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Boundary labeling deals with placing annotations for objects in an image on the boundary of that image.
This problem occurs frequently in situations where placing labels directly in the image is impossible or
produces too much visual clutter. Examples are annotating maps, photos, or technical/medical illustrations.
Previous algorithmic results for boundary labeling consider a single layer of labels along some or all sides of
a rectangular image. If, however, the number of labels is large or the labels are too long, multiple layers of
labels are needed.

In this paper we study boundary labeling for panorama images, where n points in a rectangle R are to be
annotated by disjoint unit-height rectangular labels placed above R in K different rows (or layers). Each point
is connected to its label by a vertical leader that does not intersect any other label. We present polynomial
time algorithms based on dynamic programming that either minimize the number of rows to place all n labels,
or maximize the number (or total weight) of labels that can be placed in K rows for a given integer K. For
weighted labels, the problem is shown to be (weakly) NP-hard, and we give a pseudo-polynomial algorithm to
maximize the weight of the selected labels. We have implemented our algorithms; the experimental results
show that solutions for realistically-sized instances are computed instantaneously. Further, we have also
investigated two-sided panorama labeling, where the labels may be placed above or below the panorama
image. In this model all of the aforementioned problems are NP-hard. For solving them we propose mixed
integer linear program formulations.
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1. INTRODUCTION
Annotating features of interest in images by textual labels or icons is an essential
aspect of information visualization. Depending on application and image content these
labels are either placed directly next to the features within the image or, if partial
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Fig. 1: Panorama labeling for the skyline of Chicago. Photography: c©J. Crocker.

occlusion of the image by labels is unacceptable or if feature density is too high, on
the image boundary. In the first, so-called internal labeling model, which is common,
for example, for placing object names in topographic maps, the association between
feature and label should be clear from the spatial proximity between them. This is
no longer the case in the latter boundary labeling model and hence features and
associated labels are connected to each other using simple arcs. In this paper we
consider a new and practically important boundary labeling variant, motivated by
labeling features in panorama images of, for example, skylines or mountain ranges.
Such labeled illustrations are frequently used for describing landmarks and buildings
at lookout points or in tourist guide books. Moreover, very wide panorama photographs
of streets of houses as used in popular commercial digital road maps are often annotated
by information about local businesses or other points of interest. Another application
in the area of augmented reality is the GeoScope [Brenner et al. 2006] system that
augments camera images by textual information and thereby allows a user to explore a
panorama, for example, the skyline of a city. A common aesthetic requirement in all
these examples is that the labels are placed above a horizon line, for example, in the
area taken up by the sky or simply above the actual image. In other cases, for example,
when annotating events on a time line, a similar labeling scheme is used, where labels
can be placed either above an upper horizon line or below a lower horizon line.

In this paper we present efficient algorithms for optimizing boundary labelings of
such panorama images. Figure 1 shows a labeling in our model: we are given a set
of n feature points (or sites) in a rectangle R and for each point a variable-width but
unit-height open rectangular label (think of the bounding box of the object name written
as a single line of text). In order to achieve at least a horizontal proximity between
points and labels, every label must be placed vertically above its associated feature
point. Each label and its associated site are connected by a vertical line segment, called
leader. Our labeling model, in which the lower edge of a label can slide horizontally
along the upper leader endpoint, can be seen as an extension of the so-called 1-slider
model [van Kreveld et al. 1999]. The algorithmic problem is to select a subset of the
labels and for each selected label compute a label position (that is, a row index and a
horizontal slider position) such that no two labels overlap and no leader intersects any
label other than its own. We consider two basic optimization goals: (i) minimize the
number of rows required to place all labels, and (ii) maximize the number of labels that
can be placed in K rows.

We start with a review of related work on boundary labeling and point out our main
contributions.
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1.1. Related Work
Algorithmic label placement problems have been studied in computational geometry
for more than 20 years now [Formann and Wagner 1991]; a vast body of literature
is collected in the map-labeling bibliography [Wolff and Strijk 1996]. Most of the
literature, however, is concerned with internal label placement as traditionally used in
cartography. Boundary labeling as an alternative labeling model was first introduced
as an algorithmic problem by Bekos et al. [2007] and has subsequently been studied in
various flavors; see also the recent survey by Kaufmann [2009]. We note that in most
boundary labeling problems all labels are placed in only a single row/column.

Different boundary labeling models can be classified by (a) the shape of the leaders, (b)
the sides of R at which labels can be placed, and (c) further restrictions about the labels
such as variable or uniform size, placement in multiple layers etc. Leaders are usually
represented as polygonal lines; we argue that for readability, the leader shape should be
as simple as possible, but also have a contrast high enough to be distinguishable from
the background. Aiming for leader simplicity can be observed as a design goal in most
manually created boundary labelings in practice and it also follows the unambiguity
criterion for external labels proposed by Hartmann et al. [2005]. Leaders of arbitrary
orientation without bends are called straight or type-s leaders. To reduce visual clutter
axis-parallel leaders are often preferred over arbitrary type-s leaders. The shape of an
axis-aligned polygonal leader starting from the feature point is described by a string
over the alphabet {p, o}, where p and o denote, respectively, leader segments parallel
and orthogonal to the side of R containing the label. If a segment is diagonal at a fixed
angle (for example, 45◦), we use the letter d to refer to its orientation. The letters in the
string correspond to the sequence of leader segments, starting from the feature point
and ending at the label port.

Bekos et al. [2007] presented efficient labeling algorithms in the one-, two-, and
four-sided model using type-s, type-po and type-opo leaders. Their main objective was to
minimize the total leader length, but they also presented an algorithm for minimizing
the number of bends in one-sided opo-labeling. Benkert et al. [2009] studied algorithms
for one- and two-sided po- and do-labeling with arbitrary leader-dependent cost functions
(including total leader length and number of bends); the algorithms were implemented
and their performance was evaluated experimentally. Nöllenburg et al. [2010] presented
a po-labeling algorithm for placing boundary labels that can slide along one side of
the boundary so that the total leader length is minimized. Recently, Kindermann et
al. [2013] presented an algorithm that finds a crossing-free po-labeling where the labels
are placed on two adjacent sides of R. In the same paper the authors also extend the
algorithm such that it can handle three and four-sided labelings. Bekos et al. [2010]
presented algorithms for combinations of more general octilinear leaders of types do, od,
and pd and labels on one, two, and four sides of R. For uniform labels the algorithms
are polynomial, whereas the authors showed NP-hardness for a variant involving non-
uniform labels. Recently, Huang et al. [2014] considered the problem of computing
boundary labelings with flexible label positions. They gave several polynomial-time
algorithms for computing one- and two-sided boundary labelings with minimum leader
length or minimum total number of bends.

Extensions of the basic boundary labeling model include algorithms for labeling
area features [Bekos et al. 2010], and a dynamic one-sided po-model, in which the
user can zoom and pan the map view while the label size on the boundary remains
fixed [Nöllenburg et al. 2010]. Relaxing the property that each label is connected
to a unique site leads to the many-to-one model. In this model NP-hardness results,
approximations and heuristics for crossing minimization with type-opo and -po leaders
are known [Hao-Jen Kao 2007]; Lin [2010] presented an approach using duplicate
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labels and opo-hyperleaders to avoid crossings. Bekos et al. [2014] extended the work
in the many-to-one model and gave algorithms and complexity results for using po-
hyperleaders, so-called backbones. Fink et al. [2012] consider the problem of labeling
focus regions on a map by using either straight lines or Bézier curves as leaders.

The only previous work using multiple layers of labels on the boundary presented
O(n4 logH)-time algorithms for label size maximization in a one-sided model with two
or three “stacks” of labels on a vertical side of R and type-opo leaders [Bekos et al. 2006]
(here H is the height of the rectangle R). In the algorithms all labels are assumed to be
of uniform size and a maximum scaling factor is determined such that all labels can be
placed in the available stacks. The authors further gave NP-hardness results for some
two-stack variants of non-uniform labels and opo- or po-leaders.

1.2. Contribution
In our paper we study a one-sided multi-row labeling problem with type-o leaders and
variable-width labels. Note that for comparison with the results of Bekos et al. [2006],
the same model can be transformed into an equivalent multi-stack labeling problem
with variable-height labels; since for textual annotation variable-width labels are more
relevant, we describe the multi-row model. However, we argue that using a multi-
stack (or multi-row) model with opo-leaders exhibits the risk of cluttered drawings.
For example, multiple leaders may squeeze through a narrow gap between two labels
and thus correspondences between points and labels may become unclear. In contrast,
by restricting the leaders to vertical straight-line segments we try to compensate for
the relatively high visual complexity of a multi-row model and to maintain the visual
association.

In Section 2 we introduce our labeling model, in which we place all labels above
the horizon, in more detail and define three optimization problems: MINROW, which
aims to find a labeling with all n labels in the minimum feasible number K? of rows,
MAXLABELS, which maximizes the number of labels placed in K given rows, and
MAXWEIGHT, which considers labels with integer weights, weighted by importance
(with total weight wtotal) and computes a maximum-weight subset of labels for K
rows. Section 3 describes an O(K?n3)-time algorithm for MINROW, an O(Kn3w2

total)-
time algorithm for MAXWEIGHT, and an O(Kn3)-time algorithm for MAXLABELS.
Additionally, we discuss the problem of generating two-sided panorama labelings, where
labels may be placed above and below the respective horizons. In this context, all of the
above mentioned problems are NP-hard and we cannot give efficient algorithms. Instead,
we present mixed-integer linear programming formulations to solve each problem. In
Section 4 we present extensions of the algorithms for practically interesting variations
of the basic problems. We have implemented our algorithms and report results of an
experimental evaluation concerning the performance of the algorithms with respect to
running time and the number rows used or number of placed labels in Section 5.

2. PANORAMA LABELING MODEL
We aim to label a set P = {p1, . . . , pn} of points in the plane, where pi = (xi, yi) ∈ R2 with
corresponding labels L = {l1, . . . , ln}. Each label li is an open, axis-parallel rectangle of
width Wi ∈ R+

0 and height 1. We assume that the points in P have distinct x-coordinates
and the points are ordered from left to right, that is, xi < xi+1 for i = 1, . . . , n − 1.
Moreover, we assume yi < 0 for i = 1, . . . , n meaning that pi lies below the horizontal
line y = 0, which we call the horizon. For our problems, the y-coordinates of the points
in P are irrelevant and we can assume that all points lie on the horizontal line y = −1.
By Pi,j = {pi, . . . , pj} ⊆ P we denote the set of all input points between pi and pj .
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(a) A non-compact (2, 5, 3)-labeling.
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(b) A compact (2, 5, 3)-labeling.

Fig. 2: Examples for a compact and a non-compact (i, j, k)-labeling.

The task of labeling P comprises two subproblems: selecting the labels that are to be
displayed and placing them above the horizon. More formally, we define a (panorama)
labeling L to be the tuple (S, π) where S ⊆ L and π : S → R × N is a mapping that
assigns each label li in S a coordinate (Xi, Yi) where Xi is the real-valued x-coordinate
of the label’s right border and Yi is an integer which allows us to say that the label is
placed in row Yi above the horizon. We also call Xi the x-position of label li.

In order to connect each label li ∈ S with its corresponding point pi ∈ P , we draw a
vertical line segment from (xi, Yi) to (xi, yi); we call this line segment the leader of label
li and point pi.

We say that a labeling L = (S, π) is feasible if it satisfies requirements (F1)–(F3):
(F1) For every label li ∈ S the leader of li actually connects li with pi, that is, Xi−Wi ≤

xi ≤ Xi.
(F2) For every label l ∈ S the leader of l does not intersect any label in S other than l.
(F3) The labels in S do not overlap.
Note that since we consider labels to be open rectangles, strictly speaking, a label is not
connected with its leader if, for example, Xi = xi. However, for the sake of simplicity we
assume that a leader is connected with its label if the requirement stated in (F1) holds.

For a pair (i, j) of indices 1 ≤ i ≤ j ≤ n and a row index k, we define an (i, j, k)-labeling
as a feasible labeling of Pi,j with S = {li, . . . , lj} satisfying
(R1) Yi = Yj = k, that is, both li and lj are in row k, and
(R2) Y` ≤ k for ` = i + 1, . . . , j − 1, that is, the labels for all points between pi and pj

are in row k or below.
We say that an (i, j, k)-labeling L is compact if there is no (i, j, k)-labeling where label
lj has a smaller x-coordinate than in L; we denote the x-coordinate of lj in a compact
(i, j, k)-labeling L as the x-position Xi,j,k of L. If no (i, j, k)-labeling exists we set Xi,j,k =
∞. For an example of (non-)compact (i, j, k)-labelings see Figure 2.

For multi-row boundary labeling there are several possible optimization criteria.
Generally, we want to display as many labels as possible, decrease unused space but
also ensure good readability. Note that these criteria might be conflicting, for example,
putting many labels as close together as possible decreases unused space, but may also
be detrimental for the readability (or more specifically, it may be harder to find the label
corresponding to a specific feature point). Hence, we might want to limit the number of
rows used for displaying labels. However, this may come at the price of fewer displayed
labels than possible. In the following we introduce three optimization problems that we
investigate in this paper.

As a first, and probably most basic, problem we want to find a solution that selects
all labels and uses as few rows as possible.

Problem 2.1 (MINROW). Given a set P of n points below the horizon and a set L of
corresponding labels, find a feasible labeling with all labels that requires the minimum
number of rows.
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Fig. 3: A feasible labeling for n = 5 labels using dn/2e = 3 rows.

A solution to this problem contains all provided information, but might be hard to
read if too many features with corresponding labels are supplied. Nevertheless, there
exists for every instance such a labeling.

LEMMA 2.2. For each MINROW instance with n points there exists a feasible labeling
with dn/2e rows and for each n ∈ N there exists a MINROW instance with n points that
requires dn/2e rows.

PROOF. We begin by showing the first part of Lemma 2.2, that is, we show that
for each MINROW instance with n points, there exists a feasible labeling with dn/2e
rows. We label all points in P as in Figure 3, that is, for i = 1, . . . , dn/2e we set
Yi = i and Xi = xi; for i = dn/2e + 1, . . . , n we set Yi = n − i + 1 and Xi = xi + Wi.
Clearly, requirement (F1) holds. Requirement (F2) holds since for i = 1, . . . , n− 1 and
j = i + 1, . . . , n label lj lies above Yi if j ≤ dn/2e and to the right of xi if j > dn/2e.
Requirement (F3) holds since each row either contains a single label or two labels li, lj
with i ≤ dn/2e < j. In the latter case li lies to the left of lj since the right boundary of li
is Xi = xi, the left boundary of lj is Xj −Wj = xj , and i < j implies xi < xj . To show
that dn/2e rows may be required let pi = (i,−1) and Wi = n for i = 1, . . . , n. Since the
distance between p1 and pn is n− 1 at most two labels fit in one row.

Obviously, solutions as the one in Figure 3 are rather useless in practice—when
placing no more than two labels in a single row the required space to display all labels
becomes huge. If the horizontal distances between the points are small and the labels
are wide, however, we will fail to find a better solution. Therefore, a natural alternative
to MINROW is to discard some labels if the available space is limited. If we are restricted
to a certain number of rows, then a sensible optimization goal is to maximize the number
of displayed labels.

Problem 2.3 (MAXLABELS). Given a set P of n points below the horizon, a corre-
sponding set L of labels, and a positive integer K, determine a feasible labeling that
displays the maximum number of labels in at most K rows.

However, by simply maximizing the number of labels we might fail to measure
the quality of a labeling appropriately. We should account for the fact that often some
objects are more important than others and thus should have a higher priority to become
labeled. This can be expressed with weighted points and yields our third optimization
problem.

Problem 2.4 (MAXWEIGHT). Given a set P of n points below the horizon, a corre-
sponding set L of labels, a positive integer K, and a positive integer weight wi for each
point pi ∈ P , find a feasible labeling L = (S, π) that maximizes the total weight

∑
li∈S wi

among all feasible labelings that use at most K rows.

3. ALGORITHMS
In this section we describe our algorithms to solve the problems MINROW, MAXWEIGHT,
and MAXLABELS. For MINROW and MAXLABELS we give polynomial-time algorithms,
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while we show that MAXWEIGHT is weakly NP-hard by a reduction from the PARTITION
problem; we give a pseudo-polynomial time algorithm in this case.

We begin this section with a simple algorithm that decides for a given panorama
labeling instance whether there exists a valid labeling in a single row, that is, whether
MAXLABELS has a solution with n labels for K = 1.

3.1. Single-Row
Before we describe our algorithm for MINROW in Section 3.2, we briefly discuss the
following single-row label placement problem, which serves as a base case for MINROW.

Problem 3.1 (SINGLEROW). Given a set P of n points below the horizon and a label
for each point, decide whether there is a feasible labeling for P with all labels in a
single row above the horizon.

Bekos et al. [2008] considered a similar problem, more specifically, they considered
the problem of computing a boundary labeling of points on a horizontal line. However,
they allow that the leaders have bends and optimize the total leader length or the
number of total bends, where we require that the leaders are connected with the labels
with a single vertical line.

The SINGLEROW problem is closely related to a single-machine job scheduling prob-
lem, where n ordered jobs J1 < · · · < Jn with processing times zi and release and due
times ri and di are to be non-preemptively scheduled in the given order such that all
jobs finish before their due times. The weighted version of this problem is known as
single-machine throughput maximization [Arkin and Silverberg 1987] and has been
related to one-dimensional weighted point labeling problems before [Poon et al. 2003;
Bekos et al. 2008]. Note that for our problem the property that the scheduling is non-
preemptive (that is, no job is interrupted) is crucial since each job corresponds to a label,
and each label is displayed either completely or not at all.

SINGLEROW can be solved with a simple greedy algorithm, which we denote as
SingleRowAlg. The algorithm processes the points in increasing x-order and places the
next label li in the leftmost possible position such that it does not intersect the previous
label, that is, Xi = max{Xi−1 +Wi, xi}. If for any i we have Xi > xi +Wi, then obviously
no feasible single-row labeling exists (requirement (F1) violated), the algorithm reports
failure and returns∞. Otherwise it reports success and returns the position Xn of the
last label. The correctness of SingleRowAlg is immediate and for sorted points it takes
linear time.

COROLLARY 3.2. If the input points are sorted by their x-coordinates, SINGLEROW
can be solved in O(n) time.

Using SingleRowAlg we can compute the x-positions Xi,j,1 of all compact (i, j, 1)-
labelings in O(n2) time by running it n times, once for every set Pi,n, where i = 1, . . . , n.
If there is a feasible position for placing label lj (j ≥ i) in the instance Pi,n, we store its
x-position Xj as the x-position Xi,j,1. If there is no feasible position we set Xi,j,1 =∞.

3.2. Row Number Minimization
We now show how to solve MINROW efficiently using dynamic programming. Our idea
is to construct compact (i, j, k)-labelings for all 1 ≤ i ≤ j ≤ n and successively increasing
values of k until a feasible labeling for all points is found. Recall that by Lemma 2.2 the
value of k is upper bounded by dn/2e.

To ease notation we introduce two dummy points p0 and pn+1 to the left of p1 and to the
right of pn such that any labeling positions of l0 and ln+1 do not influence the feasibility
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of labeling P . We set W0 = Wn+1 = 0, x0 = x1 − 2Wmax, and xn+1 = xn + 2Wmax, where
Wmax = max1≤i≤nWi is the maximum label width.

Our algorithm MinRowAlg computes a three-dimensional table T , where each entry
T [i, j, k] for 0 ≤ i ≤ j ≤ n+ 1 and 1 ≤ k ≤ dn/2e stores the x-position Xi,j,k of a compact
(i, j, k)-labeling as well as some backtracking information in order to reconstruct the
compact (i, j, k)-labeling. With these semantics it is clear that there is a solution to
MINROW with k rows if and only if there is a feasible (0, n + 1, k)-labeling, that is,
T [0, n+ 1, k] <∞.

We compute T in a bottom-up fashion with respect to the row index k. First, we
compute T [·, ·, k] for k = 1 and if T [0, n + 1, 1] = ∞ proceed to computing T [·, ·, k] for
k = 2 and so on until eventually T [0, n + 1, k] < ∞. The entries of T [·, ·, k] for k = 1
are computed by the algorithm SingleRowAlg described in Section 3.1. For k > 1 the
entries T [i, i, k] for i = 0, . . . , n+1 are set to T [i, i, k] = Xi,i,k = xi. We use the recurrence
T [i, j, k] = min Θk

i,j for all i < j and k > 1, where Θk
i,j for i < j and k > 1 is defined as

the set

Θk
i,j = {max{xj , T [i, `, k] +Wj} | i ≤ ` < j, T [i, `, k] ≤ xj , T [`, j, k − 1] <∞} . (1)

Note that Θk
i,j can be empty; in that case we define min ∅ :=∞ and obtain T [i, j, k] =∞.

For the pseudo code of MinRowAlg see Algorithm 1.

ALGORITHM 1: MinRowAlg
1 initialize T , k
2 compute T [·, ·, 1] using SingleRowAlg
3 for k = 2 to dn/2e do
4 for j = 1 to n+ 1 do
5 for i = 0 to j − 1 do
6 T [i, j, k] = min Θk

i,j

7 T [j, j, k] = xj

8 if T [0, n+ 1, k] <∞ then break;
9 reconstruct solution from T [0, n+ 1, k]

THEOREM 3.3. MinRowAlg solves MINROW in O(K? · n3) time, where K? is the
number of rows in the optimal MINROW solution.

PROOF. The running time of MinRowAlg follows immediately. The outer loop is
iterated K? times, and in each iteration of the outer loop we perform O(n2) iterations of
the nested inner loops. In each iteration it takes linear time to find the minimum of the
set Θk

i,j , which contains O(n) elements.
It remains to prove the correctness of MinRowAlg by showing T [i, j, k] = Xi,j,k for all

0 ≤ i ≤ j ≤ n + 1 and 1 ≤ k ≤ K?. The proof is by induction over k and for each k by
induction over j − i.

For k = 1 we use SingleRowAlg described in Section 3.1 and it follows immediately
that the entries T [·, ·, 1] are correct.

Next we prove correctness for k > 1. In the base case i = j the algorithm sets
T [i, i, k] = xi, which is the x-position Xi,i,k of a compact (i, i, k)-labeling that simply
consists of the single label li placed in its leftmost possible position Xi = xi in row
Yi = k.

Now let’s assume i < j and let L be an (i, j, k)-labeling. By definition li and lj are in
row k. This implies that there is a well-defined predecessor l` of lj in row k for i ≤ ` < j;
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pi p` pj

(a) Xj = xj

pi p` pj

Wj

X`

(b) Xj = X` +Wj

Fig. 4: Two `-compact (i, j, 3)-labelings.

we say that l` precedes lj in row k. We call a label l` a feasible predecessor of lj if there
exists an (i, j, k)-labeling, where l` precedes lj . Let F (i, j, k) be the set of all feasible
predecessors of lj in an (i, j, k)-labeling. Now we define an (i, j, k)-labeling L to be `-
compact if l` precedes lj and there is no other (i, j, k)-labeling with predecessor l` where
the position of lj is further to the left. Figure 4 shows two `-compact (i, j, 3)-labelings.

Every compact (i, j, k)-labeling L is also `-compact for the predecessor l` of lj in
L since by definition of a compact (i, j, k)-labeling, there is no other (i, j, k)-labeling
where the position of lj is further to the left. On the other hand the `-compact (i, j, k)-
labeling with the leftmost position of lj over all feasible predecessors l` ∈ F (i, j, k) is
a compact (i, j, k)-labeling, since there is no other (i, j, k)-labeling where the position
of lj is further to the left. For every `-compact (i, j, k)-labeling the leftmost x-position
of lj is X`

j = max{xj , X` +Wj}, since lj must be Wj to the right of its predecessor but
cannot be left of xj , see Figure 4. Hence the x-position of a compact (i, j, k)-labeling
Xi,j,k = min{X`

j | l` ∈ F (i, j, k)}. Note that if F (i, j, k) = ∅ we obtain Xi,j,k = ∞.
We claim that Θk

i,j = {X`
j | l` ∈ F (i, j, k)} and thus MinRowAlg correctly computes

T [i, j, k] = min Θk
i,j = Xi,j,k.

Let L be an `-compact (i, j, k)-labeling and let Lleft be the (i, `, k)-labeling formed
by labels li, . . . , l` of L. We can assume that Lleft is compact since otherwise we can
replace Lleft in L by a compact (i, `, k)-labeling that actually constrains the position
of lj less than Lleft. Hence X`

j = max{xj ,Xi,`,k + Wj}. Since ` < j we obtain from the
induction hypothesis that Xi,`,k = T [i, `, k], that is, the values in Θk

i,j are actually
X`

j = max{xj , T [i, `, k] +Wj}.
It remains to show that a valueX`

j is in Θk
i,j if and only if l` is a feasible predecessors in

F (i, j, k). For the only-if-part, let l` be a feasible predecessor in F (i, j, k). Then obviously
i ≤ ` < j. Moreover, Xi,`,k = T [i, `, k] ≤ xj since otherwise lj would be pushed too far to
the right for being part of an (i, j, k)-labeling. Finally, we observe that any `-compact
(i, j, k)-labeling induces a labeling Lright of the labels l`+1, . . . , lj−1, in which they are
restricted to lie to the right of x`, to the left of xj and below row k. We can extend Lright
to an (`, j, k − 1)-labeling by placing l` at X` = x`, Y` = k − 1 and lj at Xj = xj + Wj ,
Yj = k − 1; see Figure 5. This implies T [`, j, k − 1] <∞.

For the if-part, let i ≤ ` < j such that T [i, `, k] ≤ xj and T [`, j, k − 1] < ∞. We
combine a compact (i, `, k)-labeling Lleft (which exists because T [i, `, k] ≤ xj <∞) and
labels l`+1, . . . , lj−1 from a compact (`, j, k − 1)-labeling with the label lj at position
Xj = xj +Wj in row k as illustrated in Figure 5. This yields a feasible (i, j, k)-labeling
L since Lleft is feasible and labels l`+1, . . . , lj−1 lie below row k, to the right of x`, and to
the left of xj . We know that T [i, `, k] < xj and hence lj can be placed at xj +Wj without
overlapping l`. Furthermore, both li and lj are in row k and l` precedes lj , that is, l` is a
feasible predecessor in F (i, j, k). This concludes the proof of correctness.

ACM Journal Name, Vol. 0, No. 0, Article 0, Publication date: 2014.



0:10 A. Gemsa et al.

pi p` pjp`

Lleft

Lrightk
k − 1

pi p` pj

k

Fig. 5: (De-)composition of an `-compact (i, j, k)-labeling into an (i, `, k)-labeling and an
(`, j, k − 1)-labeling.

Note that K? is in O(n), hence the worst-case time complexity of MinRowAlg is O(n4).

3.3. Weight Maximization
In this section we first show NP-hardness of MAXWEIGHT. Then, we present a pseudo-
polynomial time algorithm showing that MAXWEIGHT is actually only weakly NP-hard.
Recall that for a MAXWEIGHT instance we are given, in addition to the set P of feature
points and the set L of corresponding labels, for each point pi in P a positive integer
weight wi, and we are also given a positive integer K. The problem then asks for a
feasible labeling L = (S, π) that maximizes the total weight

∑
li∈S wi among all feasible

labelings that use at most K rows.

THEOREM 3.4. MAXWEIGHT is NP-hard, even for K = 1.

PROOF. Our proof is inspired by an NP-hardness proof for an internal 4-slider point
labeling problem by Garrido et al. [2001, Theorem 3]. It is by reduction from the
following NP-hard variant of PARTITION [Garey and Johnson 1990]: Given a set A =
{a1, a2, . . . , a2m} and a size s(a) ∈ Z+ for each a ∈ A, is there a subset A′ ⊆ A such that∑

a∈A′ s(a) =
∑

a∈A\A′ s(a) and A′ contains exactly one of a2i−1, a2i for every 1 ≤ i ≤ m?
For each PARTITION-instance I we construct a MAXWEIGHT-instance J such that
the weight of an optimal solution to J allows us to decide whether or not I is a yes-
instance of PARTITION. We specify the set P of points, their weights, and the widths of
their labels in J as illustrated in Figure 6. More precisely, we define a large constant
C = 1000

∑
a∈A s(a). Next we define (from left to right) points pL, p1, . . . , p2m, pR on a

horizontal line and their distances as |pLp1| = |p2mpR| = C/2, |p2i−1p2i| = (s(a2i−1) +
s(a2i))/2, and |p2ip2i+1| = C. The corresponding labels have widths WL = WR = |pLpR|
and Wi = C + s(ai). Furthermore, we define wL = wR = WL and wi = Wi, that is, the
weight of a point is equal to the width of its label.

C C
2

s(a2i−1)+s(a2i)
2

p2 p2i

w2i = C + s(a2i)
p1pL

C
2

p2i−1 pR

Fig. 6: Reducing Partition to MAXWEIGHT.
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A solution to the PARTITION instance I exists if and only if a feasible labeling in a
single row with total weight 3 |pLpR| exists. To see why, we first assume that we are
given such a labeling. Clearly, this labeling contains the label for pL and the label for pR.
Moreover, the space between pL and pR is completely filled with labels for other points.
Since the labels are extremely wide (compared to the distances |p2i−1p2i|) exactly one of
the labels l1, l2 has to be selected and its leader has to lie roughly in the center of the
label. This again implies that exactly one of the labels l3, l4 has to be selected, and so
on. By induction, it follows that for i = 1, . . . ,m exactly one of the labels l2i−1, l2i has to
be selected. Since |pLpR| is exactly half the total width of labels l1, . . . , l2m the labeled
points correspond to a feasible partition. If, however, we are given a solution A′ ⊆ A to
the PARTITION instance, we can construct the labeling by selecting labels pL, pR plus
the labels for the points corresponding to the elements in A′. It is easy to see that by
applying algorithm SingleRowAlg from Section 3.1 to the selected labels, we obtain a
feasible labeling.

Since MAXWEIGHT is NP-hard, we cannot hope for a polynomial-time algorithm that
solves it, unless P = NP. But our reduction uses labels with extremely large weights.
Hence, we propose a pseudo-polynomial time algorithm, that is, an algorithm whose
running time is polynomial in n, k, and the numeric value of

∑n
i=1 wi, but exponential

in the length of the encoding of
∑n

i=1 wi. If the label weights are small integer numbers
such an algorithm can still be fast in practice.

Pseudo-Polynomial Time Algorithm for MAXWEIGHT.. We first extend our notation
from Section 3.2. Recall that for a labeling L the set S contains all labels selected for
display. For a pair of indices 0 ≤ i ≤ j ≤ n+ 1, a row index k, and a weight c we define
an (i, j, k, c)-labeling as a feasible labeling of Pi,j such that li, lj ∈ S and Yi = Yj = k, all
other labels l` ∈ S are placed in row k or below (i.e., Y` ≤ k), and the total weight of
the labels in S is c. Analogously, we say an (i, j, k, c)-labeling is compact if there is no
other (i, j, k, c)-labeling where lj has a smaller x-position. Again, we call the x-position
of lj in a compact (i, j, k, c)-labeling L the x-position of L. Note that this definition
generalizes our definition of a compact (i, j, k)-labeling, since an (i, j, k, c)-labeling is an
(i, j, k)-labeling if c =

∑j
`=i w`.

In our algorithm MaxWeightAlg for MAXWEIGHT we add a fourth dimension to the
table T that allows us to distinguish labelings of different weights. Let wtotal =

∑n
i=1 wi

be the total weight of all points in P . Then, each entry T [i, j, k, c] stores the x-position of
a compact (i, j, k, c)-labeling, where 0 ≤ i ≤ j ≤ n+ 1, 1 ≤ k ≤ dn/2e, and 0 ≤ c ≤ wtotal.
The maximum-weight labeling using K rows can be constructed by backtracking from
T [0, n+ 1,K, cmax], where cmax = max{c | T [0, n+ 1,K, c] <∞}.

As before, we compute T in a bottom-up fashion with respect to the topmost row k,
the weight c, and the distance j − i. We set T [i, i, k, wi] = xi for all k and T [i, i, k, c] =∞
for all k and c 6= wi. In all other cases we use the recurrence T [i, j, k, c] = min Θk,c

i,j ,
where Θk,c

i,j for k = 1 is defined as the set

Θ1,c
i,j = {max {xj , T [i, `, 1, a] +Wj} | i ≤ ` < j, T [i, `, 1, a] ≤ xj , a = c− wj} (2)

and for k > 1 as the set

Θk,c
i,j =

{
max {xj , T [i, `, k, a] +Wj} | i ≤ ` < j, T [i, `, k, a] ≤ xj ,

T [`, j, k − 1, b] <∞, a = c− b+ w`

}
. (3)

We give the pseudo code for MaxWeightAlg in Algorithm 2.

THEOREM 3.5. MaxWeightAlg solves MAXWEIGHT in O(Kn3w2
total) time.
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ALGORITHM 2: MaxWeightAlg
1 initialize T
2 for i = 0 to n+ 1 do
3 for k = 1 to K do
4 T [i, i, k, wi] = xi //initialze values for T

5 for j = 1 to n+ 1 do
6 for i = 0 to j − 1 do
7 for c = 0 to wtotal do
8 T [i, j, 1, c] = min Θ1,c

i,j //compute optimal solutions for the first row

9 for k = 2 to K do
10 for j = 1 to n+ 1 do
11 for i = 0 to j − 1 do
12 for c = 0 to wtotal do
13 T [i, j, k, c] = min Θk,c

i,j //compute optimal solution for all remaining rows

14 reconstruct solution from T [0, n+ 1,K, cmax]

PROOF. The algorithm MaxWeightAlg is similar to MinRowAlg, but uses four instead
of three nested loops to compute the O(Kn2wtotal) entries of T . Each entry is computed
as the minimum of a set Θk,c

i,j containing O(nwtotal) elements. This yields an overall
running time of O(Kn3w2

total).
We now show the correctness of the algorithm analogously to the proof of Theorem 3.3

but taking the weight constraints into account. For the case i = j and arbitrary k it is
easy to see that the x-position of a compact (i, i, k, c)-labeling is the leftmost possible
position xi of li if c = wi and∞ otherwise.

Before we consider the general case, we extend the notion of `-compact as introduced
in Section 3.2. For given weights a, c ∈ N with a ≥ c, we call a pair (l`, a) a feasible
predecessor pair of (lj , c) if there exists an (i, j, k, c)-labeling (i < j), where l` precedes lj
and the total weight of the selected labels S ∩ {li, . . . , l`} is a. We define F (i, j, k, c) as
the set of all feasible predecessors pairs of (lj , c) in an (i, j, k, c)-labeling. We then define
an (i, j, k, c)-labeling L to be (`, a)-compact if (l`, a) precedes (lj , c) and there is no other
(i, j, k, c)-labeling L′ where (l`, a) precedes (lj , c) and which has smaller x-position than
L. As before it is clear that every compact (i, j, k, c)-labeling L is also (`, a)-compact for
the predecessor pair (l`, a) of (lj , c). Conversely, the (`, a)-compact (i, j, k, c)-labeling with
smallest x-position over all feasible predecessor pairs (l`, a) ∈ F (i, j, k, c) is compact. For
every (`, a)-compact (i, j, k, c)-labeling L the x-position of L is X`,a

j = max{xj , X` +Wj}.
Note that the value X` depends implicitly on a since the value of X` depends on L which
directly depends on a. To ease notation we omit this parameter in the description of
X`. The x-position of a compact (i, j, k, c)-labeling is min{X`,a

j | (l`, a) ∈ F (i, j, k, c)}. Our
claim is that Θk,c

i,j = {X`,a
j | (l`, a) ∈ F (i, j, k, c)} and thus the algorithm is correct.

Let L be an (`, a)-compact (i, j, k, c)-labeling and let Lleft be the induced (i, `, k, a)-
labeling. As in the proof of Theorem 3.3 we can assume that Lleft is compact and hence
by the induction hypothesis X`,a

j = max{xj , T [i, `, k, a] +Wj}, that is, the values in Θk,c
i,j

are actually X`,a
j for some pairs (`, a).

It remains to show that X`,a
j ∈ Θk,c

i,j if and only if the pair (l`, a) ∈ F (i, j, k, c). We
start with the case k = 1. If (l`, a) ∈ F (i, j, 1, c), then obviously i ≤ ` < j and also
T [i, `, 1, a] ≤ xj since otherwise lj cannot be in a feasible position. Moreover, for the total
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weight of the labeling to be c, the weight of the labels in S ∩ {li, . . . , l`} must be c− wj ,
since in a single row lj is the only label to the right of l`. If, on the other hand, the three
constraints for the set Θ1,c

i,j hold, we can combine a compact (i, `, 1, a)-labeling (which
exists because T [i, `, 1, a] <∞) with weight a and the label lj with weight wj placed in
row 1 at position Xj = xj +Wj into an (i, j, 1, c)-labeling for c = a+wj . Therefore, (l`, a)
is indeed a feasible predecessor pair in F (i, j, 1, c).

In the general case for k > 1 the argument is similar to k = 1. Let first (l`, a) ∈
F (i, j, k, c) be a feasible predecessor pair. Then i ≤ ` < j and T [i, `, k, a] ≤ xj as
before, but additionally any (`, a)-compact labeling induces a labeling Lright of labels
S ∩ {l`+1, . . . , lj−1} that is strictly below row k, to the right of x` and to the left of xj .
Furthermore, Lright has weight c − a − wj . Again, we extend Lright to an (`, j, k − 1, b)-
labeling by placing l` and lj in row k − 1 with x-positions X` = x` and Xj = xj + Wj ,
similar to the situation depicted in Figure 5. Note that the weight b of this labeling is
b = c− a− wj + w` + wj so that all constraints put on set Θk,c

i,j are satisfied.
Conversely, if all constraints for Θk,c

i,j are satisfied we can compose a feasible (i, j, k, c)-
labeling L from a compact (i, `, k, a)-labeling Lleft and a compact (`, j, k − 1, b)-labeling
Lright as sketched in Figure 5. The labels in S∩{li, . . . , l`} are placed as in Lleft, the labels
in S ∩ {l`+1, . . . , lj−1} as in Lright and lj at xj +Wj . The weights of the sub-labelings are
chosen such that the weight of L correctly adds up to c.

3.4. Label Number Maximization
In this section we present an algorithm to solve MAXLABELS, that is, to place as many
labels as possible in K given rows. Note that Theorem 3.5 of the previous section
directly yields a polynomial time algorithm if we set wi = 1 for all 1 ≤ i ≤ n. However,
this would result in a running time of O(Kn5). Here we show that there is a faster
algorithm which uses an exchange argument based on the fact that all labels have the
same weight.

We first introduce an adapted notation for cardinality-maximal labelings. We define
a cm-(i, j, k)-labeling to be a feasible labeling of a subset P̂ ⊆ Pi,j in rows 1 to k with
both li and lj placed in row k such that there is no feasible labeling of another subset
P̄ ⊆ Pi,j with the same properties but |P̄ | > |P̂ |. We extend the meaning of compact to
cm-(i, j, k)-labelings, that is, we say a say a cm-(i, j, k)-labeling L is compact if there is
no other cm-(i, j, k)-labeling with smaller x-position.

We will compute two three-dimensional tables T and K. An entry T [i, j, k] for 0 ≤ i ≤
j ≤ n+ 1 and 1 ≤ k ≤ K stores the x-position of a compact cm-(i, j, k)-labeling. We note
that T can no longer contain the value∞ since for any triple (i, j, k) there is always a
feasible labeling with P̂ = {pi, pj} and their labels placed disjointly in row k. An entry
K[i, j, k] stores the actual cardinality of a cm-(i, j, k)-labeling.

The recursive definitions of T and K are as follows:

T [i, j, k] =

{
xi if i = j

min Θk
i,j otherwise

, (4)

with

Θk
i,j =

{
max {xj , T [i, `, k] +Wj}

∣∣∣∣ i ≤ ` < j, T [i, `, k] ≤ xj ,
K[i, j, k] = K[i, `, k] +K[`, j, k − 1]− 1

}
, (5)

K[i, j, k] =

{
1 if i = j

maxκki,j otherwise
, (6)
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with

κki,j = {K[i, `, k] +K[`, j, k − 1]− 1 | i ≤ ` < j, T [i, `, k] ≤ xj} . (7)

The dynamic programming algorithm MaxLabelsAlg for MAXLABELS computes K and
T in a bottom-up fashion analogously to our previous algorithms. Note that for each
triple i, j, k we first compute K[i, j, k] and then based on that T [i, j, k]. The final solution
contains K[0, n+ 1,K]−2 labels and can be obtained by backtracking from T [0, n+ 1,K].
We give the pseudo code for MaxLabelsAlg in Algorithm 3.

ALGORITHM 3: MaxLabelsAlg
1 initialize T
2 for i = 0 to n+ 1 do
3 for k = 1 to K do
4 T [i, i, k] = xi
5 K[i, i, k] = 1

6 for k = 1 to K do
7 for j = 1 to n+ 1 do
8 for i = 0 to j − 1 do
9 K[i, j, k] = maxκk

i,j

10 T [i, j, k] = min Θk
i,j

11 reconstruct solution from T [0, n+ 1,K]

THEOREM 3.6. MAXLABELS can be solved by dynamic programming in O(Kn3)
time.

PROOF. The running time of the dynamic programming algorithm follows from the
fact that the tables are both of size O(Kn2) and computing each entry consists of finding
the minimum or maximum of a set of O(n) elements.

The correctness proof follows exactly the same arguments about the decomposi-
tion of a cm-(i, j, k)-labeling L into two labelings Lleft and Lright by splitting L at the
predecessor l` of lj in row k (Figure 5). The definition of Θk

i,j implies that a value
X`

j = max{xj , T [i, `, k] + Wj} is contained in the set if and only if it leads to a cm-
(i, j, k)-labeling; this is achieved by requiring K[i, j, k] = K[i, `, k] +K[`, j, k− 1]− 1. Note
that here we need to subtract 1 because label l` is counted twice otherwise. The set
κki,j contains the cardinalities of all feasible (T [i, `, k] ≤ xj) compositions of a compact
cm-(i, `, k)-labeling and a compact cm-(`, j, k − 1)-labeling. Entry K[i, j, k] is then simply
the maximum value in κki,j .

The interesting aspect for showing the correctness is the following exchange argument.
Assume that there is a cm-(i, j, k)-labeling L with predecessor l` of lj but T [i, `, k] > xj ,
that is, the x-position of this labeling is not contained in Θk

i,j . Since T [i, `, k] > xj it
follows that the sub-labeling L′ for Pi,` induced by L is not cardinality-maximal (recall
that T [i, `, k] stores the smallest x-position among all cm-(i, j, k)-labelings). So in order
to have l` as the predecessor of lj some other label left of l` in row k must be removed
from the selected labels, that is, we lose at least one label from S. But since all labels
are worth the same, we can just as well remove l` itself from S and use label l`′ , the
predecessor of l` in a compact cm-(i, `, k)-labeling, as lj ’s predecessor. Since l`′ is the
predecessor of l` in that labeling we know T [i, `′, k] ≤ x` < xj , so that the x-position X`′

j

is in fact contained in Θk
i,j .
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pi p`′ pj

k

p`Lmid LrightLleft

Fig. 7: Construction of a labeling for Theorem 3.6.

It remains to argue that this labeling with predecessor l`′ is at least as good as L,
that is, K[i, j, k] ≥ |L|. By the arguments presented above, we know that there is an
(i, j, k)-labeling where l`′ is the predecessor of lj . Combining this with the definition of
κki,j we obtain:

K[i, j, k] ≥ K[i, `′, k] +K[`′, j, k − 1]− 1 (8)

Next, we consider the (i, `, k)-labeling with l`′ as predecessor of l` and ignore the label l`
from it. We split this labeling into two parts. We denote the labeling for the points from
pi to p`′ by Lleft, and the labeling for the points from p`′+1 to p`−1 by Lmid; see Figure 7.
Finally, there is a labeling Lright for the points from p`+1 to pj−1. It is easy to see that
|Lright| is at most K[`, j, k − 1]− 2. Now, consider both Lmid and Lright. By removing the
leader of p` separating Lmid from Lright we obtain

K[`′, j, k − 1] ≥ K[`′, `, k − 1] +K[`, j, k − 1]− 2 (9)

Combining equations (8) and (9) yields

K[i, j, k] ≥ K[i, `′, k] +K[`′, `, k − 1] +K[`, j, k − 1]− 3 (10)

Recall that `′ is the label in the (i, `, k)-labeling that is the predecessor of l` in row
k. Hence, by definition of K[i, `, k] it follows that K[i, `′, k] +K[`′, `, k − 1]− 1 ≤ K[i, `, k].
Plugging this into equation (10) yields:

K[i, j, k] ≥ K[i, `, k]− 1 +K[`, j, k − 1]− 1 (11)

As we have already argued, the labeling that is induced by L for the points pi to p`
cannot be cardinality maximal. Hence, the labeling for those points can contribute at
most K[i, `, k]− 1 labels to L. The labeling induced by L for the remaining points can
contribute at most K[`, j, k − 1]− 1 labels. Finally, we can conclude

K[i, j, k] ≥ |L| (12)

This means that our algorithm indeed finds a labeling that has at least as many
labels as L.

3.5. Two-sided Panorama Labeling
In this section we consider the two-sided panorama labeling problem. In this variation
of panorama labeling we allow rows above and below the panorama we want to label; for
an example see Figure 8. Unfortunately, by a result of Garrido et al. [2001, Theorem 3]
it follows directly, that MINROW, MAXLABELS, and MAXWEIGHT are NP-hard in the
two-sided panorama labeling model, even if the problems are restricted to one row per
side.

THEOREM 3.7. For two-sided panorama labeling the problems MINROW, MAXLA-
BELS, and MAXWEIGHT are NP-hard.
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row 1

row 2

p2

p1 p3 p4
p6

p5

row 1

Fig. 8: Example for a two-sided panorama labeling.

For still finding a two-sided panorama labeling we propose in the following a mixed-
integer linear (MILP) program formulation that can handle MINROW, MAXLABELS,
and MAXWEIGHT.

Mixed-Integer Linear Programming.. In the following we give a MILP formulation
that solves a given instance of two-sided panorama labeling. We begin by describing
a MILP formulation for MAXLABELS, and proceed by sketching how to extend this
formulation such that it can handle MAXWEIGHT and MINROW. For simplicity we
assume, without loss of generality, that the x-coordinates of the input points are all
non-negative. We can transform an instance with negative x-coordinates to an instance
with strictly positive x-coordinates by simply shifting all points sufficiently far to the
right.

Recall that for MAXLABELS we need to find the maximum number of labels which
can be placed into K rows. For the two-sided case we denote the number of rows that
are above the horizon by Ka and the number of rows below the panorama by Kb.

For each label li and each row 1 ≤ r ≤ Ka above the horizon we introduce a binary
variable ari , and for each row 1 ≤ r′ ≤ Kb we introduce a binary variable br′

i . The
desired meaning of the variables is that, if a variable ari (br′

i ) has value 1, then the
label li is placed in row r (r′), and ari (br′

i ) has value 0 if the label li is not placed in this
row. Further, we introduce for every label li a continuous variable Xi that stores the
x-position of li, if li is selected.

We are now ready to introduce the constraints of the MILP. First we introduce a
constraint that ensures that a label is placed in at most one row. Then, we give two
constraints which in combination guarantee that each label is connected to its leader;
see requirement (F1) in Section 2. For each label li we require:∑

1≤r≤Ka

ari +
∑

1≤r′≤Kb

br′

i ≤ 1 (13)

Xi ≥ xi (14)
Xi ≤ xi +Wi (15)

To generate a valid panorama labeling, we need to ensure that no two labels intersect
(see requirement (F3)), that is, we require Xi ≤ Xj −Wj for every pair of labels li and
lj placed in the same row with i < j. However, this constraint must not influence the
position of pairs of labels in different rows. To ensure this we introduce a large constant
M which we use to “activate” or “deactivate” the constraint. This is a common trick
used in formulating MILPs [Chen et al. 2011]. In the following, we set M to be the
largest x-coordinate of the input points plus the largest width of all labels among the
input. Since there is in principle no difference between placing labels above the horizon
or below it we explicitly introduce the constraints only for placing labels above the
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horizon in the following (constraints 16–18). The constraints for placing labels below
the horizon are obtained by replacing each occurrence of ari , a`j , and Ka with br

i ,b`
j , and

Kb, respectively.
We introduce for each pair of labels li, lj with i < j and for every r, 1 ≤ r ≤ Ka, the

following constraint:

Xi ≤ Xj −Wj + (1− ari )M + (1− arj)M (16)

Note that this constraint has only an effect on Xi and Xj if both ari and arj are set to 1,
that is, both li and lj are placed in the same row (then the constraint is the desired
Xi ≤ Xj −Wj). Otherwise, the value on the right-hand side of the equation is always
larger than the value of the left-hand side.

We also need to guarantee that no label can intersect a leader; see requirement (F2).
First, we introduce a constraint that ensures that no label can intersect the leader of a
label to its right. For a label li placed in row r we need the constraint Xi ≤ xj for all
labels lj , i < j whose labels are placed in rows above r. Making use of the constant M
as above we introduce for every pair of labels li, lj with i < j and for every r, 1 ≤ r ≤ Ka,
the following constraint:

Xi ≤ xj + (1− ari )M +

1−
∑

r<`≤Ka

a`j

M (17)

Similarly, to ensure that the label li does not intersect the leader of a label lj to
its left (j < i) that is placed in a row above li we need the constraint Xi −Wi ≥ xj .
We introduce for every pair of labels li, lj with j < i and for every r, 1 ≤ r ≤ Ka, the
following constraint:

Xi −Wi ≥ xj − (1− ari )M −

1−
∑

Ka≥`>r

a`j

M (18)

Constraints 17 and 18 influence Xi only if both ari = 1 (that is, the label li is placed in
row r) and the sum of all a`j , ` > r is 1 (that is, the label lj is placed in a row above li).

Subject to all introduced constraints we maximize the objective function:

∑
1≤i≤n

 ∑
1≤r≤Ka

ari +
∑

1≤r′≤Kb

br′

i


Extending the above formulation such that it can handle MAXWEIGHT can be done

straightforwardly by modifying the objective function slightly to
∑

1≤i≤n((
∑

1≤r≤Ka
ari +∑

1≤r′≤Kb
br′

i ) · wi).
We can extend the above formulation such that it can solve MINROW by adding

additional constraints and modifying the objective function. Recall that for MINROW
the number of rows necessary to find a solution is bounded by dn/2e. Hence, we can set
Ka = Kb = dn/2e. Since for this problem all labels need to be placed we need to modify
constraint 13 to the following. ∑

1≤r≤Ka

ari +
∑

1≤r′≤Kb

br′

i = 1 (19)

Further, we add a binary variable zr for each row above the horizon and a binary
variable z′r for each row below it. The desired meaning of the newly added variables is
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that if a row r contains at least one label, then, the corresponding variable zr is 1. For
each label li we require

zr ≥ ari 1 ≤ r ≤ Ka, (20)

z′r ≥ br′

i 1 ≤ r′ ≤ Kb. (21)

Finally, the objective function we want to minimize is
∑

r≤Ka
zr +

∑
r≤Kb

z′r. Since we
minimize the objective function, we ensure that every zr is set to 0 if it is possible, that
is, if the row r does not contain a label. Note that although this formulation minimizes
the number of rows in which the labels are placed, it might contain empty rows which
can be removed in a post-processing step.

4. EXTENSIONS
In this section we sketch several extensions to our algorithms. With some extensions
we aim at handling additional aesthetic constraints, for example, to ensure that two
labels or a label and a leader of another label do not come too close. With this particular
constraint the problem MINROW can become infeasible if the distance between two
input points is too small. Similar problems can arise with other extensions. We do not
address these problems in detail; often they can be revealed and possibly resolved in a
pre-processing step.

4.1. Label Spacing
Our dynamic programming algorithms ensure that no two labels intersect and that no
label intersects a leader other than its own. It is possible, however, that two labels (or
a label and a leader) get arbitrarily close to each other. At first glance there seems to
be an obvious solution to the problem: simply enlarge the labels by an arbitrary buffer
amount. However, this can result in labels that are disconnected from their leaders. To
see this consider a label that is in its leftmost/rightmost position. Since we increased
the width of the label its x-position may be to the left of its own leader, which results
in a label that is disconnected from its leader. Hence, we propose a different approach.
To avoid this problem, we add the requirement that the horizontal distance between
two labels in the same row (or between a label and the leader of a label in a higher
row) must not be smaller than a user-defined value ε ≥ 0; see Figure 9. MinRowAlg
ensures this requirement if we add +ε to the definition of equation (1) at the appropriate
positions. We need it to ensure that no label l` is considered for which the distance
between the right border of li and the feature of l` has distance less than ε. This is
ensured by requiring T [i, `, k] + ε ≤ xj . Further, we need that if a label l` is placed
right of li in the k-th row, it has distance of at least ε. We obtain this by requiring
max{xj , T [i, `, k] +Wj + ε}. This modification of equation (1) yields

Θk
i,j = {max{xj , T [i, `, k] +Wj + ε} | i ≤ ` < j, T [i, `, k] + ε ≤ xj , T [`, j, k − 1] <∞} .

For MaxWeightAlg similar modifications are necessary. We modify equations (2) and (3).
The first equation is for the recurrence relation for the first row (that is, k = 1)

Θ1,c
i,j = {max {xj , T [i, `, 1, a] +Wj + ε} | i ≤ ` < j, T [i, `, 1, a] + ε ≤ xj , a = c− wj}

and for k > 1

Θk,c
i,j =

{
max {xj , T [i, `, k, a] +Wj + ε} | i ≤ ` < j, T [i, `, k, a] + ε ≤ xj ,

T [`, j, k − 1, b] <∞, a = c− b+ w`

}
.

Finally, the modifications required for MaxLabelsAlg are in principle identical to those
desribed before. We need to modify the equations (5) and (7) yielding:
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row 1
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p1 p3 p4
p6

p5

(a) Result of MaxLabelsAlg.

row 1

row 2

p2

p1 p3 p4
p6

p5

ε ε

ε

(b) Result of MaxLabelsAlg with label spac-
ing.

Fig. 9: Result of MaxLabelsAlg of a MAXLABELS instance for two rows with and without
label spacing.

Θk
i,j =

{
max {xj , T [i, `, k] +Wj + ε}

∣∣∣∣ i ≤ ` < j, T [i, `, k] + ε ≤ xj ,
K[i, j, k] = K[i, `, k] +K[`, j, k − 1]− 1

}
,

κki,j = {K[i, `, k] +K[`, j, k − 1]− 1 | i ≤ ` < j, T [i, `, k] + ε ≤ xj} .

4.2. Horizontal Space Constraints
In Section 3 we gave algorithms to compute labelings that use a small number of rows
but we did not care about space consumption in the horizontal direction. If we want to
ensure, for example, that no label intersects the left or right border of the panorama,
we have to restrict the sliding of labels. This can be done by changing the definition
of the two dummy points p0 and pn+1 in Section 3.2, that is, we set x0 = xmin and
xn+1 = xmax, where xmin (xmax) is the smallest (largest) allowed x-coordinate for the
left (right) boundary of a label. Then, a (0, n+ 1, k)-labeling with the minimum feasible
value for k is an optimal solution to the horizontally constrained version of MINROW.

Note that in this case Lemma 2.2 is not true anymore. There are MINROW instances
for which more than dn/2e rows are necessary, and there are even instances for which
no solution is possible. However, it is easy to see that no MINROW instance that has a
solution requires more than n rows. Hence, the worst-case time complexity of MinRowAlg
is still in O(K?n3), where K? = O(n). If an instance of MINROW has no valid solution,
then T [0, n+ 1, n] =∞. The algorithms MaxLabelsAlg and MaxWeightAlg can be adapted
by the same technique.

4.3. 360◦-panoramas
We consider a 360◦-panorama as an image curved around the inside of a cylinder, thus
it does not have a left or right boundary. We can extend our algorithm for MINROW to
handle such images. Our extension is based on the following observation: if there is
a solution to MINROW with k rows, there is also a solution with k rows that contains
one of the labels li at position Xi = xi, Yi = k. A trivial approach is thus to solve the
problem for i = 1, 2, . . . , n, each time splitting the cylindric image at xi to obtain a
conventional image. Since we have to solve the problem n times the asymptotic running
time increases by one order of magnitude. With a simple change, however, one execution
of our MINROW-algorithm suffices.

Our idea is to extend table T , which so far contained values T [i, j, k] only for i ≤ j.
The new version of the algorithm computes values T [i, j, k] for all 1 ≤ i, j ≤ n and
1 ≤ k ≤ K?, where K? is the smallest feasible number of rows. If j < i, a labeling
corresponding to T [i, j, k] simply contains labels li+1, . . . , ln and l1, . . . , lj . To ensure
that the solutions for li+1, . . . , ln and l1, . . . , lj are compatible we need to transform
the x-coordinates of points p` with ` > i to x` − xmax, where xmax is the width of the
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pj pi

0 xmax

(a)

pjpi

0

(b)

Fig. 10: Example of 360◦-panoramas before (a) and after (b) transformation.

panorama. This transformation essentially moves the points p` to the left of x = 0; see
Figure 10. We also need to transform the appropriate values in T by the same method.

We compute T [i, j, k] as before, ignoring the fact that in a 360◦-panorama li and lj may
intersect in the interval bounded to the left by xj and to the right by xi. If our algorithm
determines T [i, j, k] <∞ we need to ensure that there exists a feasible solution where li
and lj do not intersect. This, however, can be done by a simple sweep over all labels that
are placed in row k in the solution. With this change, MinRowAlg still needs O(K?n3)
time. The algorithms MaxLabelsAlg and MaxWeightAlg can be adapted the same way.

4.4. Elite Labels
For the most important sites, for example, the Willis Tower in the panorama of Chicago
(see Figures 1 and 12), we may want to guarantee that the solution contains the
corresponding labels. We term such a label an elite label. Now we can ask for a feasible
labeling that contains all elite labels plus as many other labels as possible in a given
number k of rows. Assuming that such a solution exists, we can apply our algorithm for
MAXWEIGHT. We simply have to set the weight of each elite label to a large enough
number (for example, n + 1) and the weight of each non-elite label to one. With this
approach we have wtotal ∈ O(n2), thus the algorithm requires O(kn7) time. With the
following simple modifications of recurrences (6) and (4), however, we can reuse our
O(kn3)-time algorithm for MAXLABELS.

Each (i, j, 1)-labeling with j > i contains a label l` preceding lj . We have to avoid that
we omit an elite label between li and lj . To do so, we exchange the condition i ≤ ` < j
in the definitions of κ1i,j and Θ1

i,j with e ≤ ` < j, where le is the last elite label among
li+1, . . . , lj−1. Obviously, we do not lose any feasible solution with this. Moreover, the
modification suffices since our algorithm always constructs a solution based on feasible
one-row solutions for smaller (sub-)instances. Similarly we can extend our algorithm
for MAXWEIGHT to find a labeling in k rows containing all elite labels plus other labels
of maximum total weight.

4.5. Optimizing Label Positions
A secondary criterion for aesthetically pleasing panorama labelings is that the labels
are as close as possible to being centered above their respective sites. So far we did not
consider this criterion in our problem definitions. In fact, the dynamic programming
algorithms described in Section 3 place all labels at their leftmost feasible positions. We
can remedy this unwanted side effect by subsequently fine-tuning the horizontal label
positions. We traverse each row k of a given feasible labeling from right to left. Let Sk be
the set of labels in row k. The general idea is that during the traversal, we shift a label
to the right if it decreases the overall cost Hk =

∑
li∈Sk

|∆i|, where ∆i = xi−(Xi−Wi/2),
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which means that |∆i| is the horizontal distance between the center Xi −Wi/2 of label
li and the feature point pi. Note that a right shift of a label l might require a right shift
of the label directly to the right of l.

Since this approach does not change the row assignment of the labels we only need to
ensure that while shifting the labels no label intersects another label or leader. This
suffices to guarantee that the labeling remains valid. In the following we describe a
simple O(n2)-time algorithm that minimizes Hk by centering the labels as much as
possible above their respective feature points. The general idea is to identify maximal
sets of touching labels in the same row called chains and to repeatedly move subsets of
the chains to the right.

In the first step of the algorithm we assign each label to a chain. Two labels that are
in the same row are assigned to the same chain if their borders touch each other. If a
label touches no other label it defines a singleton chain. We say that the suffix of a label
li consists of li and all labels in its chain that are to the right of li.

The general idea behind our algorithm is to iteratively move one suffix at a time to the
right in order to improve the value of the objective function Hk. We distinguish between
four types of events which may occur while moving a suffix: (i) a label in the suffix
becomes centered above its feature, (ii) a label in the suffix is moved to its rightmost
position, (iii) the right border of the rightmost label in the suffix touches the leader of
another label in a row above, or (iv) the rightmost label in the suffix touches a label that
belongs to another chain. The first type of event occurs when a positive ∆i becomes 0,
and the second type occurs when the horizontal distance mi between a label’s left border
and its feature becomes 0, that is, mi = xi − (Xi −Wi) = 0. Since the row assignment
of the solution is fixed we can easily determine in a pre-processing step for each label
whether it has to its right a label, a leader or nothing. This allows us to determine in a
later step the distance fi that the suffix of li can be moved until an event of the third or
fourth type occurs. For an illustration of these concepts see Figure 11.

Now, in a single row, the algorithm traverses the chains from right to left beginning
with the rightmost chain. In each chain it performs a second-level traversal from right
to left. In this second-level traversal our algorithm determines for each label li the
values for ∆i, mi, and the difference di between the number of positive and non-positive
offsets ∆j in its suffix. Note that if di of a suffix is positive, it means moving the
suffix to the right decreases H. The algorithm also computes for each label li how
far its suffix can be moved to the right until the first event occurs by determining
Mi = min{∆j ,mj , fi | ∆j > 0, lj in suffix of li}.

Finally, we need to select the suffix of the currently considered chain that we actually
move to the right. After determining the value of di for each label we choose the label
with maximum positive di. If there is more than one label with maximum di we choose
the left-most label among them. If no label has a positive di we move on to the next
chain since a shift to the right would increase Hk. Now, consider we have selected a
label li with maximum positive di in its chain. We move the whole suffix of li by Mi to
the right. Note that if li is not the leftmost label in its chain, this splits the chain into
two separate chains. Further, if after moving the suffix of li the rightmost label of the
suffix touches the left-most label of another chain (that is, an event of the fourth type
has occurred) we have merged two independent chains into a new one. If, after moving
li’s suffix, the suffix cannot be moved further to the right (that is, an event of type (ii)
or (iii) has occurred) we move on to the next chain directly left of the current chain.
Otherwise, we repeat the second-level traversal for the current chain.

Note that the output of our dynamic programming algorithms described in Section 3
ensures that no label can initially be moved to the left. Now, to see that the algorithm
minimizes H =

∑
li∈S |∆i| consider a single row. It is clear that after a chain has been
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∆1 > 0
∆2 < 0

∆3 > 0 ∆5 > 0

m1 m2 m3 m5f1 f5

p1 p2 p3 p4 p5

(a) Before applying our post-processing algo-
rithm.

∆1 > 0
∆2 < 0

∆3 = 0 ∆5 = 0

p1 p2 p3 p4 p5

(b) After applying the post-processing algo-
rithm.

Fig. 11: Illustrations for our post-processing algorithm. In both illustrations two chains
are shown.

considered by the algorithm it does no longer contain a suffix that would decrease H if
moved further to the right. Since this is true for all chains of a each row the correctness
of the algorithm follows. It remains to argue that the running time is O(n2). Consider
again a single row, say the k-th row (which contains |Sk| labels). Determining the values
of ∆i, di, mi and Mi for each label li ∈ Sk can be done in constant time per label. Every
time we move a label at most O(|Sk|) labels in its suffix are moved with it. Since for
each label at most three events can occur there are at most 3|Sk| move operations, each
of which requires O(|Sk|) time. Hence, for the k-th row our algorithm requires O(|Sk|2)
time. The total running time of our algorithm is thus O(

∑
k |Sk|2) = O(n2).

4.6. Minimizing the Total Leader Length
Since long leaders produce visual clutter we may want to place all labels while minimiz-
ing the total length of their leaders. Our algorithm for MAXWEIGHT can be modified
to solve this problem. We simply have to define the weight wi for a label li depending
on the row in which we place li. We define wi = n+ 1− Yi, which implies that a larger
weight is assigned to positions closer to the horizon. Our setting ensures wi > 0 since n
is an upper bound on the number of rows required for an optimal solution. Using our
algorithm for MAXWEIGHT we can solve the problem in O(n5w2

total) = O(n9) time.

4.7. Fixed Order k-position Feature Labeling
Sometimes we do not want to label one distinct point, but we rather want to label a
feature that is represented by an area (for example, a building) where each point inside
this area is equally representative of the feature we want to label. The flexibility of
choosing a representative feature point might help increase the quality of the labeling
(for example, fewer rows are required to display all labels). Since in our setting the
problem is defined only by the x-coordinates of the feature points, each area feature
reduces to a horizontal line segment or interval spanning the horizontal width of the
area. Note that these intervals may overlap. However, in most labeling instances the
objects to be labeled have a natural fixed order (for example, the order of buildings is
implicitly given by their centroids), and a labeling should reflect this order. Hence, we
may assume that there is a given total order on the feature points.

Unfortunately, it is difficult to adapt our algorithms to handle feature points that
can freely move along a horizontal line segment. We can, however, solve a slightly less
general variant of this problem. If instead of line segments, we restrict the possible
positions of each feature to z distinct points we can solve MINROW, and MAXLABELS
in polynomial time with respect to n and z.

More specifically, for each label li we are given a set of z points p1i = (x1i ,−1), . . . , pzi =
(xzi ,−1) with x-coordinates x1i , . . . , xzi (for simplicity we assume that all y-coordinates
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are set to −1). Further, to reflect the order of the features we aim to label, we are also
given a total order on the feature points of the labels. More specifically, the feature of
a label li is always placed to the left of lj ’s feature for all j > i. Now, we are ready to
describe how to adapt MinRowAlg. First, we extend the definition of a compact (i, j, k)-
labeling to a compact (i, g, j, h, k)-labeling, where 1 ≤ g, h ≤ z, pgi and phj are the two
feature points for li, and lj , respectively. The definition of Xi,g,j,h,k can be extended the
same way. We increase the size of the table T by two dimensions. An entry T [i, g, j, h, k]
stores the x-position Xi,g,j,h,k of a compact (i, g, j, h, k)-labeling, and some additional
backtracking information. Each entry T [i, g, j, h, k] is obtained by computing min Θk

i,g,j,h,
where Θk

i,g,j,h for 1 ≤ i < j ≤ n, 1 ≤ g, h ≤ z, and k ≥ 1 is defined as the set

Θk
i,g,j,h =

max{xhj , T [i, g, `, f, k] +Wj}

∣∣∣∣∣∣∣∣∣∣
i ≤ ` < j,

T [i, g, `, f, k] ≤ xhj ,
T [`, f, j, h, k − 1] <∞,

1 ≤ f, g, h ≤ z,
xgi ≤ xfl < xhj

 .

The correctness follows by the same argumentation as in the proof of Theorem 3.3.
The running time of this algorithm is O(K?n3z3). For small values of z the factor z3 can
still be considered a constant.

The extension of MaxLabelsAlg, and MaxWeightAlg to handle multiple possible posi-
tions can be done by following the same basic idea.

5. EXPERIMENTAL RESULTS
In this section we evaluate our algorithms with respect to running time and the number
rows used or number of placed labels. We implemented the algorithms in C++ using
GTK+ and Cairo for the visual output. We tested the algorithms both for real-world
instances as well as randomly generated instances.

5.1. Case Study
Figure 12 shows the results of a case study with the Chicago skyline using three of our
algorithms. The input data for all three figures consists of the same 33 labels. On a
laptop clocked at 2.4 Ghz it took roughly 1ms to compute the panorama labelings in
Figures 12a and 12b and about 160ms to compute the labeling shown in Figure 12c. We
used ε = 10px as label spacing, and applied the optimize label position extension.

Figure 12a shows the solution of the MINROW algorithm that requires ten rows. We
observe that the solution is aesthetically not appealing. In the center of the panorama
the arrangement of labels is reminiscent of the worst-case scenario illustrated in
Figure 3. Figure 12b shows the solution of the MAXLABELS algorithm for three rows.
Due to restricting the number of label rows, the result is much more pleasing than the
MINROW solution (12a). Of all 33 labels 24 are displayed. This indicates that only a
few labels of densely placed points are responsible for the visually unpleasing MINROW
result. Figure 12c shows the solution of the MAXWEIGHT algorithm for three rows. We
divided the buildings into four equal-size classes based on their height, that is, the
dn/4e tallest buildings have weight 8, and the other classes have weights 4, 2, and 1
accordingly. This yields the maximum total weight of all labels wtotal = 128. Of the
33 labels 23 labels are displayed and they have a total weight of 114. Although the
two labelings in Figures 12b and 12c look similar at first sight, note that for instance
the MAXWEIGHT solution contains a label for “Trump International Tower”, the third
tallest building in the panorama, while the MAXLABELS solution misses that label. The
MAXLABELS solution achieves a total weight of 98.
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(a) MINROW solution.
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(b) MAXLABELS solution.
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(c) MAXWEIGHT solution.

Fig. 12: Case study with the Chicago skyline using three of our algorithms. Photography:
c©J. Crocker (http://en.wikipedia.org/w/index.php?title=File:2010-02-19 16500x2000

chicago skyline panorama.jpg).

5.2. Performance Evaluation
We executed the experiments on a single core of an Intel Xeon E5-2670 processor that is
clocked at 2.66 GHz. The machine is running Linux 3.4.28-2.20 and has 64 GiB of RAM.
We compiled our C++ implementation with GCC 4.7.1, using optimization level 3.

For each set of test parameters we generated 1,000 test instances with a width of
1280 pixels. All input points have integer x-coordinates between 0 and 1279. These
coordinates were chosen uniformly at random. The label widths were randomly chosen
from a Gaussian distribution with mean 108.52 and standard deviation σ = 44.72.
We obtained these values by taking 298 names of the world’s tallest buildings from
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input running time [ms] rows
#labels min. avg. max. min. avg. max.

10 < 1 < 1 < 1 1 2 4
25 < 1 < 1 < 1 4 5 12
50 1 2 3 10 17 25
75 4 8 11 16 35 38

100 20 31 36 28 49 50
125 55 90 98 36 62 63
150 181 198 200 74 75 75

Table I: Performance of our implementation of MINROW for instances with 10–150
labels.

Wikipedia1, and determined the width of the names in pixels with the font Helvetica
at size 12.

MINROW.. The first set of our experiments focuses on our implementation of Min-
RowAlg. Table I reports the minimum, average, and maximum running time for labeling
instances with varying numbers of labels. We observe that even for instances where the
points lie unreasonably dense (for example, instances with 150 labels where the average
distance between points is roughly 8 pixels) our algorithm solves all instances in less
than 0.2s. Interestingly, the majority of instances with 75 or more labels is formed by
worst-case instances for MINROW, that is, they require dn/2e rows. Thus for reasonable
real-world instances we can expect that our algorithm generates an optimal solution
near-instantaneously.

MAXLABELS.. In the second set of experiments we investigate the running times of
our implementation of MaxLabelsAlg. We believe that in most practical application no
more than four rows of labels are used and hence ran the first part of experiments for
K = 4. We observe from the data in Tables II that our algorithm performs again very
well, even for large instances. In this case it even outperforms the previous MINROW
algorithm. This is mainly due to the fact that many instances are worst-case instances
for the MINROW algorithm. Note that the number of placed labels for K = 4 seems very
high. This can only happen when there are many relatively narrow labels.

Our algorithm is also able to quickly generate solutions for less realistic instances
where we allow the labels to be placed in at most 50 rows, see Table III. We observe that
even in the worst-case scenario, that is, trying to place 150 labels in at most 50 rows,
the execution time is less than 250ms. Unsurprisingly, the algorithm nearly always
succeeds in placing all or at least the vast majority of labels in this case.

MAXWEIGHT.. Next, we evaluate our MAXWEIGHT algorithm. For this we use two
different weight distributions. In some use cases it might be useful to define a ranking
of the label importance. Then, for a set of n labels, we assign each label a distinct
integer weight between 1 and n. In all generated instances the weights were distributed
uniformly at random. A different way of determining label weights is to group labels
into classes of equal importance. Generally, we can expect that there is only a limited
number of such classes. In the experiment we defined four classes and the labels were
assigned to the classes uniformly at random. Labels in class i have weight 2i.

We report the running times of our implementation of MaxWeightAlg for both types
of weight distributions in Tables IV and V. These results were again generated using

1http://en.wikipedia.org/wiki/List of tallest buildings in the world
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input running time [ms] #placed labels
#labels min. avg. max. min. avg. max.

10 < 1 < 1 < 1 10 10 10
25 < 1 < 1 < 1 21 23 25
50 < 1 < 1 2 34 36 39
75 2 2 6 38 43 49

100 5 5 10 43 48 54
125 9 10 16 46 51 55
150 16 17 17 50 54 59

Table II: Performance of our implementation of MAXLABELS with K = 4 rows for
instances with 10–150 labels.

input running time [ms] #placed labels
#labels min. avg. max. min. avg. max.

10 < 1 < 1 < 1 10 10 10
25 < 1 1 2 25 25 25
50 7 8 14 50 50 50
75 25 26 32 75 75 75

100 65 66 67 99 99 100
125 132 135 141 119 121 125
150 233 237 243 140 143 149

Table III: Performance of our implementation of MAXLABELS with K = 50 rows for
instances with 10–150 labels.

K = 4 rows. Note that the measured execution times in these tables are reported in
seconds and not milliseconds as before. We also give the number of labels placed.

input running time [s] #placed labels
#labels min. avg. max. min. avg. max.

10 < 0.01 < 0.01 < 0.01 10 10 10
25 0.25 0.33 0.42 21 23 25
30 0.57 0.95 1.37 24 26 29
40 4.65 5.94 7.69 28 30 34
50 23.63 27.86 33.64 32 34 37
75 308.96 394.51 465.56 38 40 44

Table IV: Performance of our implementation of MAXWEIGHT for instances with 10–75
ranked labels.

Since the algorithm has a pseudo-polynomial running time the higher execution
times compared to our other algorithms were expected. Although the results reported
in both tables confirm this expectation, we observe that for small and medium numbers
of rows and labels, the algorithm still runs within an acceptable time frame. However,
if we raise the number of available rows substantially or increase the total number of
labels, the execution time grows quickly and may become unacceptable in practice.
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input running time [s] #placed labels
#labels min. avg. max. min. avg. max.

10 < 0.01 < 0.01 0.01 10 10 10
25 0.07 0.11 0.15 22 23 25
30 0.12 0.20 0.34 24 26 29
40 0.64 0.80 1.02 25 30 34
50 1.98 2.56 3.30 30 33 36
75 11.18 15.75 19.68 36 39 43

100 39.73 55.20 67.82 37 40 43

Table V: Performance of our implementation of MAXWEIGHT for instances with 10–100
labels in four importance classes with weights {1, 2, 4, 8}.

input running time [s] #placed labels
#labels min. avg. max. min. avg. max.

10 < 0.01 < 0.01 0.01 10 10 10
25 0.01 0.03 0.1 24 24 25
30 0.03 11.96 90.78 27 29 30
40 1.86 396.48 > 600 - - -

Table VI: Performance of our MILP-implementation for the two-sided MAXLABELS
problems for instances with 10–40 labels and Ka = 3 and Kb = 1. We have omitted the
number of placed labels in the last row since not all instances were finished within the
time limit of 10 minutes.

Two-sided panorama labeling.. Finally, we have also implemented the MILP formula-
tion for MAXLABELS for the two sided case in C++ using the MILP solver Gurobi 5.60.
We set the number of rows above the panorama Ka = 3 and the number of rows below
the panorama to Kb = 1, since in most visual depictions of such panorama labelings, the
majority of labels is above the horizon and only a minority is placed below the picture.

For small instances (of at most 25) labels, the optimum solution can be obtained
quickly, such that it is sufficient for real-time applications, most of the time. However,
increasing the number of labels to 30 already requires several seconds on average.
Increasing the number of labels to 40 yields running times well above the 10 minute
mark, which we set as timeout; see Table VI for detailed results.

Extensions.. Here, we give a brief evaluation of some of the extension to our algorithms
which we described in Section 4.

Unsurprisingly, the label spacing extension has no significant impact on the running
time of the algorithms. For sensible values (for example, ε = 10) the impact on the
number of displayed labels, or rows necessary to display all labels is negligibly.

Since we aim to produce visually appealing panorama labelings, we also implemented
the algorithm that tries to optimize the position of each label in a post-processing step
described in Section 4.5. The implementation is straightforward and for the tested
instances the running time is even on the largest instances consisting of 150 labels
less than 1ms. Since this step requires only little time we recommend to automatically
apply this algorithm after computing a solution by one of our algorithms.

The last extension we implemented is the fixed order k-position feature labeling
described in Section 4.7. We have implemented this extensions for both MinRowAlg
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input kPosMinRowAlg MinRowAlg kPosMaxLabelsAlg MaxLabelsAlg

#labels ∼time ∼rows ∼time ∼rows ∼time ∼labels ∼time ∼labels
10 < 1 2 < 1 2 1 10 < 1 10
25 1 5 1 5 12 23 < 1 23
50 24 17 2 17 53 36 < 1 36

100 660 49 31 49 516 51 5 48
150 3363 75 198 75 1832 57 17 54

Table VII: Evaluation of our implementation of kPosMinRowAlg and kPosMaxLabelsAlg
algorithms with instances consisting of 10–150 labels. The average time in ms and the
average number of rows/labels is reported.

as well as MaxLabelsAlg and we call the respective algorithms kPosMinRowAlg and
kPosMaxLabelsAlg. For MinRowAlg and kPosMinRowAlg we compare the number of rows
necessary to display all labels, and the time required for the algorithms to obtain the
solution. For kPosMaxLabelsAlg we consider the number of labels the algorithm was
able to place into K = 4 rows compared to the standard MaxLabelsAlg. We used the
same generated instances as before, but added for each label four additional possible
feature points evenly spaced at 5 pixels. Two of the new possible feature point positions
were to the left and two were to the right of the initial feature point position. Please
note that we do not claim that the instances we tested resemble real-world data, but
are only used to give a rough intuition on the algorithm’s performance. We report the
result of both implementations in Table VII. For convenience we also repeat the results
of the original MinRowAlg and the MaxLabelsAlg.

Unfortunately, the results of the of the k-position MinRowAlg are not promising. The
algorithm requires significantly more time than the original MinRowAlg algorithm and
the number of rows necessary to display all labels decreases on average only slightly.

The results of kPosMaxLabelsAlg are slightly more promising. We observe that the
number of labels the algorithm is able to place in the 4 rows is slightly higher than
in the standard MaxLabelsAlg algorithm (except for the small instances consisting of
only 10 labels, where all labels can be always placed). Unfortunately, this comes with
a significant increase in running time, but the algorithm might still be suitable for
real-time applications for realistic instances. Usually, we expect less than 50 labels in a
realistic instance which yields running times between 10 and 60ms.

6. CONCLUSION
We have presented polynomial time and practically fast algorithms for label placement
using a new boundary-labeling model that allows multiple rows of sliding unit-height
rectangular labels. In this model, each label is connected with its associated point by
a vertical line segment. We have presented an O(K?n3)-time algorithm for the basic
problem MINROW, which minimizes the number of rows needed to place all labels. If
the labeling is restricted to use at most K rows, however, we cannot generally place
all labels. Therefore, we have investigated the problem MAXLABELS, which aims at
maximizing the total number of labels in K rows, and the problem MAXWEIGHT, which
aims at maximizing the total weight of labels in K rows. While MAXLABELS can be
solved in O(Kn3) time, MAXWEIGHT turned out to be weakly NP-hard, yet can be solved
by a pseudo-polynomial O(Kn3w2

total)-time algorithm, where wtotal is the total weight of
all input labels. For the case of two-sided panorama labeling, we have proposed simple
mixed-integer linear programming formulations.

According to our experiments, the algorithms for MINROW and MAXLABELS are
very fast for instances typically arising in practice, that is, they solve instances with
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up to 150 labels in less than one second. The algorithm for MAXWEIGHT is fast if
the weights are not too large. For example, with integer weights between 1 and 8, we
can solve instances with 50 labels in less than two seconds. We think that our setting
is realistic, since labeled images already with more than 50 labels quickly appear
visually cluttered and more than 150 labels seems unrealistic in most cases. Similarly,
if sites are assigned importance levels, there are usually few of them (for example, main
landmarks, distinctive buildings, public buildings, other). We conclude that our dynamic
programming algorithms can quickly produce visually pleasing labelings of real-world
panorama images. For the two-sided panorama labeling our MILP formulation is fast
only for relatively small instances.

Although we considered several optimization problems in the context of panorama
labeling, there are still many unanswered questions. For some applications it is of
interest to investigate panorama labeling with labels that take up more than one row,
which may be relevant for features with long names. As argued in Section 4.7, it is
interesting to consider labelings of area features instead of point features, which do not
have a unique horizontal order. In this paper we focused on point feature labeling and
more research on other feature types is necessary. We have also discussed the two-sided
panorama labeling problem and showed NP-hardness of the problem, but our proof
(which is a simple reduction of a proof by Garrido et al. [2001]) requires that the labels
have non-uniform width. The computational complexity of two-sided panorama labeling
problem with uniform width-labels is left open for future research. Finally, the vertical
position of labels may have an influence on which features are observed first. In many
cases higher features (mountain peaks, tall buildings) are more important and thus
should have their labels in the top rows, while smaller features should use the lower
rows. Minimizing leader length (Section 4.6) implicitly incorporates this idea, but it
is interesting to find faster algorithms that optimize vertical positions explicitly, for
example, taking weights of features into account as priorities to place their labels in
higher rows.
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Boundary Labeling with Octilinear Leaders. Algorithmica 57, 3 (2010), 436–461.
DOI:http://dx.doi.org/10.1007/s00453-009-9283-6

Michael A. Bekos, Michael Kaufmann, Katerina Potika, and Antonios Symvonis. 2006. Multi-Stack Boundary
Labeling Problems. In Proc. 26th Conf. Foundations of Software Technology and Theoretical Computer
Science (FSTTCS’06) (Lecture Notes in Computer Science), S. Arun-Kumar and N. Garg (Eds.), Vol. 4337.
Springer, 81–92. DOI:http://dx.doi.org/10.1007/11944836 10

Michael A. Bekos, Michael Kaufmann, Katerina Potika, and Antonios Symvonis. 2010. Area-Feature Boundary
Labeling. Comp. J. 53, 6 (2010), 827–841. DOI:http://dx.doi.org/10.1093/comjnl/bxp087

Michael A Bekos, Michael Kaufmann, and Antonios Symvonis. 2008. Efficient Labeling of Collinear Sites. J.
Graph Algorithms Appl. 12, 3 (2008), 357–380.

Michael A. Bekos, Michael Kaufmann, Antonios Symvonis, and Alexander Wolff. 2007. Boundary Labeling:
Models and Efficient Algorithms for Rectangular Maps. Comput. Geom. Theory Appl. 36, 3 (2007),
215–236. DOI:http://dx.doi.org/10.1016/j.comgeo.2006.05.003

Marc Benkert, Herman Haverkort, Moritz Kroll, and Martin Nöllenburg. 2009. Algorithms
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