Discrete and Computa-
tional Geometry, Second Edition, chapter 58, pages 1293–1314. CRC Press, 2010.

13. A. Wolff, L. Knipping, M. van Kreveld, T. Strijk, and P. K. Agarwal. A simple and effi-
cient algorithm for high-quality line labeling. In Innovations in GIS VII: GeoComputation,
chapter 11, pages 147–159. Taylor & Francis, 2000.

14. A. Wolff and T. Strijk. The map labeling bibliography. http://liinwww.ira.uka.
de/bibliography/Theory/map.labeling.html, 2009.

 http://liinwww.ira.uka.de/bibliography/Theory/map.labeling.html
 http://liinwww.ira.uka.de/bibliography/Theory/map.labeling.html

	Label Placement in Road Maps

