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Abstract. Algorithms or target functions for graph clustering rarely admit quality guar-
antees or optimal results in general. Based on properties of minimum-cut trees, a clustering
algorithm by Flake et al. does however yield such a provable guarantee, which ensures the
quality of bottlenecks within the clustering. We show that the structure of minimum-s-t-
cuts in a graph allows for an efficient dynamic update of minimum-cut trees, and present a
dynamic graph clustering algorithm that maintains a clustering fulfilling this quality quaran-
tee, and that effectively avoids changing the clustering. Experiments on real-world dynamic
graphs complement our theoretical results.

1 Introduction

Graph clustering has become a central tool for the analysis of networks in general, with applications
ranging from the field of social sciences to biology and to the growing field of complex systems. The
general aim of graph clustering is to identify dense subgraphs in networks. Countless formalizations
thereof exist, however, the overwhelming majority of algorithms for graph clustering relies on
heuristics, e.g., for some NP-hard optimization problem, and do not allow for any structural
guarantee on their output. For an overview and recent results on graph clustering see, e.g., [2, 1]
and references therein. Inspired by the work of Kannan et al. [8], Flake et al. [3] recently presented
a clustering algorithm which does guarantee a very reasonable bottleneck-property. Their elegant
approach employs minimum-cut trees, pioneered by Gomory and Hu [5], and is capable of finding
a hierarchy of clusterings by virtue of an input parameter. There has been an attempt to dynamize
this algorithm, by Saha and Mitra [12, 11], however, we found it to be erroneous. We are not aware
of any other dynamic graph-clustering algorithms in the literature.

Our Contribution. In this work we develop the first correct algorithm that efficiently and dy-
namically maintains a clustering for a changing graph as found by the method of Flake et al. [3],
allowing arbitrary atomic changes in the graph, and keeping consecutive clusterings similar (a
notion we call temporal smoothness). Our algorithms build upon partially updating an interme-
diate minimum-cut tree of a graph in the spirit of Gusfield’s [6] simplification of the Gomory-Hu
algorithm [5]. We show that, with only slight modifications, our techniques can update entire min-
cut trees. We corroborate our theoretical results on clustering by experimentally evaluating the
performance of our procedures compared to the static algorithm on a real-world dynamic graph.

This paper is organized as follows. We briefly give our notational conventions and one funda-
mental lemma in Sec. 1. Then, in Sec. 2, we revisit some results from [5, 6, 3], convey them to a
dynamic scenario, and derive our central results. In Section 3 we give actual update algorithms,
which we analyse in Sec. 4, concluding in Sec. 5.

Preliminaries and Notation. Throughout this work we consider an undirected, weighted graph
G = (V,E, c) with vertices V , edges E and a non-negative edge weight function c, writing c(u, v)
as a shorthand for c({u, v}) with u ∼ v, i.e., {u, v} ∈ E. We reserve the term node (or super-node)
for compound vertices of abstracted graphs, which may contain several basic vertices; however, we
identify singleton nodes with the contained vertex without further notice. Dynamic modifications
of G will solely concern edges; the reason for this is, that vertex insertions and deletions are trivial
as long as the vertex is disconnected. Thus, a modification of G always involves edge {b, d}, with
c(b, d) = ∆, yielding G⊕ if {b, d} is newly inserted into G, and G	 if it is deleted from G. For
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simplicity we will not handle changes to the weight of an edge, since this can be done almost
exactly as deletions and additions. Bridge edges in G require special treatment when deleted or
inserted. However, since they are both simple to detect and to deal with, we ignore them by
assuming the dynamic graph to stay connected at all times.

The minimum-cut tree T (G) = (V,ET , cT ) of G is a tree on V and represents for any node pair
{u, v} ∈

(
V
2

)
a minimum-u-v-cut θu,v in G by the cheapest edge on the unique path between u and

v in T (G). Neither must this edge be unique, nor T (G). For b, d ∈ V we always call this path γ (as
a set of edges). An edge eT = {u, v} of T induces the cut θu,v in G, sometimes denoted θv if the
context identifies u. We sometimes identify eT with the cut it induces in G. For details on min-cut
trees, see the pioneering work by Gomory and Hu [5] or the simplifications by Gusfield [6].

A contraction of G by N ⊆ V means replacing set N by a single super-node η, and leaving
η adjacent to all former adjacencies u of vertices of N , with edge weight equal to the sum of all
former edges between N and u. Analogously we can contract by a set M ⊆ E. A clustering C(G) of
G is a partition of V into clusters Ci, usually conforming to the paradigm of intra-cluster density
and inter-cluster sparsity. We start by giving some fundamental insights, which we will rely on in
the following, leaving their rather basic proofs to the reader.

Lemma 1. Let e = {u, v} ∈ ET be an edge in T (G).
Consider G⊕: If e /∈ γ then e is still a min-u-v-cut with weight c(θe). If e ∈ γ then its cut-weight

is c(θe)+∆, it stays a min-u-v-cut iff ∀u-v-cuts θ′ in G that do not separate b, d: c(θ′) ≥ c(θe)+∆.
Consider G	: If e ∈ γ then e remains a min-u-v-cut, with weight c(θe) −∆. If e /∈ γ then it

retains weight c(θe), it stays a min-u-v-cut iff ∀u-v-cuts θ′ in G that separate b, d: c(θ′) ≥ c(θe)+∆.

2 Theory

2.1 The Static Algorithm
Finding communities in the world wide web or in citation networks are but example applications
of graph clustering techniques. In [3] Flake et al. propose and evaluate an algorithm which clusters
such instances in a way that yields a certain guarantee on the quality of the clusters. The authors
base their quality measure on the expansion of a cut (S, S̄) due to Kannan et al. [8]:

Ψ =

∑
u∈S,v∈S̄ w(u, v)

min{|S|, |S̄|}
(expansion of cut (S, S̄)) (1)

The expansion of a graph is the minimum expansion over all cuts in the graph. For a clustering C,
expansion measures both the quality of a single cluster C, quantifying the clearest bottleneck within
C, and the goodness of bottlenecks defined by cuts (C, V \ C). Inspired by a bicriterial approach
for good clusterings by Kannan et al. [8], which bases on the related measure conductance 1, Flake
et al. [3] design a graph clustering algorithm that, given parameter α, asserts the following:2

c(C, V \ C)
|V \ C|︸ ︷︷ ︸

intercluster cuts

≤ α ≤ c(P,Q)
min{|P |, |Q|}︸ ︷︷ ︸
intracluster cuts

∀C ∈ C ∀P,Q 6= ∅ P ·∪Q = C (2)

Algorithm 1: Cut-Clustering

Input: Graph G = (V,E, c), α
Vα := V ∪ {t}1

Eα := E ∪ {{t, v} | v ∈ V }2

cα|E := c, cα|Eα\E := α3

Gα := (Vα, Eα, cα)4

T (Gα) := min-cut tree of Gα5

T (Gα)← T (Gα)− t6

C(G)← components of T (Gα)7

These quality guarantees—simply called quality in the
following—are due to special properties of min-cut trees,
which are used by the clustering algorithm, as given in
Alg. 1 (comp. [3]). It performs the following steps: Add
an artificial node t to G, and connect t to all other ver-
tices by weight α. Then, compute a min-cut tree T (Gα)
of this augmented graph. Finally, remove t and let the re-
sulting connected components of T define the clustering.
In the following, we will call the fact that a clustering
1 conductance is similar to expansion but normalizes cuts by total incident edge weight instead of the

number of vertices in a cut set.
2 The disjoint union A ∪B with A ∩B = ∅ is denoted by A ·∪B.



can be computed by this procedure the invariant. For the
proof that Cut-Clustering yields a clustering that obeys Eq. (2), we refer the reader to [3].
Flake at al. further show how nesting properties of min cuts [4] can be used to avoid computing
the whole min-cut tree T and try to only identify those edges of T incident with t. Their rec-
ommendation for finding these edges quickly, is to start with separating high degree nodes from
t. Furthermore they show that this property yields a whole clustering hierarchy, if α is scaled.
In the following we will use the definition of Gα = (Vα, Eα, cα), denoting by G	

α and G⊕
α the

corresponding augmented and modified graphs. For now, however, general G⊕(	) are considered.

A Dynamic Attempt. Saha and Mitra [12] published an algorithm that aims at the same goal
as our work. Unfortunately, we discovered a methodical error in this work. Roughly speaking,
it seems as if the authors implicitly assume an equivalence between quality and the invariant. A
full description of issues is beyond the scope of this work, but we briefly point out errors in the
authors’ procedures and give counter-examples in the Appendix. These issues, alongside correct
parts, are further scrutinized in-depth by Hartmann [7].

2.2 Minimum-Cut Trees and the Gomory-Hu Algorithm

We briefly describe the construction of a min-cut tree as proposed by Gomory and Hu [5] and
simplified by Gusfield [6]. Although we will adopt ideas of the latter work, we first give Gomory
and Hu’s algorithm (Alg. 2) as the foundation.

Algorithm 2: Gomory-Hu (Minimum-Cut Tree)

Input: Graph G = (V, E, c)
Output: Min-cut tree of G
Initialize V∗ := {V }, E∗ := ∅ and c∗ empty and tree T∗(G) := (V∗, E∗, c∗)1

while ∃S ∈ V∗ with |S| > 1 do // unfold all super-nodes2

{u, v} ← arbitrary pair from
`

S
2

´
3

forall Sj ∼ S in T∗(G) do Nj ← subtree of S with Sj ∈ Nj4

GS = (VS , ES , cS) := in G contract each subtree Nj to node ηj // subtree contraction5

(U, VS \ U)← min-u-v-cut in GS , weight δ, u ∈ U6

Su ← S ∩ U , and Sv ← S ∩ (VS \ U) // split S = Su ·∪Sv7

V∗ ← (V∗ \ {S}) ∪ {Su, Sv}, E∗ ← E∗ ∪ {{Su, Sv}}, c∗(Su, Sv)← δ8

forall former edges ej = {S, Sj} ∈ E∗ do9

if ηj ∈ U then ej ← {Su, Sj} // either reconnect Sj to Su10

else ej ← {Sv, Sj} // or reconnect Sj to Sv11

return T∗(G)12

The algorithm builds the min-cut tree of a graph by iteratively finding min-u-v-cuts for vertices
that have not yet been separated by a previous min-cut. The intermediate min-cut tree T∗(G) =
(V∗, E∗, c∗) (or simply T∗ if the context is clear) is initialized as an isolated, edgeless super-node
containing all original nodes (line 1). Then, until no node S of T∗ contains more than one vertex,
a node S is split. To this end, nodes Si 6= S are dealt with by contracting in G whole subtrees
Nj of S in T∗, connected to S via edges {S, Sj}, to single nodes ηj (line 5) before cutting, which
yields GS—a notation we will continue using in the following. The split of S into (Su, Sv) is then
defined by a min-u-v-cut in GS (line 6). Afterwards, Nj is reconnected, again by Sj , to either Su

or Sv depending on which side of the cut ηj , containing Sj , ended up. It is crucial to note, that
this cut in GS can be proven to induce a min-u-v-cut in G.

An execution GH = (G, F,K) of Gomory-Hu is characterized by graph G, sequence F of
n − 1 step pairs (compare to line 3) of nodes and sequence K of split cuts (compare to line 6).
Pair {u, v} ⊆ V is a cut pair of edge e of cut-tree T if θe is a min-u-v-cut in G.

Theorem 1. Consider a set M ⊆ ET and let T◦(G) = (V◦,M, c◦) be T (G) with ET \M contracted.
Let f and f ′ be sequences of the elements of M and ET \ M , respectively, and k and k′ the



corresponding sequences of edge-induced cuts of G. The Gomory-Hu execution GH = (G, f ′ ·
f, k′ · k)3 has T◦(G) as intermediate min-cut tree (namely after f).

In the following we will denote by T◦ an intermediate min-cut tree which serves as a starting
point, and by T∗ a working version. We prove The. 1 by induction on the edges in f ′ · f , however,
for the sake of brevity we move the full proof to App. A. This theorem states that if for some
reason we can only be sure about a subset of the edges of a min-cut tree, we can contract all
other edges to super-nodes and consider the resulting tree T◦ as the correct intermediate result of
some GH, which can then be continued. One such reason could be a dynamic change in G, such
as the insertion or the deletion of an edge, which by Lem. 1 maintains a subset of the old min-
cuts. Thus we could already design an effort-saving algorithm for dynamically updating min-cut
trees: contract all those edges of T (G) which might not be valid any more, yielding T◦(G⊕(	)), as
depicted in Figure 1, and start a run of Gomory-Hu with this intermediate min-cut tree.

. . .b dp2 p3 pz−1

(a) T◦ by contracting all edges of γ in T (G)

. . .

b dp2 p3 pz−1

(b) T◦ by contracting all edges of ET \ γ

Fig. 1. Sketches of intermediate min-cut trees T◦; for G⊕ (a) we contract γ to a node, and for G	 (b) we
contract each connected component induced by ET \ γ, yielding a path of nodes.

2.3 Using Arbitrary Minimum Cuts in G

Gusfield [6] presented an algorithm for finding min-cut trees which avoids complicated contraction
operations. In essence he provided rules for adjusting iteratively found min-u-v-cuts in G (instead
of in GS) that potentially cross, such that they are consistent with the Gomory-Hu procedure and
thus non-crossing, but still minimal. We need to review and generalize some of these ideas as to
fit our setting. The following lemma essentially tells us, that at any time in Gomory-Hu, for any
edge e of T◦ there exists a cut pair of e in the two nodes incident to e.

Lemma 2 (Gus. [6], Lem. 44). Let S be cut into Sx and Sy, with {x, y} being a cut pair (not
necessarily the step pair). Let now {u, v} ⊆ Sx split Sx into Sxu and Sxv, wlog. with Sy ∼ Sxu in
T∗. Then, {x, y} remains a cut pair of edge {Sy, Sxu} (we say edge {Sx, Sy} gets reconnected). If
x ∈ Sxv, i.e., the min-u-v-cut separates x and y, then {u, y} is also a cut pair of {Sxu, Sy}.

In the latter case of Lem. 2, we say that pair {x, y} gets hidden, and, in the view of vertex y, its
former counterpart x gets shadowed by u (or by Su). It is not hard to see that during Gomory-
Hu, step pairs remain cut pairs, but cut pairs need not stem from step pairs. However, each edge
in T has at least one cut pair in the incident nodes. We define the nearest cut pair of an edge in
T∗ as follows: As long as a step pair {x, y} is in adjacent nodes Sx, Sy, it is the nearest cut pair of
edge {Sx, Sy}; if a nearest cut pair gets hidden in T∗ by a step of Gomory-Hu, as described in
Lem. 2 if x ∈ Sxv, the nearest cut pair of the reconnected edge {Sy, Sxu} becomes {u, y} (which
are in the adjacent nodes Sy, Sxu). The following theorem basically states how to iteratively find
min-cuts as Gomory-Hu, without the necessity to operate on a contracted graph.

Theorem 2 (Gus. [6], The. 25). Let {u, v} denote the current step pair in node S during some
GH. If (U, V \ U), (u ∈ U) is a min-u-v-cut in G, then there exists a min-u-v-cut (US , VS \ US)
of equal weight in GS such that S ∩ U = S ∩ US and S ∩ (V \ U) = S ∩ (VS \ US), (u ∈ US).

Being an ingredient to the original proof of Theorem 2, the following Lem. 3 gives a constructive
assertion, that tells us how to arrive at a cut described in the theorem by inductively adjusting
a given min-u-v-cut in G. Thus, it is the key to avoiding contraction and using cuts in G by
rendering min-u-v-cuts non-crossing with other given cuts.
3 The term b · a denotes the concatenation of sequences b and a, i.e., a happens first.
4 This lemma is also proven in [6] and [5], we thus omit a proof.



Lemma 3 (Gus. [6], Lem. 15). Let (Y, V \ Y ) be a min-x-y-cut in G (y ∈ Y ). Let (H,V \H)
be a min-u-v-cut, with u, v ∈ V \ Y and y ∈ H. Then the cut (Y ∪H, (V \ Y )∩ (V \H)) is also a
min-u-v-cut.

Given a cut as by Theorem 2, Gomory and Hu state a simple mechanism which reconnects a
former neighboring subtree Nj of a node S to either of its two split parts (lines 9-11 in Alg. 2),
by the cut side on which the contraction ηj of Nj ends up. In contrast, to establish reconnection
when avoiding contraction, this criterion is not available, as Nj is not handled en-block. For this
purpose, Gusfield iteratively defines representatives r(Si) ∈ V of nodes Si of T∗. Starting with an
arbitrary vertex as r({V }), step pairs in Si must then always include r(Si), with the second vertex
becoming the representative of the newly split off node Sj . For a suchlike run of Gomory-Hu,
Gusfield shows (using Lem. 2 iteratively) that for two adjacent nodes Su, Sv in any T◦, r(Su), r(Sv)
is a cut pair of edge {Su, Sv}, and, most importantly his Theorem 3: For u, v ∈ S let any min-u-
v-cut (U, V \ U), u ∈ U , in G split node S into Su 3 u and Sv 3 v and let (US , V \ US) be this
cut adjusted via Lem. 3 and Theorem 2; then a neighboring subtree Nj of S, formerly connected
by edge {S, Sj}, lies in US iff r(Sj) ∈ U . Since we intend to work with arbitrary intermediate
min-cut trees as in Theorem 1, we do not have representatives and thus need to adapt Gusfield’s
Theorem 3, namely using nearest cut pairs as representatives, in order to finally enable a simplified
construction of min-cut trees. The proof of the following theorem can be found in App. A.

Theorem 3 (comp. Gus. [6], The. 35). In any T∗ of a GH, suppose {u, v} ⊆ S is the next
step pair, with subtrees Nj of S connected by {S, Sj} and nearest cut pairs {xj , yj}, yj ∈ Sj. Let
(U, V \ U) be a min-u-v-cut in G, and (US , V \ US) its adjustion. Then ηj ∈ US iff yj ∈ U .

2.4 Finding and Shaping Minimum Cuts in the Dynamic Scenario
In this section we let graph G change, i.e., we consider the addition of an edge {b, d} or its deletion,
yielding G⊕ or G	. First of all we define valid representatives of the nodes on T◦. By Lem. 1 and
Theorem 1, given an edge addition, T◦ consists of a single super-node and many singletons, and
given edge deletion, T◦ consists of a path of super-nodes; for examples see Fig. 1.

Definition 1 (Representatives in T◦).
Edge addition: Set singletons to be representatives of themselves; for the only super-node S choose
an arbitrary r(S) ∈ S.
Edge deletion: For each node Si, set r(Si) to be the unique vertex in Si which lies on γ in T (G).
New nodes during algorithm, and the choice of step pairs: On a split of node S during the algorithm,
require the step pair to be {r(S), v} with an arbitrary v ∈ S, v 6= r(S). Let the split be S =
Sr(S) ·∪Sv, v ∈ Sv, then define r(Sr(S)) := r(S) and r(Sv) := v.

Consider edge additions; singletons in T◦ trivially are their own representatives. Since no sin-
gleton gets split, the single super-node S gets split first, and thus only needs representatives for its
parts thereafter, which are defined by the step pair, see below. With edge deletions, according to
Lem. 1 each node of T◦ contains a vertex that lies on γ in the old T (G), with the edges connecting
these vertices being correct min-cuts in G	(see Fig. 1(b)), they thus are nearest cut pairs. By
Lem. 2 the representatives of new nodes as defined above always define nearest cut pairs. Thus,
in the case of edge additions, choosing an arbitrary step pair in S at the start is feasible.

Following Theorem 1, we define the set M of “good” edges of the old tree T (G), i.e., edges
that stay valid due to Lem. 1, as M := ET \ γ for the insertion of {b, d} and to M := γ for the
deletion. Let the intermediate cut-tree T◦(G⊕(	)) be T (G) contracted by M . As above, let f be
any sequence of the edges in M and k the corresponding cuts in G.

Lemma 4. Given an edge addition (deletion) in G. The Gomory-Hu execution GH⊕(	) =
(G⊕(	), f⊕(	) · f, k⊕(	) · k) is feasible for G⊕(	) yielding T◦(G) as the intermediate min-cut tree
after sequence f , if f⊕(	) and k⊕(	) are feasible sequences of step pairs and cuts on T◦(G⊕(	)).

5 This Lemma alongside Lemma 3, Theorem 2 and a simpler version of our Theorem 3 have been discussed
in [6] and both lemmas also in [5], we thus only prove both theorems together in the Appendix.



As Lem. 4 describes a specific variant of the setting in The. 1, it also relies on induction on the
split cuts in k, see App. A for its proof. It is the basis of our updating algorithms, founded on T◦’s
as in Fig. 1, using arbitrary cuts in G⊕(	) instead of actual contractions. Still, the non-crossing
nature of min-u-v-cuts allows for more effort-saving and temporal smoothness.

Definition 2 (Treetop and Wood). Consider edge e = {u, v} off γ, and cut θ = (U, V \ U)
in G induced by e in T (G) with γ contained in U . In the contracted graph G	(S), S ∩ (V \ U) is
called the treetop ⇑e, and S ∩ U the wood #e of e. The subtrees of S are Nb and Nd, containing
b and d, respectively (see Fig. 2 for an example).

Cuts That Can Stay. There are several circumstances which imply that a previous cut is
still valid after a graph modification, making its recomputation unnecessary. The following three
lemmas all give such assertions. Their proofs mostly rely on properties of Gomory-Hu-executions
and on Lemma 1, they can be found in App. A.

Lemma 5. Suppose emin is the cheapest edge on γ. In G⊕, emin still induces a min-b-d-cut.

Lemma 6. In G	, let (U, V \ U) be a min-u-v-cut not separating {b, d}, with γ in V \ U . Then,
a cut induced by an edge {g, h} of the old T (G), with g, h ∈ U , remains a min separating cut for
all its previous cut pairs within U in G	, and a min g-h-cut in particular.

Lemma 7. Assume g ∈ V on γ and {yb, g}, {yd, g} ∈ γ, and let wlog. c({yb, g}) ≤ c({yd, g}). Let
further {u, v} be an edge within ⇑{g,h} (or {g, h} itself) in T (G). If cT ({u, v}) ≤ cT ({yb, g})−∆
in the old tree, then, in G	, {u, v} also induces a min-u-v-cut.

As a corollary from Lem. 6 we get that in T (G	) the entire treetops of reconfirmed edges of T (G)
are also reconfirmed. Cuts that can be retained save effort and encourage smoothness; however
new cuts can also be urged to behave well, as follows.

b

d

. . .
. . .

⇑A

]ANb Nd

⇑B

v

u

e

θ′

θ

]B

]e

⇑e

r

Fig. 2. Special parts of G	: γ (fat) connects b and d, with r on
it; wood ]e and treetop ⇑e (dotted) of edge e, both cut by θ′

(dashed), adjusted to θ (solid) by Lem. 9. Both ]e and ⇑e are
part of some node S, with representative r, outside subtrees
of r are Nb and Nd (dash-dotted). Compare to Fig. 1(b).

The Shape of New Cuts. In con-
trast to the above lemmas, during
a Gomory-Hu execution for G	, we
might find an edge {u, v} of the old
T (G) that is not reconfirmed by a com-
putation in G	, but a new, cheaper
min-u-v-cut θ′ = (U, V (S)\U) is found.
For such a new cut we can still make
some guarantees on its shape to resem-
ble its “predecessor”: Lemmas 8 and 9
tell us, that for any such min-u-v-cut
θ′, there is a min-u-v-cut θ = (U\ ⇑e

, (V (S) \ U)∪ ⇑e) in G	 that (a) does
not split ⇑e, (b) but splits V \ ⇑e ex-
actly as θ′ does. Figure 2 illustrates
such cuts θ (solid) and θ′ (dashed).

Lemma 8. Given e = {u, v} within S (off γ) in G	(S). Let (⇑A,⇑B) be a cut of ⇑e with v ∈⇑A.
Then c	(Nb∪ ⇑e, Nd ∪#e) ≤ c	(Nb∪ ⇑A, Nd ∪#e∪ ⇑B). Exchanging Nb and Nd is analogous.

Lemma 9. Lem. 8 can be generalized in that both considered cuts also cut the wood #e in some
arbitrary but fixed way.

The proof of the above lemmas is rather technical, but conceptually it relies on the fact that if a
cut which splits the treetop were cheaper, then this treetop cannot have been valid in the previous
tree. While theses lemmas can be applied in order to retain treetops, even if new cuts are found,



in the following, we take a look at how new, cheap cuts can affect the treetops of other edges. In
fact a similar treetop-conserving result can be stated.

Let G′ denote an undirected, weighted graph and {r, v1, . . . , vz} a set of designated vertices
in G′. Let Π := {P1, . . . , Pz} be a partition of V \ r such that vj ∈ Pj . We now assume the
following partition-property to hold: For each vj it holds that for any vj-r-cut θ′j := (Rj , V \ Rj)
(with r ∈ Rj), the cut θj := (Rj \ Pj , (V \ Rj) ∪ Pj) is of at most the same weight. The crucial
observation is, that Lem. 9 implies this partition-property for r(S) and its neighbors in T (G) that
lie inside S of T◦ in G	. Treetops thus are the sets Pj . However, we keep things general for now.

Consider a min-vi-r-cut θ′i := (Ri, V \ Ri), with r ∈ Ri, that does not split Pi and an analog
min-vj-r-cut θ′j (by the partition-property they exist). We distinguish three cases, given in Fig. 3,
which yield the following possibilities of reshaping min-cuts:

vi vj

r Rj V \RjRiV \Ri

Pi Pj

(a) θ′i separates vj , r, and θ′j
separates vi, r

vi vj

r
Rj V \RjRiV \Ri

Pi
Pj

(b) θ′i does not separate vj , r,
but θ′j separates vi, r

vi
vj

r
Rj V \RjRiV \Ri

Pi
Pj

(c) neither does θ′i separate
vj , r, nor θ′j vi, r

Fig. 3. Three different cases concerning the positions of θ′i and θ′j (black, dashed), and their adjustments.

Case (a): As cut θ′i separates vj and r, and as vj satisfies the partition-property, the cut
θi := (Ri \ Pj , (V \ Ri) ∪ Pj) (red dashed) has weight c(θi) ≤ c(θ′i) and is thus a min-vi-r-cut,
which does not split Pi ∪ Pj . For θ′j an analogy holds.

Case (b): For θ′j Case (a) applies. Furthermore, by Lem. 3 the cut θnew(j) := (Ri ∩ Rj , (V \
Ri) ∪ (V \ Rj)) (green dotted) is a min-vj-r-cut, which does not split Pi ∪ Pj . By Lem. 2 the
previous split cut θ′i turns out to be also a min-vi-vj-cut, as θnew(j) separates vi and r.

Case (c): As in case (b), by Lem. 3 the cut θnew(i) := ((V \ Rj) ∪ Ri, (V \ Ri) ∩ Rj) (green
dotted) is a min-vi-r-cut, and the cut θnew(j) := ((V \ Ri) ∪ Rj , (V \ Rj) ∩ Ri) (green dotted) is
a min-vj-r-cut. These cuts do not cross. So as vi and vj both satisfy the partition-property, cut
θi := (((V \Rj)∪Ri)\Pi, ((V \Ri)∩Rj)∪Pi) and θj := (((V \Ri)∪Rj)\Pj , ((V \Rj)∩Ri)∪Pj)
(both red dashed) are non-crossing min separating cuts, which neither split Pi nor Pj .

To summarize the cases discussed above, we make the following observation.

Observation 1 During a GH starting from T◦ for G	, whenever we discover a new, cheaper
min-vi-r(S)-cut θ′ (vi ∼ r(S) in node S) we can iteratively reshape θ′ into a min-vi-r(S)-cut θ
which neither cuts ⇑i nor any other treetop ⇑j (vi ∼ r(S) in S), by means of Cases (a,b,c).

3 Update Algorithms for Dynamic Clusterings
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Fig. 4. T◦(G
	
α ) for an inter-cluster deletion, t’s

neighbors off γ need inspection. The cuts of vb and
vd are correct, but they might get shadowed.
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Fig. 5. T◦(G
	
α ) for an intra-cluster deletion, edge

{vb,d, t} defines a treetop (t’s side). The dashed cut
could be added to Θ by Alg. 5 (line 8).

In this section we put the results of the previous sections to good use and give algorithms for
updating a min-cut tree clustering, such that the invariant is maintained and thus also the quality.



It is important to see that it is not necessary to maintain a full min-cut tree to determine the
induced clustering. By concept, we merely need to know all vertices of T (G) adjacent to t; we call
this set W = {v1, . . . , vz}∪ {vb, vd}, with {vb, vd} being the particular vertex/vertices on the path
from t to b and d, respectively. We call the corresponding set of non-crossing min-vi-t-cuts that
isolate t, Θ. We will thus focus on dynamically maintaining only this information, and sketch out
how to unfold the rest of the min-cut tree. From Lem. 4, for a given edge insertion or deletion, we
know T◦, and we know in which node of T◦ to find t, this is the node we need to examine. We now
give algorithms for the deletion and the insertion of an edge running inside or between clusters.

Algorithm 3: Inter-Cluster Edge Deletion

Input: W (G), Θ(G) G	
α = (Vα, Eα \ {{b, d}}, c	α ),

edge {b, d} with weight ∆
Output: W (G	), Θ(G	)
L(t)← ∅, l(t)← ∅1

for i = 1, . . . , z do2

Add vi to L(t) // old cut-vertices3

D(vi)← ∅ // shadows4

Θ(G	)← {θb, θd} , W (G	)← {vb, vd}5

return Check Cut-Vertices6

( W (G), Θ(G),W (G	), Θ(G	), G	
α , {b, d}, D, L(t) )

Edge Deletion. Our first algorithm
handles inter-cluster deletion (Alg. 3).
Just like its three counterparts, it
takes as an input the old graph G
and its sets W (G) and Θ(G) (not the
entire min-cut tree T (Gα)), further-
more it takes the changed graph, aug-
mented by t, G	

α , the deleted edge
{b, d} and its weight ∆. Recall that
an inter-cluster deletion yields t on
γ, and thus, T◦(Gα) contains edges
{vb, t} and {vd, t} cutting off the sub-
trees Nb and Nd of t by cuts θb, θd, as
shown in Fig. 4. All clusters contained in node S 3 t need to be changed or reconfirmed. To
this end Algorithm 3 lists all cut vertices in S, v1, . . . , vz, into L(t), and initializes their shadows
D(vi) = ∅. The known cuts θb, θd are already added to the final list, as are vb, vd (line 5). Then
the core algorithm, Check Cut-Vertices is called, which—roughly speaking—performs those
GH-steps that are necessary to isolate t, of course, using (most of) the lemmas derived above.

Algorithm 4: Check Cut-Vertices

Input: W (G), Θ(G), W (G	), Θ(G	), G	
α , {b, d}, D, L(t)

Output: W (G	), Θ(G	)
while L(t) has next element vi do1

θi ← first min-vi-t-cut given by FlowAlgo(vi, t) // small side for vi2

if c	α (θi) = cα(θold
i ) then // retain old cuts of the same weight3

Add θold
i to l(t) // pointed at by vi4

else // new cheaper cuts5

Add θi to l(t) // pointed at by vi6

while L(t) has next element vj 6= vi do // test vs. other new cuts7

if θi separates vj and t then // vj shadowed by Lem. 38

Move vj from L(t) to D(vi)9

if l(t) 3 θj, pointed at by vj then Delete θj from l(t)10

while L(t) has next element vi do // make new cuts cluster-preserving11

set (R, Vα \R) := θi with t ∈ R for θi ∈ l(t) pointed at by vi // just nomenclature12

θi ← (R \ Ci, (Vα \R) ∪ Ci) // by partition-property (Lem. 9)13

forall vj ∈ D(vi) do // handle shadowed cuts ...14

θi ← (R \ Cj , (Vα \R) ∪ Cj) // ...with Cases (a) and (b)15

forall vj 6= vi in L(t) do // handle other cuts ...16

θi ← (R ∪ Cj , (Vα \R) \ Cj) // ...with Case (c)17

Add all vertices in L(t) to W (G	), and their cuts from l(t) to Θ(G	)18

return W (G	), Θ(G	)19

First of all, note that if |C| = 2 (C = {Nb, Nd} and S = {t}) then L(t) = ∅ and Alg. 3 lets
Check Cut-Vertices (Alg. 4) simply return the input cuts and terminates. Otherwise, it iterates



the set of former cut-vertices L(t) once, thereby possibly shortening it. We start by computing a
new min-vi-t-cut for vi. We do this with a max-vi-t-flow computation, which is known to yield all
min-vi-t-cuts [10], taking the first cut found by a breadth-first search from vi (lines 2). This way we
find a cut which minimally interferes with other treetops, thus encouraging temporal smoothness.
If the new cut is non-cheaper, we use the old one instead, and add it to the tentative list of cuts
l(t) (lines 3-4). Otherwise we store the new, cheaper cut θi, and examine it for later adjustment.
For any candidate vj still in L(t) that is separated from t by θi, Case (a) or (b) applies (line 8).
Thus, vj will be in the shadow of vi, and not a cut-vertex (line 9). In case vj has already been
processed, its cut is removed from l(t).

Once all cut-vertex candidates are processed, each one either induces the same cut as before, is
new and shadows other former cut-vertices or is itself shadowed by another cut-vertex. Now that
we have collected these relations, we actually apply Cases (a,b,c) and Lem. 9 in lines 11-17. Note
that for retained, old cuts, no adjustment is actually performed here. Finally, all non-shadowed
cut-vertices alongside their adjusted cuts are added to the final lists, and those returned.

Next we look at intra-cluster edge deletion. Looking at our starting point T◦, the safe path
γ lies within some cluster Cb,d, which does not help much. In this case, t lies off γ, and thus
there is an edge {vb,d, t}, with vb,d ∈ Cb,d, which defines a treetop containing all other former
clusters and t, see Fig. 5. Algorithm 5 has the same in- and output as Algorithm 3, and starts
by finding a new first min-t-vb,d-cut. If this yields that no new, cheaper t-vb,d-cut exists, then, by
Lem. 6, we are done (line 2). Otherwise, we can at least adjust θb,d such that it does not interfere
with any former cluster Ci by Lem. 9, as Ci is part of a treetop (lines 5-6); note that Cb,d can
not necessarily be preserved. Then we prepare the sets L(t), l(t), Θ(G	),W (G	) in lines 7-11.
Check Cut-Vertices now performs the same tasks as for Inter-Cluster Edge Deletion:
it separates all cut-vertex candidates from t in a non-intrusive manner; note that this excludes
vb,d (line 9), as Cb,d is no treetop, and thus defies the adjustments. After line 12 we have one

Algorithm 5: Intra-Cluster Edge Deletion

Input: W (G), Θ(G), G	
α = (Vα, Eα \ {{b, d}}, c	α ), edge {b, d} with weight ∆

Output: W (G	), Θ(G	) regarding G	
θb,d ← first min-t-vb,d-cut given by FlowAlgo(t, vb,d) // small side for t1

if c	α (θb,d) = cα(θold
b,d) then // no cheaper cut found2

return W (G), Θ(G) // retain clustering3

else // a new cut should retain treetops4

set (R, Vα \R) := θb,d with t ∈ R // just nomenclature5

forall Ci 6= Cb,d do θb,d := (R ∪ Ci, (Vα \R) \ Ci) // by Lem. 96

L(t)← ∅, l(t)← ∅7

Θ(G	)← {θb,d}, W (G	)← {vb,d}8

for i = 1, . . . , z do // not including vb,d9

Add vi to L(t)10

D(vi)← ∅11

W (G	), Θ(G	)← Check Cut-Vertices ( W (G), Θ(G), W (G	), Θ(G	), G	
α , {b, d}, D, L(t) )12

W (G	)←W (G	) ∪ vb,d, Θ ← Θ ∪ {θb,d}13

Resolve all crossings in Θ(G	) by Lem. 314

Isolate the sink t from all remaining unclustered vertices15

return W (G	), Θ(G	)16

min-vb,d-t-cut that leaves its treetop untouched, but might cut Cb,d, and a new set Θ(G	) of non-
crossing min-vi-t-cuts (with some former vj ∈ W (G) possibly having become shadowed), which
might, however, also cut through Cb,d. Putting all these cuts and cut-certices into Θ(G	) and
W (G	), we can now apply Lem. 3 (using t as “x”), to make all cuts non-crossing. Note that this
can also result in shadowing vb,d as in Case (b) (dotted cut). Finally, some vertices from the former
cluster Cb,d might then still remain unclustered, i.e., not separated from t by any θ ∈ Θ(G	). For
clustering these vertices v we cannot do better than proceeding as usual: compute their set of
min-v-t-cuts and render them non-crossing by Lem. 3, possibly shadowing one another or some
previous cut θ. We refrain from detailing the latter steps.



Edge Addition. The good news for handling G⊕ is, that an algorithm Intra-Cluster Edge
Addition need not do anything, but return the old clustering: By Lem. 1 and Theorem 1, in
T◦, only path γ is contracted. But since γ lies within a cluster, the cuts in Gα, defining the old
clustering, all remain valid in G⊕

α , as depicted in Fig. 7 with dotted clusters and affected node S.
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Fig. 7. T◦(G
⊕
α ) for an intra-cluster addition. All rel-

evant min-v-t-cuts persist.

By contrast, adding an edge between clusters is more demanding. Again, γ is contracted, see
region S in Fig. 6; however, t lies on γ in this case. A sketch of what needs to be done resembles
the above algorithms: We compute new min-vb-t- and min-vd-t-cuts (or possibly only one, if it
immediately shadows the other in line 12, in Alg. 6), and keep the old vi-t-cuts. Then—proceeding
as usual—we note which cuts shadow which others and reconnect nodes by Theorem 3. Similar
to Alg. 5, the two new cuts may leave a “wild” set of vertices from the previous subtrees Nb, Nd,
where crossings still have to be removed (via Lem. 3) in the end, and leftover vertices must be
separated from t from scratch. We leave the pseudo-code to App. B.

Updating Entire Min-Cut Trees. An interesting topic on its own right and more fundamental
than clustering, is the dynamic maintenance of min-cut trees. In fact the above clustering algo-
rithms are surprisingly close to methods that update min-cut trees. Since all the results from Sec. 2
still apply, we only need to unfold whatever treetops or subtrees of t—which we gladly accept as
super-nodes for the purpose of clustering—and take care to correctly reconnect subtrees. This
includes, that merely examining the neighbors of t does not suffice, we must iterate through all
nodes Si of T◦. For the sake of brevity we must omit further details on such algorithms and refer
the interested reader to [7].

4 Performance of the Algorithm

Temporal Smoothness. Our secondary criterion—which we left unformalized—to preserve as
much of the previous clustering as possible, in parts synergizes with effort-saving, an observation
foremost reflected in the usage of T◦. Lemmas 6 and 9, using first cuts and Observation 1 nicely
enforce temporal smoothness. However, in some cases we must cut back on this issue, e.g., when
we examine which other cut-vertex candidates are shadowed by another one, as in line 8 of Alg. 4.
Here it entails many more cut-computations and a combinatorially non-trivial problem to find an
ordering of L(t) to optimally preserve old clusters. Still we can state the following lemma:
Lemma 10. Let C(G) fulfill the invariant for G	, i.e., let the old clustering be valid for G	. In the
case of an inter-cluster deletion, Alg 3 returns C(G). For an intra-cluster deletion Alg. 5 returns
a clustering C(G	) ⊇ C(G) \ Cb,d, i.e., only Cb,d might become fragmented.
The proof for both cases relies on the fact that any output clustering differing in cluster Ci requires
at least one min-vi-t-cut (vi ∈ Ci) to separate b, d, invalidating C(G). Both proofs can be found in
App. A. Considering the remaining cases, intra-cluster addition obviously retains a valid previous
clustering; however, for inter-cluster addition no strong assertion can be made.

Running Times. We universally express running times of our algorithms in terms of the number
of necessary max-flow computations, leaving open how these are done. A summary of tight bounds
is given in Tab. 1. The columns lower bound/upper bound denote bounds for the—possibly rather



common—case that the old clustering is still valid after some graph update. As discussed in the
last subsection, the last column (guaran. smooth) states whether our algorithms always return the
previous clustering, in case its valid; the numbers in brackets denotes a tight lower bound on the
running time, in case our algorithms do find that previous clustering.

worst case
old clustering still valid

lower bound upper bound guaran. smooth

Inter-Del |C(G)| − 2 |C(G)| − 2 |C(G)| − 2 Yes

Intra-Del |C(G)|+ |Cb,d| − 1 1 |C(G)|+ |Cb,d| − 1 No (1)

Inter-Add |Cb|+ |Cd| 1 |Cb|+ |Cd| No (2)

Intra-Add 0 0 0 Yes

Table 1. Bounds on the number of max-flow calculations.

For Inter-Del (Alg. 3) we require at most |C(G)|−2 cuts, separating t from all (no shadowing)
neighbors, except vb and vd (comp. Fig. 4). Since this is exactly what happens in case the old
clustering remains valid, the other bounds are equal and we know we will find the old clustering.
Algorithm 5 (Intra-Del) needs to examine all clusters within t’s treetop (being treetops them-
selves), and potentially all vertices in Cb,d—even if the previous clustering is retained, e.g., with
every vertex shadowing the one cut off right before, and pair vb,d, t getting hidden. Obviously, we
attain the lower bound if we cut away vb,d from t, directly preserving Cb,d and the entire treetop
of t. For Inter-Add (Alg. 6), we potentially end up separating every single vertex in Cb ∪Cd from
t, one by one, even if the previous clustering is valid, as, e.g., vb might become shadowed by some
other v ∈ Cb ∪ Cd, which ultimately yields the upper bound. In case the previous clustering is
valid, however, we might get away with simply cutting off vb and vd at once, alongside their former
clusters. This means, there is no guarantee that we return the previous clustering; still, with two
cuts (vb-t and vd-t), we are quite likely to do so. Row Intra-Add is obvious. Note that a computa-
tion from scratch (static algorithm) entails a tight upper bound of |V | max-flow computations for
all four cases, in the worst case.

Further Speed-Up. For the sake of brevity we omit a few ideas for effort-saving in the pseudo-
code. Apart from the minor Lemmas 5 and 7, one heuristic is to decreasingly order vertices in the
list L(t), e.g., in line 10 of Alg. 5 or in line 3 of Alg. 3; for their static algorithm Flake et al. [3]
found that this effectively reduces the number of cuts necessary to compute before t is isolated.

Since individual min-u-v-cuts are constantly required, another dimension of effort-saving lies in
dynamically maintaining max-u-v-flows. In fact there are techniques for doing this, two of which
we briefly mention here, but leave to read up in [7] and references therein, for readers interested
in a detailed description, since that is beyond the scope of this work. Given an initial max-u-v-
flow and a graph modification, Kohli and Torr [9] present a method for dynamically maintaining
max-u-v-flows that first adjusts the residual graph in a special way, such that the flow is still valid,
and then use any augmenting-path flow algorithm on this residual graph. Another approach is to
build up a topologically ordered DAG on vertex subsets of G, directed from u to v. The nodes of
this DAG consist of the strongly connected components in the residual graph of a max-u-v-flow,
as described by Picard and Queyranne [10]. This DAG can be used to manage all min-u-v-cuts,
and can efficiently be updated. Actual effort-saving by these methods depends on the dynamics,
in particular hidden step pairs and shadowing prevents strong assertions.

Experiments In this brief section, we very roughly describe some experiments we made with
an implementation of the update algorithms described above, just for a first proof of con-
cept. The instance we use is a network of e-mail communications within the Fakultät für
Informatik at Universität Karlsruhe. Vertices represent members and edges correspond to e-
mail contacts, weighted by the number of e-mails sent between two individuals during the
last 72 hours. We process a queue of 12 560 elementary modifications, 9 000 of which are ac-
tual edge modifications, on the initial graph G shown in Figure 8 (|V | = 310, |E| = 450).



This queue represents about one week, starting on Saturday (21.10.06); a spam-attack lets the
graph slightly grow/densify over the course. We delete zero-weight edges and isolated nodes.

Fig. 8. Initial real world e-mail
graph, color-clustered.

Following the recommendations of Flake et al. [3] we choose
α = 0.15 for the initial graph, yielding 45 clusters, see Fig. 8 for an
illustration. We compare their static algorithm (see Sec. 2.1) and
our dynamic algorithm in terms of the number of max-flow compu-
tations necessary to maintain the clustering. For the 9 000 proper
steps, static computation needed 2 080 897 max-flows, and our dy-
namic update needed 198 790, saving more than 90% max-flows,
such that in 96% of all modifications, the dynamic algorithm was
quicker. Surprisingly, inter-cluster additions have the greatest im-
pact on effort-saving, followed by the trivial intra-cluster additions.
By contrast, both deletion operations only mildly outperform the
static algorithm. Out of the 9 000 total operations, 49 of the inter-
cluster, and 222 of the intra-cluster deletions are the only ones,
where the static algorithm happens to be quicker. See App. C for
details on these results.

5 Conclusion

We have proven a number of results on the nature of min-u-v-cuts in changing graphs, which allow
for feasible update algorithms of a minimum-cut tree. In particular we have presented algorithms
which efficiently update specific parts of such a tree and thus fully dynamically maintain a graph
clustering based on minimum-cut trees, as defined by Flake et al. [3] for the static case, under
arbitrary atomic changes. The striking feature of graph clusterings computed by this method is
that they are guaranteed to yield a certain expansion—a bottleneck measure—within and between
clusters, tunable by an input parameter α. As a secondary criterion for our updates we encourage
temporal smoothness, i.e., changes to the clusterings are kept at a minimum, whenever possible.
Furthermore, we disprove an earlier attempt to dynamize such clusterings [12, 11]. Our experiments
on real-world dynamic graphs affirm our theoretical results and show a significant practical speedup
over the static algorithm of Flake et al. [3]. Future work on dynamic minimum-cut tree clusterings
will include a systematic comparison to other dynamic clustering techniques and a method to
dynamically adapt the parameter α.
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Appendix

A Omitted Proofs

Proof (of Theorem 1). The proof uses induction on the n − 1 edges in f ′ · f . The edges are
regarded as step pairs in a Gomory-Hu execution GH. The set M ⊆ ET denotes the step pairs
already applied in the execution, and T∗(G) = (V∗, E∗, c∗) denotes the current working version of
the intermediate min-cut tree.

Induction base case: Gomory-Hu starts with a single node S containing V , such that V∗ = {V }
and E∗ = ∅. The contracted graph GS thus equals G as nothing is contracted yet with M = ∅.
Therefore, T∗ corresponds to a T◦ that is formed by contracting ET \M = ET in T (G).

Now take the first pair {u, v}1 of f ′ · f as a step pair for the algorithm. Since the current split
node is S = {V }, {u, v}1 is a valid step pair in S. At the same time {u, v}1 represents an edge in
T (G) and therefore induces a min-u-v-cut (U, V \ U) in G = GS as a valid split cut, with u ∈ U .
By splitting and replacing S = V by Su = U and Sv = V \ U connected with a new edge, we get
an intermediate min-cut tree T∗ with V∗ = {Su, Sv} = {U, (V \ U)} and E∗ = {{Su, Sv}}. The
only edge in T∗ created by the step pair {u, v}1, has weight cT ({u, v}1) = c(U, V \ U). So after
one iteration the intermediate min-cut tree T∗ exactly corresponds to T◦ formed by contracting
all edges of ET \M in T (G), with M = {{u, v}1}, fulfilling our claim. Note, that the step pair
{u, v}1 is not hidden until now.

Induction hypothesis: We now assume the following: The first w pairs {u, v}1, . . . , {u, v}w in
f ′ · f are valid step pairs regarding the various split nodes S, and the related edge-induced cuts
in G are valid split cuts regarding the various contracted graphs GS . The current intermediate
min-cut tree T∗(G) after these w iterations exactly corresponds to T◦(G) formed by contracting
all edges of ET \M ′, with M ′ = {u, v}1, . . . , {u, v}w being the set of the first w step pairs in f ′ ·f .
Furthermore we assume that none of the step pairs in M ′ is hidden yet.

Induction step: Let nodes u, v constitute the next step pair {u, v}w+1 in f ′ · f with split node
S. The related cut (U, V \ U) in G induced by the edge {u, v}w+1 in T∗, with u ∈ U , serves as
the current split cut. We first need to show, that this cut is also a min-u-v-cut in the current
contracted graph GS . Let N(j) denote the set of vertices in a subtree Nj of the current split node
S. Then the current contracted graph GS results from G by contracting the set N(j) in G for all
subtrees of S. The cut (U, V \U) induced by the edge {u, v}w+1 is a min-u-v-cut in G. Moreover,
it does not separate any two vertices g and h lying in the same set Nj, as otherwise the edge
{u, v}w+1 would lie on the unique path γg,h from g to h in T (G), contradicting the assumption
that g and h belong to the same subtree of S.Thus the cut (U, V \U) is also a min-u-v-cut in the
contracted graph GS and hence is a valid split cut for the (w + 1)-th iteration.

Now we can prove that after splitting and replacing the current split node S and after re-
connecting the subtrees of S the resulting intermediate min-cut tree T∗(G), i.e., the intermediate
min-cut tree after w+1 iterations, again corresponds to T◦(G) formed by contracting T (G) by the
edges ET \M ′, with M ′ = {{u, v}1, . . . , {u, v}w+1} being the set of the first w+1 step pairs in f ′ ·f .
To this end we show that none of the step pairs {{u, v}1, . . . , {u, v}w}, which created the edges of
the previous intermediate min-cut tree, gets hidden by the splitting of S. However, since these step
pairs directly correspond to edges in T (G) it immediately follows that they never get separated.
As the new edge {Su, Sv} in T∗(G) is created by the step pair {u, v}w+1, which represents an edge
in T (G), and as all other step pairs in M ′ = {{u, v}1, . . . , {u, v}w} also represent edges in T (G)
as well as in T∗(G) (by the induction hypothesis), none of the step pairs {{u, v}1, . . . , {u, v}w}
gets separated by the split cut related to {u, v}w+1. Therefore, after w + 1 iterations, the new
intermediate min-cut tree T∗(G) exactly corresponds to T◦(G) formed by contracting all edges of
ET \M ′ in T (G), with M ′ = {{u, v}1, . . . , {u, v}w+1} being the set of the first w + 1 step pairs in
f ′ · f .



Proof (of Theorem 3). This proof uses induction on the subtrees of a split node S in an intermediate
min-cut tree T∗(G) and shows constructively that there always exists a split cut (US , VS \ US) in
GS as described in Theorem 2, which is by the way also a min-u-v-cut in G and does not split any
subtree of S. Furthermore, the proof shows that the two sides of this split cut pick the subtrees as
described. For each subtree Nj of S the connecting edge ej = {S, Sj} induces the min-yj-xj-cut
θj := (N(j), V \Nj) in G, with yj ∈ N(j). As it holds that S ⊂ V \N(j), for each subtree Nj the
step pair {u, v} lies on the V \N(j)-side of the minimum yj-xj-cut θj induced by the connection
edge ej (see Figure 9). Now let (U, V \U) denote an arbitrary minimum u-v-cut in G, with u ∈ U.
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Fig. 9. Intermediate min-cut tree T?(G) with subtrees N1, . . . , N6 and nearest cut pairs
{x2, y1}, . . . , {x6, y6}.

Induction base case: We apply Lemma 3 to θ1 and (U, V \ U) and get a minimum u-v-cut
(U1, V \ U1), with u ∈ U1, that does not separate any vertices in N(1) and splits V \ N(1) the
same way as (U, V \ U) does. So, as it holds that S ⊆ V \ N(1), also S gets split the same way,
and we get

S ∩ U1 = S ∩ U

and S ∩ V \ U1 = S ∩ V \ U.

With y1 ∈ N(1), by Lemma 3, we further get

N(1) ∪ U = U1 if y1 ∈ U and
N(1) ∪ (V \ U) = V \ U1 otherwise, i.e., if y1 ∈ V \ U,

and therefore, it holds that N(1) ⊆ U1 if and only if y1 ∈ U. Thus this induces that the related sides
of (U1, V \U1) and (U, V \U) only differ in N(1), i.e., U1 \N(1) = U \N(1) and (V \U1) \N(1) =
(V \ U) \N(1).

Induction hypothesis: We now assume the cut (Uz, V \Uz) to be a minimum u-v-cut in G, with
u ∈ Uz, that does not separate any vertices in any subtree Nj , j = 1, . . . , z, and splits V the same
way as (U, V \ U) does. More precisely, we assume that it holds that

S ∩ Uz = S ∩ U

and S ∩ V \ Uz = S ∩ V \ U.

and that N(j) ⊆ Uz if and only if yj ∈ U for j = 1, . . . , z, while the related sides of (Uz, V \ Uz)
and (U, V \ U) only differ in the sets N(j), j = 1, . . . , z. More formally, this is,

Uz \ {N(j)|j = 1, . . . , z} = U \ {N(j)|j = 1, . . . , z} and
(V \ U1) \ {N(j)|j = 1, . . . , z} = (V \ U) \ {N(j)|j = 1, . . . , z}.



Induction step: We apply Lemma 3 to cut θz+1 = (N(z +1), V \N(z +1)), which is induces by
the connection edge ez+1 = {S, Sz+1} of subtree Nz+1, and cut (Uz, V \Uz). So we get a minimum
u-v-cut (Uz+1, V \Uz+1), with u ∈ Uz+1, that does not separate any vertices in N(z +1) and splits
V \N(z + 1) the same way as (Uz, V \Uz) does. So, as it holds that S ⊆ V \N(z + 1), also S gets
split the same way, and we get

S ∩ Uz+1 = S ∩ Uz =
induction hypothesis

S ∩ U

and S ∩ V \ Uz+1 = S ∩ V \ Uz =
induction hypothesis

S ∩ V \ U.
(3)

With yz+1 ∈ N(z + 1), by Lemma 3, we further get

N(z + 1) ∪ Uz = Uz+1 if yz+1 ∈ Uz and
N(z + 1) ∪ (V \ Uz) = V \ Uz+1 otherwise, i.e., if yz+1 ∈ V \ Uz,

and therefore, it holds that N(z +1) ⊆ Uz+1 if and only if yz+1 ∈ Uz. As, by induction hypothesis,
the related sides of (Uz, V \Uz) and (U, V \U) do not differ in N(z + 1), if follows that yz+1 ∈ Uz

if and only if yz+1 ∈ U, and therefore, it holds that

N(z + 1) ⊆ Uz+1 if and only if yz+1 ∈ U. (4)

Furthermore, as a consequence of Lemma 3 it holds that the related sides of (Uz+1, V \ Uz+1)
and (Uz, V \Uz) only differ in N(z+1), i.e., Uz+1\N(z+1) = U\N(z+1) and (V \Uz+1)\N(z+1) =
(V \ Uz) \N(z + 1). So for all sets N(j), j = 1, . . . , z, it follows that N(j) ⊆ Uz+1 if and only if
N(j) ⊆ Uz. By induction hypothesis and (4) we finally get for j = 1, . . . , z + 1

N(j) ⊆ Uz+1 if and only if yj ∈ U. (5)

So with Assertion (3) and Assertion (5) we finally proved the existence of a minimum u-v-cut in
G that splits S the same way as (U, V \ U) does, and that does not separate any vertices of any
subtree of S. It is easy o see that such a minimum u-v-cut is also a minimum u-v-cut in graph
G(S), which results from G by contracting all subtrees of S. So Theorem 2 and Theorem 3 are
both proven true.

Proof (of Lemma 4). The Gomory-Hu execution GH⊕(	), by definition, uses the same sequence k
of split cuts as execution GH does, which considers the graph G and reaches T◦(G) as intermediate
min-cut tree after the application of k. Therefore, execution GH⊕(	) also has T◦(G) as intermediate
min-cut tree on condition that k represents a feasible sequence of split cuts concerning the modified
graph G⊕(	). This then implies f to be a feasible sequence of step pairs. Similar to the proof of
Theorem 1, this proof uses induction on the split cuts in k.

Induction base case: The execution GH⊕(	) starts with the first split cut induced by the first
edge {u, v}1 in f. As the first split cut is applied to the contracted graph G

⊕(	)
S = G⊕(	), and

{u, v}1 ∈M induces a minimum u-v-cut in G⊕(	) (by the choice of M and Corollary 1), the first
split cut is feasible.

Induction hypothesis: We now assume the split cuts induced by the edges {u, v}2, . . . , {u, v}z
in f to be feasible regarding the various contracted graphs G

⊕(	)
S in z − 1 further iterations.

Induction step: Consider the next split cut induced by the edge {u, v}z+1 in f, which constitutes
the step pair in the current split node S. For the following argumentation we need to distinguish
the cases of edge addition and edge deletion.

Edge addition (M = ET \ γ): If it holds for the modified vertices b and d that {b, d} 6⊆ S,
it follows that G

⊕(	)
S = GS in this iteration, as the modified edge {b, d} then is contracted

(Note that b and d never lie in different subtrees of S, as the edges on γ, which correspond to
the cuts that separate b and d, are not included in M, and f respectively). With G

⊕(	)
S = GS

the current split cut is feasible.



If it holds that {b, d} ⊆ S, the contracted graph G
⊕(	)
S results from GS by the addition of the

edge e⊕ = {b, d} and, as the edge {u, v}z+1 cannot lie on the path γ, the current split cut does
not separate b and d. So, as the current split cut is a minimum u-v-cut in GS , by Lemma 1
the current split cut also represents a minimum u-v-cut in G⊕

S and hence is feasible.
Edge deletion (M = γ): As all split cuts considered so far separate the modified vertices b
and d, the current intermediate min-cut tree is a path of nodes with b included in the first
and d included in the last node. So if the current split node S includes b (the case when it
includes d is symmetric), then S has only one subtree, which includes d. If S includes neither
b nor d, then S has exactly two subtrees, with b and d in different subtrees. In both cases the
graph G	

S results from GS by the deletion of the edge e	 = {b, d}. Furthermore, the current
split cut must separate b and d, as the edge {u, v}z+1 lies on path γ. So, as the current split
cut is a minimum u-v-cut in GS , by Lemma 1 the current split cut also represents a minimum
u-v-cut in G	

S and hence is feasible.

As the remaining step pairs and split cuts in f⊕(	) and k⊕(	) are defined as arbitrary valid
sequences, and as such sequences always exist, the assertion of the lemma is proven.

Proof (of Lemma 5). Let θ be the cut induced by emin; then in G⊕ it has weight c⊕(θ) = c(θ)+∆.
Suppose now θ′ is b-d-cut with c⊕(θ′) < c⊕(θ). Since θ′ must cut edge {b, d} in G⊕, its weight in
G is c(θ′) ≤ c⊕(θ′)−∆. This yields c(θ′) < c(θ), a contradiction to emin’s minimality for G.

Proof (of Lemma 6). Consider the min-u-v-cut (U, V \ U) in G	 to be the first split cut of GH,
with step pair {u, v}. As the cut does not separate {b, d}, wlog. let b, d ∈ V \ U . Let {U} be the
next split node of GH, such that b and d are contracted into ηV \U in G	

U . Since for any step pair
within U , {b, d} are not separated, by the correctness of Gomory-Hu and Lemma 1, any previous
min-g-h-cut is still valid in G	. Furthermore, Lemma 2 asserts that previous cut pairs within U
also stay valid.

Proof (of Lemma 7). By Lemma 1 {yb, g}, {yd, g} stay valid min-cuts in G	. A GH starting
with step pairs {yb, g}, {yd, g} yields a path of nodes Nb, Sg, Nd as an intermediate cut tree, with
u, v ∈ Sg. Suppose there is a cheaper u-v-cut θ′ than that of {u, v}, then by Lemma 1 θ′ must
separate b and d and thus cut {yb, g} or {yd, g}. But then θ′ is cheaper than c({yb, g})−∆ (and than
c({yd, g})−∆) and either violates that (Nb, V \Nb) remains a min-yb-g-cut or that (Nd, V \Nd)
remains a min-yd-g-cut; a contradiction.

Proof (of Lemma 8). We prove this lemma regarding the subtree Nb by contradiction. The proof
regarding the subtree Nd is symmetric. We show that the cut θ := (⇑A, N(b) ∪ N(d) ∪ ] ∪ ⇑B),
which differs from θ′b in the set N(b), would be cheaper in G than the edge-induced minimum
u-v-cut θmin := (⇑, N(b)∪N(d)∪ ]) in G, which differs from θb in the set N(b), if θ′b was cheaper
than θb.

So we assume that c	(θb) > c	(θ′b). As the cuts θ and θmin both do not separate the modified
vertices b and d, each of them is of the same weight in G	(S), G	 and G, by Lemma 1. Here we
consider the weights in G	 and get

c	(θmin) = c	(θb)− c	(N(b), N(d) ∪ ]) + c	(N(b),⇑) and
c	(θ) = c	(θ′b)− c	(N(b), N(d) ∪ ] ∪ ⇑B) + c	(N(b),⇑A)

With (N(d) ∪ ]) ⊆ (N(d) ∪ ] ∪ ⇑B) and ⇑A⊆⇑ it holds that

c	(N(b), N(d) ∪ ]) ≤ c	(N(b), N(d) ∪ ] ∪ ⇑B) and
c	(N(b),⇑) ≥ c	(N(b),⇑A)

So with the assumption that c	(θb) > c	(θ′b) we finally get

c	(θmin)− c	(θ) = [c	(θb)− c	(θ′b)]
− [c	(N(b), N(d) ∪ ])− c	(N(b), N(d) ∪ ] ∪ ⇑B)]
+ [c	(N(b),⇑)− c	(N(b),⇑A)] > 0

This contradicts the fact that the edge-induced u-v-cut θmin is a minimum u-v-cut in graph G.



Proof (of Lemma 9). Again we prove this lemma regarding the subtree Nb. The proof regarding
the subtree Nd is symmetric. The assertion of this lemma follows by Lemma 8. We express the
cuts θbb and θ′bb with the aid of the cuts θb and θ′b considered in Lemma 8, which just differ in the
set ]A. So we get

c	(θbb) = c	(θb)− c	(]A, N(b)∪ ⇑) + c	(]A, N(d) ∪ ]B) and
c	(θ′bb) = c	(θ′b)− c	(]A, N(b)∪ ⇑A) + c	(]A, N(d) ∪ ]B ∪ ⇑B)

So with c	(θb) ≤ c	(θ′b), by Lemma 8, we finally get

c	(θ′bb)− c	(θbb) = [c	(θ′b)− c	(θb)]
− [c	(]A, N(b)∪ ⇑A)− c	(]A, N(b)∪ ⇑)]
+ [c	(]A, N(d) ∪ ]B ∪ ⇑B)− c	(]A, N(d) ∪ ]B)] ≥ 0

Proof (of Lemma 10). Consider inter-cluster deletion (Alg. 3) first. To return a new clustering
C(G	) different from C(G) the algorithm needs to find a new cheaper min-vi-t-cut for at least
one cut-vertex vi ∈ {v1, . . . , vz}. As the previous clustering is supposed to be also valid for G	,
there must exist another vertex u ∈ Ci that serves as a witness that the cut θi (defining Ci) still
constitutes a min-u-t-cut in the modified graph G	

α . Then there must exists a min-cut tree T (G	
α )

such that the edge-induced minimum vi-t-cut represented in this new min-cut tree gets shadowed
and must not separate the modified vertices b, d. This contradicts Lem. 1, which says that each
new minimum vi-t-cut in G	

α which is cheaper than the previous one in graph Gα needs to separate
the modified vertices b, d.

Considering intra-cluster deletion (Alg. 5), all the above arguments apply to the clusters C(G)\
{Cb,d}. Thus these clusters are again found; however Cb,d might be fragmented in an almost
arbitrary manner.



B Omitted Algorithms

Algorithm 6 gives the pseudo-code for the handling edge additions between clusters. Since its de-
scription is almost analogous to the above algorithms, the only detail we point out is the following.
In line 5 the so called best min-vb-t-cut (or min-vd-t-cut) is used. Consider the situation sketched
out in Fig. 6, and let us choose among all possible min-vb-t-cuts U, V \ U , vb ∈ U (given by some
max-flow). To maximize both the progress in terms of clustering and temporal smoothness, we
chooses a cut that puts as many vertices of the former cluster Cb as possible into U while cutting
away from t as few other cut-vertices as possible.

Algorithm 6: Inter-Cluster Edge Addition

Input: W (G), Θ(G), G⊕
α = (V, E ∪ {{b, d}}), c⊕α , edge {b, d} with weight ∆

Output: W (G	), Θ(G	)
L(t)← {vb, vd}, l(t)← ∅1

D(vb)← ∅, D(vd)← ∅2

W (G⊕)← {v1, . . . , vz}, Θ(G⊕)← {θ1, . . . , θz}3

while L(t) has next element ui do4

θ ← “best cut” given by FlowAlgo(ui, t) // see text5

if c⊕α (θi) = cα(θold
i ) + ∆ then6

Move ui from L(t) to W (G⊕)7

Add θold
i to Θ(G⊕)8

else9

Add θi to l(t) // pointed at by ui10

while L(t) has next element uj 6= ui do11

if θi separates uj and t then12

Delete uj from L(t)13

if l(t) already contains a cut θj pointed at by uj then14

Delete θj from l(t)15

while W (G⊕) has next element vi do16

if θi separates vi and t then17

Delete cut which vi points to from Θ(G⊕)18

Move vi from W (G⊕) to D(ui)19

while L(t) has next element ui do20

(R, Vα \R) := θi, t ∈ R, (cut in l(t) which ui points at)21

forall vertices vj in D(ui) do22

θi ← (R \ Cj , (Vα \R) ∪ Cj) // by Theorem 323

forall vertices vj in W (G⊕) do24

θ ← (R ∪ Cj , (Vα \R) \ Cj) // by Theorem 325

Resolve all crossings in l(t) // by Lem. 326

Add all vertices in L(t) to W (G⊕)27

Add all (non-crossing) cuts in l(t) to Θ(G⊕)28

Isolate t29

return W (G⊕), Θ(G⊕)30



C Experimental Evaluation

Note that updating the clustering after increasing the weight of an edge is done by one of the
new algorithms regarding edge additions. The addition of an edge is considered a special case of
increasing the weight of an edge. Weight decreases are handled analogously. Thus, in the following
we simply talk about intra-cluster and inter-cluster edge additions and edge deletions as the four
elementary modifications.

Figure 10(a) shows the proportions of the elementary modifications regarding the total number
of 9 000 modifying steps. The case occurring most often is, with 54.46%, the addition of an edge
between two different clusters. The inter-cluster edge deletion, by contrast, only occurs 480 times
which corresponds to 5.33%. During the whole experiment the cut-clustering heuristic of Flake et
al. [3] calculates 2 080 897 maximum flows. Our updating algorithms, however, only need 198 790
max-flow calculations. This yields a saving of 1 882 107 max-flow calculations which constitutes
90.45% of effort saving. Figure 10(b) shows the proportions of the elementary modifications re-
garding the total number of 1 882 107 savings. We see that the ratio of the percentaged savings
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Fig. 10. Total number of steps and savings of max-flow calculations.

provided by edge additions to the proportion of the edge additions regarding the number of total
steps is greater than one, while the proportion of edge deletions in Figure10(a) provides a smaller
proportion of the total savings in Figure 10(b). More precisely, the inter-cluster edge additions
are the most efficient modifications, as 54.46% of the total number of steps provide 67.14% of
the saved max-flow computations. So each unit of the inter-cluster edge addition proportion on
average causes 1.23% of all savings. The least efficient modifications are the inter-cluster edge
deletions with 5.33% of all steps gaining only 0.07% of all savings. This corresponds to 0.01% of
all savings on average per unit of the inter-cluster deletion proportion.



D Problems in [12]

This section gives a brief overview of the errors we found in the work of B. Saha and P. Mitra [12].
A preliminary version of this work is [11]. The authors describe four procedures for updating a
clustering and a data structure for the deletion and the addition of intracluster and intercluster
edges. We briefly point out the errors in the authors’ procedure that deals with the addition of
intracluster edges. For a thorough discussion we refer the reader to Hartmann [7]. Algorithm 7

Algorithm 7: Old Inter-Edge Addition

Input: G = (V, E, w), α, C, new edge e⊕ = {b, d}, b ∈ Cb, d ∈ Cd

if intercluster quality of Cd and Cb is maintained then Case 1:1

return C (do nothing)2

else if 2c(Cb,Cd)
|V | ≥ α then Case 2:3

return (C \ {Cb, Cd}) ∪ {{Cb ∪ Cd}} (merge Cb and Cd)4

Case 3 (default): dissolve Cb and Cd and contract all other nodes5

perform adapted Cut-Clustering on this instance6

return (C \ {Cb, Cd}) ∪ {newly formed clusters of nodes from Cb and Cd}7

sketches the approach given in [12] for handling edge additions between clusters. Summarizing we
found that Case 1 does maintain quality but not the invariant. Case 2 maintains both quality and
the invariant if and only if the input fulfills the invariant, however it can be shown that this case is
of purely theoretical interest and extremely improbable. Finally, Case 3 neither maintains quality
nor the invariant. The following subsections illustrate these shortcomings with examples.

A Counter-Example for Case 1 and Case 2 We now give an example instance which the
algorithm given in [12] fails to cluster correctly. The two upper figures (Fig. 11(a),11(b)) show the
input instance, as computed by algorithm Cut-Clustering. In Fig. 11(c), a first edge addition
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(c) Adding edge {1, 6}, 11/4α yields G1 with clus-
tering C(G1) resulting from Case 1 of the inter-
edge-add algorithm
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Fig. 11. A dynamic instance violating the clustering quality. Weights are parameterized by α. After two
modifications to G0 the algorithm returns one cluster which can be cut (dashed) with a cut value that
violates quality.



then triggers Case 1, and thus the clustering is kept unchanged. Note that here, quality is still
maintained. Then in Fig. 11(d) a second edge is added and handled by Case 2, since intercluster
quality is violated (c(C1, C2) = 4α > 3 = α · min{|C1|, |C2|}), and the condition for Case 2 in
Line 3 of the algorithm is fulfilled (2 · 4α/6 > α). Thus the two clusters are merged. In this result
the dashed cut in Fig 11(d) shows an intracluster cut with value c(dashed) = 2.75 ·α < 3 ·α, which
violates intracluster quality, as claimed in Eq. (2).

A Counter-Example for Case 3 Finally we give an example instance which the algorithm given
in [12] fails to cluster correctly due to shortcomings in Case 3.
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Fig. 12. Counter-example for the correctness of Case 3. Figures (a) and (b) describe the graph and the
min-cut tree before edge {2, 12} is inserted. The the edge is added and Figure (c) describes the resulting
construction given in [12], on which Cut-Clustering is then applied, yielding Fig. (d). The result does
neither conform to Eq. (2) nor to what is attempted to be proven in [12].


