
EuroCG 2014, Ein-Gedi, Israel, March 3–5, 2014

Label Placement in Road Maps

Andreas Gemsa ∗ Benjamin Niedermann ∗ Martin Nöllenburg ∗

Abstract

A road map can be interpreted as a graph embedded
in the plane, in which each vertex corresponds to a
road junction and each edge to a particular road seg-
ment. We consider the cartographic problem to place
non-overlapping road labels along the edges so that as
many road segments as possible are covered by labels.
We show that this is NP -hard in general, but can be
solved in polynomial time if the road map is an em-
bedded tree. Moreover, we give an efficient approx-
imation algorithm for general road maps, assuming
that each individual road can be labeled optimally in
polynomial time.

1 Introduction

Map labeling is a well-known cartographic problem in
computational geometry [7]. Depending on the type
of map features, one can distinguish labeling of points,
lines, and areas. Common cartographic quality crite-
ria are that labels must be disjoint and clearly identify
their respective map features. Most of the previous
work concerns point labeling, while labeling line and
area features received considerably less attention. In
this paper we address labeling linear features, namely
roads in a (static) road map.

Geometrically, a road map is the representation of
a road graph G as an arrangement of fat curves in
the plane R2. Each road is a connected subgraph of
G (typically a simple path) and each edge belongs to
exactly one road. Roads may intersect each other in
junctions, the vertices of G, and we denote an edge
connecting two junctions as a road segment. In road
labeling the task is to place the road names optimally
inside the fat curves representing the various road seg-
ments, see Fig. 1.

Chirié [1] presented a set of rules and quality crite-
ria for label placement in road maps based on inter-
views with cartographers. This includes that (i) labels
are placed inside and parallel to the road shapes, (ii)
every road section between two junctions should be
clearly identified, and (iii) no two road labels may in-
tersect. Further, he gave a mathematical description
for labeling a single road and introduced a heuris-
tic for sequentially labeling all roads. Wolff et al. [6]
took a more algorithmic perspective for a single lin-

∗Institute of Theoretical Informatics, Karlsruhe Institute of
Technology (KIT), Germany. Email: {lastname}@kit.edu

T
u
r ng St.

K
nuth St.

Dijkstra St.

i

K
nuth St.

T
u
ri
n
g
S
t.

H
am

m
in
g
S
t.

H
am

m
in
g
S
t.

Hamming St.
H
am

m
in
g
S
t.

Hamming St.

Figure 1: Two ways to label the same road network. Each
road segment has its own color. Junctions are marked
gray. The left image identifies all road segments.

ear feature to be labeled. Seibert and Unger [5] con-
sidered road networks that are grid-shaped. They
showed that in those networks it is NP -complete to
decide whether for every road at least one label can be
placed. Yet, Neyer and Wagner [4] introduced an em-
pirically efficient algorithm that finds such a labeling
if possible.

While in grid-shaped road networks it is sufficient
to place a single label per road to clearly identify all
its road segments, this is not the case in general road
networks. Consider the example in Fig. 1. Here, it is
not obvious whether the orange road segment in the
center belongs to Knuth St. or to Turing St. Simply
maximizing the number of placed labels, as often done
for labeling point features, can cause undesired effects
like unnamed roads or clumsy label placements (e.g.,
around Dijkstra St. and Hamming St. in the right ex-
ample of Fig. 1). Therefore, in contrast to Seibert and
Unger [5], we aim for maximizing the number of iden-
tified road segments, i.e., road segments that can be
clearly assigned to labels. Based on the criteria de-
scribed by Chirié [1] we introduce a new and versatile
model for road labeling. We show that the problem
of maximizing the number of identified road segments
is NP -hard. For the special case that the road graph
is a tree, we present a polynomial-time algorithm and
for the general case we give an efficient approximation
algorithm, assuming that each individual road of the
network can be labeled optimally in polynomial-time.

2 Preliminaries

As argued above, a road map is a collection of fat
curves in the plane, each representing a particular
piece of a named road. If two (or more) such curves

This is an extended abstract of a presentation given at EuroCG 2014. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

30th European Workshop on Computational Geometry, 2014

intersect, they form junctions. A road label is again a
fat curve (the bounding shape of the road name) that
is contained in and parallel to the fat curve represent-
ing its road. We observe that labels of different roads
can intersect only within junctions and that the actual
width of the curves is irrelevant, except for defining
the shape and size of the junctions. These observa-
tions allow us to define the following more abstract
but basically equivalent road map model.

A road map is a planar road graph G = (V,E) to-
gether with a planar embedding E(G), which can be
thought of as the geometric representation of the road
axes as thin curves. We denote the number of vertices
of G by n, and the number of edges by m. Observe
that since G is planar m = O(n). Each edge e ∈ E
is either a free edge, which is not part of a junction,
or a junction edge, which is part of a junction; see
Fig. 2a. Each vertex v ∈ V is either a junction vertex
incident only to junction edges, or a regular vertex in-
cident to one free and at most one junction edge. A
junction vertex v and its incident edges are denoted
as a junction. The edge set E decomposes into a set
R of edge-disjoint roads, where each road R ∈ R in-
duces a connected subgraph of G with the property
that the end points of each free edge are regular ver-
tices, and each junction edge is incident to one regular
vertex and one junction vertex. We denote each free
edge of a road including its two incident vertices (and
their embedding) as a road segment. Thus a road de-
composes into road segments, separated by junction
vertices and their incident junction edges. Further,
each road R ∈ R has a road name of length λ(R).

For simplicity, we identify the embedding E(G) and
the points in the plane covered by E(G). We also use
E(v), E(e), and E(R) to denote the embeddings of a
vertex v, an edge e, and a road R.

A valid label ` for a road R is a simple open curve
` ⊆ E(R) of length λ(R) whose end points must lie on
road segments and not on junction edges or junction
vertices. The start point of a valid label is denoted
as the head h(`) and the end point as the tail t(`).
A labeling L for a road map with road set R is a
set of valid labels that are mutually non-overlapping,
where we say that two labels ` and `′ overlap if they
intersect in a point that is not their respective head
or tail. Finally, we say that a label ` identifies a road
segment r with free edge e if ` ∩ E(e) 6= ∅.

Following the above mentioned cartographic qual-
ity criteria for labeled road maps [1], our goal is to
find a labeling L that maximizes the number of iden-
tified road segments. We call this problem Max-
IdentifiedRoads.

3 Computational Complexity

We can prove that MaxIdentifiedRoads for a gen-
eral road map is NP -hard and that the correspond-

ing decision problem is NP -complete. The hardness
proof is by reduction from planar 3-SAT, which is
well-known to be NP -hard [3]. The corresponding
decision problem takes as input a road map together
with an integer k and asks whether a labeling exists
such that at least k road segments are identified.

In order to prove that this decision problem is in
NP , we make the observation that a label ` can be
described by its head h(`) and a sequence σ of road
segments and junctions that ` identifies and crosses,
respectively. We create an oracle that first guesses a
number z ≤ k of labels, and for each of the z labels a
sequence σ of road segments and junctions. Thus, we
obtain a set of labels for which the heads are not fixed
yet. We now need to determine whether a labeling ex-
ists with the prescribed sequence of road segments and
junctions for each label. Checking whether labels of
the induced labeling overlap at junctions is straight-
forward. Determining whether all labels that identify
the same road can be placed without overlaps can be
done with a linear program in polynomial time. Due
to space constraints we omit further details.

Theorem 1 MaxIdentifiedRoads is NP -hard
and its corresponding decision problem is NP -
complete.

4 Efficient Algorithm for Tree-Shaped Road Maps

In this section we assume that the underlying road
graph of the road map is a tree T = (V,E). We
present a polynomial-time algorithm to solve Max-
IdentifiedRoads optimally for trees.

First, we require some additional notation. We as-
sume that T is rooted at an arbitrary leaf ρ. For two
points p, q ∈ E(T) we define d(p, q) as the length of
the shortest curve in E(T) that connects p and q. We
call a point p ∈ E(T) free, if p ∈ E(e) for a free edge
e ∈ E. For a valid label `, we call p ∈ ` the lowest
point p of ` if d(p, E(ρ)) ≤ d(q, E(ρ)) for any q ∈ `.
As T is a tree, the point p is uniquely determined. We
distinguish two types of valid labels. A valid label `
is vertical if h(`) or t(`) is the lowest point of `; other-
wise we call ` horizontal (see Figure Fig. 2a). Without
loss of generality we can assume that the lowest point
of each vertical label ` is its head h(`).

A basic, but crucial, observation for our algorithm
is that for any road map there exists an optimal solu-
tion, in which all labels are pushed as far as possible
towards the leaves in the tree. More specifically, we
can transform any optimal labeling into a canonical
labeling by moving each label away from the root and
towards the leaves as far as possible while its head
and tail must remain on their respective road seg-
ments. For a vertical label this direction is unique,
while for horizontal labels we can choose any of the

EuroCG 2014, Ein-Gedi, Israel, March 3–5, 2014

ρ

`1

`3 `2

p

q

junction edge

free edge

(a)

pred(`)

q1

q2

ρ

q3

p

q4

succ(`)

`(0) `(1)

(b)

Figure 2: (a) A tree-shaped road map with canoni-
cal labeling. While label `1 is horizontal, `2 and `3
are vertical. The white circles represent regular ver-
tices, the black circles junction vertices. (b) Illustra-
tion of the set N(`) for a horizontal label. In that
case N(`) = {q1, q2, q3, q3, pred(`), succ(`)}.

two. Then, for each label its head or tail either co-
incides with a leaf of T , with some internal regular
vertex, or with the head of another label. For an il-
lustration see Fig. 2a, where the tail of the horizontal
label `1 coincides with a regular vertex, the tail of the
vertical label `2 coincides with the leaf q, and the tail
of `3 coincides with the head of `2. Among all optimal
canonical labelings we can further restrict ourselves to
a labeling with smallest number of labels. Hence there
is no label that identifies only a single road segment
and at the same time touches another label.

Using this observation, we determine a finite set of
candidate positions for the heads or tails of labels in
an optimal canonical labeling, and transform T into a
tree T ′ = (V ′, E′) by subdividing some of T ’s edges so
that it contains a vertex for every candidate position.
To that end we construct for each vertex v ∈ V a
chain of tightly packed vertical labels, which starts
at E(v), is directed to ρ, and ends when either the
road ends, or adding the next label does not increase
the number of identified road segments. We construct
such a chain as follows. We place a valid, vertical label
`1 such that t(`1) = E(v); recall that we assume that
the lowest point of each vertical label is its head. For
i = 2, 3, . . . we add a new valid vertical label `i with
t(`i) = h(`i−1), if `i lies on the same road as `i−1, and
`i’s head and tail lie on different road segments. We
use the heads of all those labels to subdivide the tree
T obtaining T ′, i. e., for each head h(`) of a label `
we add a vertex v′ to V ′ embedded at h(`). Since
each chain consists of O(n) labels the cardinality of V ′

is O(n2).

Observation 1 For any canonical labeling L of the
given road map and any label ` ∈ L there exists a
vertex v in the subdivision T ′ of T with E(v) = h(`)
or E(v) = t(`).

For our dynamic programming algorithm we intro-
duce for each vertex p in T ′ a set C(p) of candidate
labels. This set contains all labels of any canonical la-
beling L whose lowest point is E(p). We obtain C(p)
for each vertex p as follows. Let T ′p be the subtree
of T ′ that is rooted at p. If E(p) is free, the set C(p)
contains all valid vertical labels ` that start at E(p)
and that completely lie in E(T ′p), i.e., C(p) is the set
of vertical labels whose lowest point is E(p). If p is a
junction vertex, consider for each free vertex q of T ′p
all valid labels that start at E(q), contain E(p) and lie
completely in E(T ′p). In that case C(p) denotes that
set of labels, i.e., C(p) is the set of horizontal labels
whose lowest point is E(p).

We are now ready to describe our dynamic pro-
gramming algorithm. We create a one-dimensional
table DP, in which we store for each vertex p ∈ V ′

the weight of the optimal solution for the subtree T ′p.
We define the weight as the number of identified road
segments in the subtree. In order to avoid counting
road segments twice that are identified by multiple la-
bels we use an auxiliary table CR, in which we store
for each vertex p ∈ V ′ whether there is a label with
lowest point E(p) that identifies the road segment con-
taining E(p). If so, we set the value of CR[p] = 1. All
entries of CR are initially set to 0.

The algorithm initializes the table entries for all
leaves of T ′ with 0. We then determine the values
of the remaining entries in a bottom-up fashion. For
each vertex p ∈ V ′ for which the entries in DP for all
vertices in T ′p have already been determined, we com-
pute the value of DP[p] as follows. We iterate over
all labels in the set C(p) of candidate labels. When
considering a candidate ` we observe that choosing
it separates the tree T ′p into several independent sub-
trees. For each of these we have already computed an
optimal solution. Hence, we determine for each can-
didate ` the set of vertices in V ′ that are embedded on
`, which we call terminals. The independent subtrees
are themselves rooted at the neighbors of the termi-
nals that are not covered by `. We denote the set of
these roots by N(`). Note that in the case that h(`)
or t(`) are embedded on a vertex of T ′, this vertex is
also the root of one of these independent subtrees.

In principle we are now ready to compute the value
of DP[p], but we need to take special care not to count
already identified road segments again. For this we
introduce the following notation. For a valid label `
we denote the vertex in T ′ that is embedded on the
same edge as t(`) and not covered by ` by pred(`).
Should t(`) be embedded on the same point as a ver-
tex v ∈ V ′ we instead set pred(`) = v. For horizontal
labels we also denote the vertex in T ′ that is embed-
ded on the same edge as h(`) and not covered by `
by succ(`). Should h(`) be embedded on the same
point as a vertex v ∈ V ′ we instead set succ(`) = v.
Now, let c(`) denote the number of road segments
identified by `. Then the value of ` is w(`) = c(`) +

30th European Workshop on Computational Geometry, 2014

∑
q∈N(`) DP[q]−CR[succ(`)]−CR[pred(`)] if ` is hori-

zontal and w(`) = c(`)+
∑

q∈N(`) DP[q]−CR[pred(`)]]

if ` is vertical. Now for each vertex p of T ′, we define

DP[p] := max

{w(`) | ` ∈ C(p)} ∪ {
∑

q child of p

DP[q]}

 .

So far we have not mentioned, how we com-
pute CR[p]. Since we know which label was chosen
for DP[p] we can easily determine whether it covers
the road segment p lies on and set the value of CR[p]
accordingly. Note that this applies only to free ver-
tices; for junction vertices p we always set CR[p] = 0.

A naive implementation of our algorithm has a time
complexity of O(n6) and requires O(n2) space. How-
ever, we can improve these bounds by storing only
parts of T ′ when computing a single entry of DP,
and by computing max{w(`) | ` ∈ C(p)} without
considering C(p) explicitly (details omitted). These
improvements yield the following theorem.

Theorem 2 For a road map with a tree as underly-
ing road graph, MaxIdentifiedRoads can be solved
in O(n3 log n) time using O(n) space.

Besides the primary objective to identify a max-
imum number of road segments, Chirié [1] also sug-
gested several additional secondary objectives, e.g., la-
bels should overlap as few as possible crossroads or
labels should bend as little as possible. Note that
our approach allows us to easily incorporate those
secondary objectives. We just need to adapt w(`)
for ` ∈ L by some penalty. In this case, however, not
all improvements of our algorithm can still be applied.

5 Approximation for General Road Maps

In this section we sketch an approximation algorithm
for MaxIdentifiedRoads on an arbitrary road map,
assuming that we can compute an optimal labeling for
each individual road R separately in polynomial time.
We denote the number of identified road segments of
the optimal labeling of road R by w(R).

We first construct a conflict graph of the roads, i. e.,
we construct a graph G′ = (R, F) where we have for
each road R ∈ R a vertex, and we have an edge be-
tween two vertices if the roads share a common junc-
tion. We then approximate a solution for the entire
road map by computing a weighted maximum inde-
pendent set in the conflict graph G′. We use a re-
sult by Kako et al. [2] who gave an approximation
algorithm for computing maximum weighted indepen-
dent sets in sparse graphs. They introduced the con-
cept of the weighted degree. In our case this means
that for each vertex R ∈ R its weighted degree is
d̄(R) =

∑
R′∈N(R) w(R′)/w(R), where N(R) denotes

the neighbors of R in G′.

Theorem 3 There is an approximation algorithm
for MaxIdentifiedRoads with approximation ratio
1/(d̄w + 1), where d̄w is the average weighted degree
of the graph. This algorithm has a time complexity of
O(∆3 · |R| log |R|+A(R)), where ∆ is the maximum
degree of the graph and A(R) is the time required to
obtain individual optimal solutions for all roads in R.

Heuristically, we can improve the algorithm by iter-
atively applying it to the remaining unlabeled roads,
ensuring that we do not produce conflicts with already
placed labels.

The results of Theorems 2 and 3 imply that we
can approximate MaxIdentifiedRoads in O(∆3 ·
|R| log |R| + |R| · n3 log n) = O(|R| · n3 log n) time if
each road in R is a tree.

Initial experiments seem to suggest that for real-
world instances the weighted degree d̄w is small and
that most roads are paths or trees of small size.

6 Conclusions

We investigated the problem of labeling road maps
and showed that it is NP -hard in general, but can be
solved in polynomial time for trees, and there exists
an approximation algorithm for the general case.

As next step, we aim to develop further exact and
approximation algorithms for other kinds of road net-
works. Additionally, we are planning to implement
our algorithms and evaluate their performance on real
world networks.

References

[1] F. Chirié. Automated Name Placement With High
Cartographic Quality: City Street Maps. Cart. and
Geo. Inf. Science, 27(2):101–110, 2000.

[2] A. Kako, T. Ono, T. Hirata, and M. M. Halldórsson.
Approximation algorithms for the weighted indepen-
dent set problem in sparse graphs. Discr. Appl. Math.,
157(4):617–626, 2009.

[3] D. Lichtenstein. Planar formulae and their uses. SIAM
J. Comput., 11(2):329–343, 1982.

[4] G. Neyer and F. Wagner. Labeling Downtown. In Al-
gorithms and Complexity, volume 1767 of LNCS, pages
113–124. Springer, 2000.

[5] S. Seibert and W. Unger. The Hardness of Placing
Street Names in a Manhattan Type Map. In Algo-
rithms and Complexity, volume 1767 of LNCS, pages
102–112. Springer, 2000.

[6] A. Wolff, L. Knipping, M. van Kreveld, T. Strijk, and
P. K. Agarwal. A simple and efficient algorithm for
high-quality line labeling. In Innovations in GIS VII:
GeoComputation, chapter 11, pages 147–159. Taylor &
Francis, 2000.

[7] A. Wolff and T. Strijk. The Map Labeling Bibliog-
raphy. http://liinwww.ira.uka.de/bibliography/

Theory/map.labeling.html, 2009.

