
Boundary-Labeling Algorithms for Panorama Images

Andreas Gemsa
Karlsruhe Institute of

Technology
gemsa@kit.edu

Jan-Henrik Haunert
Universität Würzburg
jan.haunert@uni-

wuerzburg.de

Martin Nöllenburg
Karlsruhe Institute of

Technology
noellenburg@kit.edu

ABSTRACT
Boundary labeling deals with placing annotations for objects
in an image on the boundary of that image. This problem oc-
curs frequently in situations where placing labels directly in
the image is impossible or produces too much visual clutter.
Previous algorithmic results for boundary labeling consider
a single layer of labels along some or all sides of a rectan-
gular image. If, however, the number of labels is large or
labels are too long, multiple layers of labels are needed.

In this paper we study boundary labeling for panorama
images, where n points in a rectangle R are to be anno-
tated by disjoint unit-height rectangular labels placed above
R in k different rows (or layers). Each point is connected
to its label by a vertical leader that does not intersect any
other label. We present polynomial-time algorithms based
on dynamic programming that either minimize the number
of rows to place all n labels, or maximize the number (or
total weight) of labels that can be placed in k rows for a
given integer k. For weighted labels, the problem is shown
to be (weakly) NP-hard, and we give a pseudo-polynomial
algorithm to maximize the weight of the selected labels. We
have implemented our algorithms; the experimental results
show that solutions for realistically-sized instances are com-
puted instantaneously.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Geometrical
problems and computations; I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling

General Terms
Algorithms

Keywords
GIS, visualization, panorama images, label placement, bound-
ary labeling, sliding labels, dynamic programming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGSPATIAL GIS ’11, November 1-4, 2011. Chicago, IL, USA
Copyright 2011 ACM 978-1-4503-1031-4/11/11 ...$10.00.

Figure 1: Panorama labeling for the skyline of
Chicago. Photography: c©J. Crocker.

1. INTRODUCTION
Annotating features of interest in images by textual labels

or icons is an essential aspect of information visualization.
Depending on application and image content these labels are
either placed directly next to the features within the image
or, if partial occlusion of the image by labels is unaccept-
able or if feature density is too high, on the image boundary.
In the first, so-called internal labeling model, which is com-
mon, e.g., for placing object names in topographic maps, the
association between feature and label should be clear from
the spatial proximity between them. This is no longer the
case in the latter boundary labeling model and hence features
and associated labels are connected to each other using sim-
ple arcs. In this paper we consider a new and practically
important boundary labeling variant, motivated by labeling
features in panorama images of, e.g., skylines or mountain
ranges. Such labeled illustrations are frequently used for
describing landmarks and buildings at lookout points or in
tourist guide books. Moreover, very wide panorama pho-
tographs of streets of houses as used in popular commercial
digital road maps often shall be annotated by information
about local businesses or other points of interest. A com-
mon aesthetic requirement in all these examples is that the
labels are placed above a horizon line, e.g., in the area taken
up by the sky or simply above the actual image.

In this paper we present efficient algorithms for comput-
ing optimal boundary labelings of such panorama images.
Figure 1 shows a labeling in our model: we are given a set
of n anchor points (or sites) in a rectangle R and for each
point a variable-width but unit-height open rectangular la-
bel (think of the bounding box of the object name written as
a single line of text). In order to achieve at least a horizon-
tal proximity between points and labels, every label must
be placed vertically above its associated anchor point. Each
label and its associated site are connected by a vertical line

segment, denoted as a leader. Our labeling model, in which
the lower edge of a label can slide horizontally along the
upper leader endpoint, is a so-called one-slider model (in
contrast to fixed-position models). The algorithmic prob-
lem is to select a subset of the labels and for each selected
label compute a label position (i.e., a row index and a hor-
izontal slider position) such that no two labels overlap and
no leader intersects any label other than its own. We con-
sider two basic optimization goals: (i) minimize the number
of rows required to place all labels, and (ii) maximize the
number of labels that can be placed in k rows.

We start with a review of related work on boundary la-
beling and point out our main contributions.

1.1 Related Work
Algorithmic label placement problems have been studied

in computational geometry for more than 20 years now [6];
a vast body of literature is collected in the map-labeling bib-
liography [14]. Most of the literature, however, is concerned
with internal label placement as traditionally used in cartog-
raphy. Boundary labeling as an alternative labeling model
was first introduced as an algorithmic problem by Bekos et
al. [4] and has subsequently been studied in various flavors,
see also the recent survey by Kaufmann [10].

Different boundary labeling models can be classified by
(a) the shape of the leaders, (b) at which sides of R la-
bels can be placed, and (c) further restrictions about the
labels such as variable or uniform size, placement in multi-
ple layers etc. Leaders are usually represented as polygonal
lines; for readability, the leader shape should be as simple
as possible. Leaders of arbitrary orientation without bends
are called straight or type-s leaders. To reduce visual clutter
axis-aligned leaders are often preferred over arbitrary type-s
leaders. The shape of an axis-aligned polygonal leader start-
ing from the anchor point is described by a string over the
alphabet {p, o}, where p and o denote, respectively, leader
segments parallel and orthogonal to the side of R containing
the label. If a segment is diagonal at a fixed angle (e.g.,
45◦), we use the letter d to refer to its orientation.

Bekos et al. [4] presented efficient labeling algorithms in
the one-, two-, and four-sided model using type-s, type-po
and type-opo leaders. Their main objective was to min-
imize the total leader length, but they also presented an
algorithm for minimizing the number of bends in one-sided
opo-labeling. Benkert et al. [5] studied algorithms for one-
and two-sided po- and do-labeling with arbitrary leader-
dependent cost functions (including total length and number
of bends); the algorithms were implemented and evaluated
experimentally. Bekos et al. [1] presented algorithms for
combinations of more general octilinear leaders of types do,
od, and pd and labels on one, two, and four sides of R.
For uniform labels the algorithms are polynomial, whereas
the authors showed NP-completeness for a variant involving
non-uniform labels.

Extensions of the basic static point-feature model include
algorithms for labeling area features [3], and a dynamic one-
sided po-model, in which the user can zoom and pan the
map view while the label size on the boundary remains
fixed [12]. Relaxing the property that each label is con-
nected to a unique site leads to the many-to-one model.
In this model NP-completeness results, approximations and
heuristics for crossing minimization with type-opo and -po
leaders are known [9]; Lin [11] presented an approach using

duplicate labels and hyperleaders to avoid crossings.
The only previous work using multiple layers of labels on

the boundary presented O(n4 logH)-time algorithms for la-
bel size maximization in a one-sided model with two or three
“stacks” of labels on a vertical side of R and type-opo lead-
ers [2] (here H is the height of the rectangle R). In the
algorithms all labels are assumed to be of uniform size and
a maximum scaling factor is determined such that all labels
can be placed in the available stacks. The authors further
gave NP-hardness results for some two-stack variants of non-
uniform labels and opo- or po-leaders.

1.2 Contribution
In our paper we study a one-sided multi-row labeling prob-

lem with type-o leaders and variable-width labels. Note that
for comparison with the results of Bekos et al. [2], the same
model can be transformed into an equivalent multi-stack la-
beling problem with variable-height labels; since for textual
annotation variable-width labels are more relevant, we de-
scribe the multi-row model. In Sect. 2 we introduce our
labeling model in more detail and define three optimiza-
tion problems: MinRow, which aims to find a labeling with
all n labels in the minimum feasible number k∗ of rows,
MaxLabels, which maximizes the number of labels placed
in k given rows, and MaxWeight, which considers labels
weighted by importance (with total weight wtotal) and com-
putes a maximum-weight subset of labels for k rows. Sec-
tion 3 describes an O(k∗n3)-time algorithm for MinRow, an
O(kn3w2

total)-time algorithm for MaxWeight, and anO(kn3)-
time algorithm for MaxLabels. In Sect. 4 we present exten-
sions of the algorithms for practically interesting variations
of the basic problems. We have implemented our algorithms
and report results of an experimental evaluation in Sect. 5.

2. PANORAMA LABELING MODEL
We aim to label a set P = {p1, . . . , pn} of points, where

pi = (xi, yi). We assume xi < xi+1 for i = 1, ..., n − 1, i.e.,
the points p1, . . . , pn have distinct x-coordinates and they
are ordered from left to right. Moreover, we require yi < 0
for i = 1, . . . , n meaning that pi lies below the horizontal line
y = 0, which we denote as the horizon. For our problems,
the y-coordinates of the points in P are irrelevant and we can
assume that all points lie on the horizontal line y = −1. For
each pi ∈ P we are given an open axis-parallel rectangular
label Li of width Wi ∈ R+

0 and height 1.
Labeling P comprises two subproblems: selecting the la-

bels that are to be displayed and placing them onto the
plane. More formally, we define a (panorama) labeling as a
set S ⊆ {L1, . . . , Ln} and a point (Xi, Yi) for each Li ∈ S,
where Xi ∈ R is the x-coordinate of the right boundary of
Li and Yi ∈ Z+ is the y-coordinate of the lower boundary of
Li. By requiring Yi > 0 for all labels we ensure that all la-
bels are placed above the horizon. Restricting Yi to integer
values allows us to say that label Li is placed in row Yi.

In order to connect each label Li ∈ S with its correspond-
ing point pi ∈ P , we draw a vertical line segment from
(xi, Yi) to (xi, yi); we call this line segment the leader of
label Li and point pi.

A labeling is feasible if it satisfies requirements (F1)–(F3):
(F1) For every label Li ∈ S the leader of Li actually con-

nects Li with pi, i.e., Xi −Wi ≤ xi ≤ Xi.
(F2) For every label L ∈ S the leader of L does not intersect

any label in S other than L.

row 1
row 2
row 3

horizon
p1

p2 p3 p4
p5

Figure 2: A feasible labeling using dn/2e = 3 rows.

(F3) The labels in S do not intersect each other.
For a pair of indices 1 ≤ i ≤ j ≤ n and a row index k,

we define an (i, j, k)-labeling as a feasible labeling of Pij =
{pi, . . . , pj} with S = {Li, . . . , Lj} satisfying
(R1) Yi = Yj = k, i.e., both Li and Lj are in row k, and
(R2) Y` ≤ k for ` = i + 1, ..., j − 1, i.e., the labels for all

points between pi and pj are in row k or below.
We say that an (i, j, k)-labeling L is compact if there is no
(i, j, k)-labeling where label Lj has a smaller x-coordinate
than in L; we denote the x-coordinate of Lj in a compact
(i, j, k)-labeling L as the x-value Xi,j,k of L. If no (i, j, k)-
labeling exists we set Xi,j,k =∞.

Among the feasible labelings we can optimize different
objective criteria. Generally, we try to avoid wasting space
and we favor solutions that display many labels. A basic
problem is to find a solution that selects all labels and uses
as few rows as possible.

Problem 1 (MinRow). Given a set P of n points below the
horizon and a label for each point, find a feasible labeling
with all labels that requires the minimum number of rows.

In fact, a feasible labeling with all labels always exists.

Lemma 1. For each MinRow instance there exists a feasible
labeling with dn/2e rows and for each n ∈ N there exists a
MinRow instance with n points that requires dn/2e rows.

Proof. To show the first part of Lemma 1, we label all points
in P as in Fig. 2, i.e., for i = 1, . . . , dn/2e we set Yi = i and
Xi = xi; for i = dn/2e+1, ..., n we set Yi = n−i+1 and Xi =
xi +Wi. Clearly, requirement (F1) holds. Requirement (F2)
holds since for i = 1, ..., n− 1 and j = i+ 1, ...n label Lj lies
above Yi if j ≤ dn/2e and to the right of xi if j > dn/2e.
Requirement (F3) holds since each row either contains a
single label or two labels Li, Lj with i ≤ dn/2e < j. In the
latter case Li lies to the left of Lj since the right boundary
of Li is Xi = xi, the left boundary of Lj is Xj −Wj = xj ,
and i < j implies xi < xj . To show that dn/2e rows may be
required let pi = (i,−1) and Wi = n for i = 1, ..., n. Since
the distance between p1 and pn is n− 1 at most two labels
fit in one row.

Obviously, solutions as the one in Fig. 2 are rather useless
in practice—placing no more than two labels in a single row
the space consumption becomes huge. If the horizontal dis-
tances between the points are small and the labels are wide,
however, we will fail to find any better solution. Therefore,
we allow some labels to be discarded if the available space
is limited. If we are restricted to a certain number of rows,
then we want to display as many labels as possible.

Problem 2 (MaxLabels). Given a set P of n points below
the horizon, a label for each point, and a positive integer K,
determine the feasible labeling that displays the maximum
number of labels in at most K rows.

By counting the number of labels we might fail to measure
the quality of a labeling appropriately. We should account
for the fact that often some objects are more important than
others and thus deserve a higher chance of becoming labeled.
This can be expressed with weighted points.

Problem 3 (MaxWeight). Given a set P of n points below
the horizon, a label for each point, a positive integer K, and
a positive integer weight wi for each point pi ∈ P , find the
feasible labeling S that maximizes the weight sum

∑
Li∈S wi

among all feasible labelings that use at most K rows.

3. ALGORITHMS

3.1 Single-Row Optimization
Before we describe our algorithm for MinRow in the next

subsection, we briefly discuss the following single-row label
placement problem, which serves as a base case for MinRow.

Problem 4 (SingleRow). Given a set P of n points below
the horizon and a label for each point, decide whether there
is a feasible labeling for P with all labels in a single row
above the horizon.

The SingleRow problem is closely related to a single-ma-
chine job scheduling problem, where n ordered jobs J1 <
· · · < Jn with processing times pi and release and due times
ri and di are to be non-preemptively scheduled in the given
order such that all jobs finish before their due time. The
weighted version of this problem is known as single-machine
throughput maximization and has been related to one-di-
mensional weighted point labeling problems before [13].

SingleRow can be solved with a simple greedy strategy
that processes the points in increasing x-order and places the
next label Li in the leftmost possible position such that it
does not intersect the previous label, i.e., Xi = max{Xi−1 +
Wi, xi}. If for any i we have Xi > xi + Wi, then obviously
no feasible single-row labeling exists (requirement (F1) vi-
olated) and we report failure and return ∞. Otherwise we
report success and return the position Xn of the last label.
The correctness of the algorithm is immediate and for sorted
points it takes linear time.

With the same algorithm we can compute the x-values
Xi,j,1 of all compact (i, j, 1)-labelings in O(n2) time by run-
ning it n times, once for every subset Pi,n (i = 1, . . . , n)
of points and storing in each step j = i, . . . , n of the algo-
rithm with a feasible labeling the position of label Lj (or ∞
otherwise) as the x-value Xi,j,1.

3.2 Row Number Minimization
We now show how to solve MinRow efficiently using dy-

namic programming. Our idea is to construct compact (i, j, k)-
labelings for all 1 ≤ i ≤ j ≤ n and successively increasing
values of k until a feasible labeling for all points is found.

To ease notation we introduce two dummy points p0 and
pn+1 to the left of p1 and to the right of pn that do not influ-
ence the feasibility of labeling P , regardless of the position
of L0 and Ln+1. We set W0 = Wn+1 = 0, x0 = x1− 2Wmax,
and xn+1 = xn + 2Wmax, where Wmax = max1≤i≤nWi is
the maximum label width.

Our algorithm computes a three-dimensional table T , where
each entry T [i, j, k] for 0 ≤ i ≤ j ≤ n+1 and 1 ≤ k ≤ dn/2e
stores the x-value Xi,j,k of a compact (i, j, k)-labeling as well
as some backtracking information in order to reconstruct the

compact (i, j, k)-labeling. With this semantics it is clear that
there is a solution to MinRow with k rows if and only if there
is a feasible (0, n+ 1, k)-labeling, i.e., T [0, n+ 1, k] <∞.

We compute T in a bottom-up fashion with respect to
the row index k, i.e., we first compute T [·, ·, k] for k = 1
and if T [0, n+ 1, 1] =∞ proceed to computing T [·, ·, k] for
k = 2 and so on until eventually T [0, n + 1, k] < ∞. The
entries of T [·, ·, k] for k = 1 are computed by the algorithm
described in Sect. 3.1. For k > 1 the entries T [i, i, k] for
i = 0, . . . , n+1 are set to T [i, i, k] = Xi,i,k = xi. We use the
recurrence T [i, j, k] = min θki,j for all i < j and k > 1, where

θki,j for i < j and k > 1 is defined as the set

θki,j =

max{xj , T [i, `, k] +Wj}

∣∣∣∣∣∣
i ≤ ` < j,

T [i, `, k] ≤ xj ,
T [`, j, k − 1] <∞

 .

Note that θki,j can be empty; in that case we define min ∅ :=
inf ∅ = ∞ and obtain T [i, j, k] = ∞. Algorithm 1 summa-
rizes the dynamic program.

1 compute T [·, ·, 1] using the greedy single-row algorithm
2 for k = 2 to dn/2e do
3 for j = 1 to n+ 1 do
4 for i = 0 to j − 1 do
5 T [i, j, k] = min θki,j

6 T [j, j, k] = xj

7 if T [0, n+ 1, k] <∞ then return k

Algorithm 1: Bottom-up computation of table T .

We now prove that this approach is efficient and correct.

Theorem 1. Algorithm 1 solves MinRow in O(k∗n3) time,
where k∗ is the number of rows in the optimal MinRow so-
lution.

Proof. The running time of Algorithm 1 follows immedi-
ately. The outer loop is iterated k∗ times, and in each
iteration of the outer loop we perform O(n2) iterations of
the nested inner loops. In each iteration the most time con-
suming task is to find in linear time the minimum of the set
θki,j , which contains O(n) elements.

It remains to prove the correctness of Algorithm 1 by
showing T [i, j, k] = Xi,j,k for all 0 ≤ i ≤ j ≤ n + 1 and
1 ≤ k ≤ k∗. The proof is by induction over k and for each
k by induction over j − i.

For k = 1 we use the trivial greedy algorithm of Sect. 3.1
and it follows that the entries T [·, ·, 1] are correct.

Next we prove correctness for k > 1. In the base case
i = j the algorithm sets T [i, i, k] = xi, which is the x-value
Xi,i,k of a compact (i, i, k)-labeling that simply consists of
the single label Li placed in its leftmost possible position
Xi = xi in row Yi = k.

Now let’s assume i < j and let L be an (i, j, k)-labeling.
By definition Li and Lj are in row k. This implies that
there is a well-defined predecessor L` of Lj in row k for some
i ≤ ` < j; we also say that L` precedes Lj in row k. We call a
label L` a feasible predecessor of Lj if there exists an (i, j, k)-
labeling, where L` precedes Lj . Let F (i, j, k) be the set of
all feasible predecessors of Lj in an (i, j, k)-labeling. Now we
define an (i, j, k)-labeling L to be `-compact if L` precedes
Lj and there is no other (i, j, k)-labeling with predecessor

pi p` pj

(a) Xj = xj

pi p` pjX`

Wj

(b) Xj = X` +Wj

Figure 3: Two `-compact (i, j, 3)-labelings.

L` where the position of Lj is further to the left. Figure 3
shows two `-compact (i, j, 3)-labelings.

Obviously, every compact (i, j, k)-labeling L is also `-compact
for the predecessor L` of Lj in L. On the other hand the
`-compact (i, j, k)-labeling with the leftmost position of Lj

over all feasible predecessors L` ∈ F (i, j, k) is a compact
(i, j, k)-labeling. For every `-compact (i, j, k)-labeling the
leftmost x-coordinate of Lj is X`

j = max{xj , X`+Wj}, since
Lj must be Wj to the right of its predecessor but cannot
be left of xj , see Fig. 3. Hence the x-value of a compact
(i, j, k)-labeling Xi,j,k = min{X`

j | L` ∈ F (i, j, k)}. Note
that if F (i, j, k) = ∅ we obtain Xi,j,k = ∞. We claim that
θki,j = {X`

j | L` ∈ F (i, j, k)} and thus Algorithm 1 correctly

computes T [i, j, k] = min θki,j = Xi,j,k.
Let L be an `-compact (i, j, k)-labeling and let Lleft be

the (i, `, k)-labeling formed by labels Li, . . . , L` of L. We
can assume that Lleft is compact since otherwise we can
replace Lleft in L by a compact (i, `, k)-labeling that actu-
ally constrains the position of Lj less than Lleft. Hence
X`

j = max{xj ,Xi,`,k +Wj}. Since ` < j we obtain from the
induction hypothesis that Xi,`,k = T [i, `, k], i.e., the values
in θki,j are actually X`

j = max{xj , T [i, `, k] +Wj}.
It remains to show that a value X`

j is in θki,j if and only
if L` is a feasible predecessors in F (i, j, k). For the only-
if-part, let L` be a feasible predecessor in F (i, j, k). Then
obviously i ≤ ` < j. Moreover, Xi,`,k = T [i, `, k] ≤ xj
since otherwise Lj would be pushed too far to the right for
being part of an (i, j, k)-labeling. Finally, we observe that
any `-compact (i, j, k)-labeling induces a labeling Lright of
the labels L`+1, . . . , Lj−1, in which they are restricted to lie
to the right of x`, to the left of xj and below row k. We
can extend Lright to an (`, j, k− 1)-labeling by placing L` at
X` = x`, Y` = k − 1 and Lj at Xj = xj + Wj , Yj = k − 1,
see Fig. 4. This implies T [`, j, k − 1] <∞.

For the if-part, let i ≤ ` < j such that T [i, `, k] ≤ xj
and T [`, j, k − 1] < ∞. We combine a compact (i, `, k)-
labeling Lleft (exists because T [i, `, k] ≤ xj <∞) and labels
L`+1, . . . , Lj−1 from a compact (`, j, k−1)-labeling with the
label Lj at position Xj = xj + Wj in row k as illustrated
in Fig. 4. This yields a feasible (i, j, k)-labeling L since Lleft

is feasible and labels L`+1, . . . , Lj−1 lie below row k, to the
right of x`, and to the left of xj . We know that T [i, `, k] < xj
and hence Lj can be placed at xj +Wj without overlapping
L`. Furthermore both Li and Lj are in row k and L` pre-
cedes Lj , i.e., L` is a feasible predecessor in F (i, j, k).

3.3 Weight Maximization
In this section we first show NP-hardness of MaxWeight

and then present a pseudo-polynomial time algorithm show-
ing that MaxWeight is actually weakly NP-hard.

pi p` pjp`

Lleft

Lrightk
k − 1

pi p` pj

k

Figure 4: (De-)composition of an `-compact (i, j, k)-
labeling into an (i, `, k)-labeling and an (`, j, k − 1)-
labeling.

Theorem 2. MaxWeight is NP-hard, even for k = 1.

Proof. Our proof is by reduction from the following NP-hard
variant of Partition [7]: Given a set A = {a1, a2, ..., a2m} and
a size s(a) ∈ Z+ for each a ∈ A, is there a subset A′ ⊆ A such
that

∑
a∈A′ s(a) =

∑
a∈A\A′ s(a) and A′ contains exactly

one of a2i−1, a2i for every 1 ≤ i ≤ m? For each Partition-
instance I we construct a MaxWeight-instance J such that
the weight of an optimal solution to J allows us to decide
whether or not I is a yes-instance of Partition. We specify
the set P of points, their weights, and the widths of their
labels in J as illustrated in Fig. 5. More precisely, we define
a large constant C = 1000

∑
a∈A s(a). Next we define (from

left to right) points pL, p1, ..., p2m, pR on a horizontal line
and their distances as pLp1 = p2mpR = C/2, p2i−1p2i =
(s(a2i−1) + s(a2i))/2, and p2ip2i+1 = C. The corresponding
labels have widths WL = WR = pLpR and Wi = C + s(ai).
Furthermore, we define wL = wR = WL and wi = Wi, i.e.,
the weight of a point is equal to the width of its label.

C C
2

s(a2i−1)+s(a2i)
2

p2 p2i

w2i = C + s(a2i)
p1pL

C
2

p2i−1 pR

Figure 5: Reducing Partition to MaxWeight.

A solution to the partition instance I exists if and only if
a feasible labeling in a single row with total weight 3 pLpR
exists. To see why, we first assume that we are given such
a labeling. Clearly, this labeling contains the label for pL
and the label for pR. Moreover, the space between pL and
pR is completely filled with labels for other points. Since
the labels are extremely wide (compared to the distances
p2i−1p2i) exactly one of the labels L1, L2 has to be selected
and its leader has to lie roughly in the center of the label.
This again implies that exactly one of the labels L3, L4 has
to be selected, and so on. By induction, it follows that
for i = 1, ...,m exactly one of the labels L2i−1, L2i has to
be selected. Since pLpR is exactly half the total width of
labels L1, ..., L2m the labeled points correspond to a feasible
partition. If, however, we are given a solution A′ ⊆ A to the
partition instance, we can construct the labeling by selecting
labels pL, pR plus the labels for the points corresponding to
the elements in A′. It is easy to see that by applying our

algorithm for SingleRow from Sect. 3.1 to the selected labels,
we obtain a feasible labeling.

Note that our construction is very similar to an NP-hard-
ness proof for an internal 4-slider point labeling problem by
Garrido et al. [8, Theorem 3]. Using the same proof it can be
shown that MinRow, MaxLabels, and MaxWeight become
NP-hard if labels can be placed both above and below the
panorama, even if they are restricted to one row per side.

Since MaxWeight is NP-hard, we cannot hope for a poly-
nomial-time algorithm unless P = NP. But the reduction
used labels with extremely high weights. Hence, we pro-
pose a pseudo-polynomial time algorithm, i.e., an algorithm
whose running time is polynomial in n, k, and the numeric
value of

∑n
i=1 wi, but exponential in the length of the en-

coding of the weight sum
∑n

i=1 wi. If the label weights are
small integer numbers, e.g., in the range one to four, such
an algorithm can still be fast in practice.

We first extend our notation from Sect. 3.2. Recall that
for a labeling L the set S contains all labels selected to be
displayed. For a pair of indices 0 ≤ i ≤ j ≤ n + 1, a row
index k, and a weight c we define an (i, j, k, c)-labeling as
a feasible labeling of Pi,j = {pi, . . . , pj} such that Li and
Lj are in S and placed in row k, all other labels L` ∈ S are
placed in row k or below, and the total weight of the labels in
S is c. Analogously, we say an (i, j, k, c)-labeling is compact
if there is no other (i, j, k, c)-labeling where Lj has a smaller
x-coordinate. Again, we call the x-coordinate of Lj in a com-
pact (i, j, k, c)-labeling L the x-value of L. Note that this
definition generalizes our definition of a compact (i, j, k)-
labeling, since an (i, j, k, c)-labeling is an (i, j, k)-labeling if

c =
∑j

`=i w`.
In our algorithm for MaxWeight we add a fourth dimen-

sion to the table T that allows us to distinguish labelings of
different weights. Let wtotal =

∑n
i=1 wi be the total weight

of all points in P . Then each entry T [i, j, k, c] stores the
x-value of a compact (i, j, k, c)-labeling, where 0 ≤ i ≤ j ≤
n + 1, 1 ≤ k ≤ dn/2e, and 0 ≤ c ≤ wtotal. The maximum-
weight labeling using K rows can be constructed by back-
tracking from T [0, n + 1,K, cmax], where cmax = max{c |
T [0, n+ 1, k, c] <∞}.

As before, we compute T in a bottom-up fashion with
respect to the topmost row k, the weight c, and the distance
j − i. We set T [i, i, k, wi] = xi for all k and T [i, i, k, c] =∞
for all k and c 6= wi. In all other cases we use the recurrence
T [i, j, k, c] = min θk,ci,j , where θk,ci,j for k = 1 is defined as the
set

θ1,ci,j =

max {xj , T [i, `, 1, a] +Wj}

∣∣∣∣∣∣
i ≤ ` < j,

T [i, `, 1, a] ≤ xj ,
a = c− wj


and for k > 1 as the set

θk,ci,j =

max {xj , T [i, `, k, a] +Wj}

∣∣∣∣∣∣∣∣
i ≤ ` < j,

T [i, `, k, a] ≤ xj ,
T [`, j, k − 1, b] <∞,
a = c− b+ w`

 .

Theorem 3. MaxWeight can be solved by dynamic program-
ming in O(kn3w2

total) time.

Proof. The dynamic programming algorithm for MaxWeight
is similar to Algorithm 1, but uses four instead of three
nested loops to compute the O(kn2wtotal) entries of T . Each

entry is computed as the minimum of a set θk,ci,j containing
O(nwtotal) elements. This yields an overall running time of
O(kn3w2

total).
We now show the correctness of the algorithm analogously

to the proof of Theorem 1 but taking the weight constraints
into account. For the case i = j and arbitrary k it is easy
to see that the x-value of a compact (i, i, k, c)-labeling is the
leftmost possible position xi of Li if c = wi and∞ otherwise.

Before we consider the general case, we extend the no-
tion of `-compact as introduced in Sect. 3.2. We call a pair
(L`, a) a feasible predecessor pair of (Lj , c) if there exists
an (i, j, k, c)-labeling (i < j), where L` precedes Lj and
the total weight of the selected labels S ∩ {Li, . . . , L`} is
a. We define F (i, j, k, c) as the set of all feasible prede-
cessors pairs of (Lj , c) in an (i, j, k, c)-labeling. We then
define an (i, j, k, c)-labeling L to be (`, a)-compact if (L`, a)
precedes (Lj , c) and there is no other (i, j, k, c)-labeling L′
where (L`, a) precedes (Lj , c) and which has smaller x-value
than L. As before it is clear that every compact (i, j, k, c)-
labeling L is also (`, a)-compact for the predecessor pair
(L`, a) of (Lj , c). Conversely, the (`, a)-compact (i, j, k, c)-
labeling with smallest x-value over all feasible predecessor
pairs (L`, a) ∈ F (i, j, k, c) is compact. For every (`, a)-

compact (i, j, k, c)-labeling L the x-value of L is X`,a
j =

max{xj , X`+Wj}. Then the x-value of a compact (i, j, k, c)-

labeling is min{X`,a
j | (L`, a) ∈ F (i, j, k, c)}. Our claim is

that θk,ci,j = {X`,a
j | (L`, a) ∈ F (i, j, k, c)} and thus the algo-

rithm is correct.
Let L be an (`, a)-compact (i, j, k, c)-labeling and let Lleft

be the induced (i, `, k, a)-labeling. As in the proof of Theo-
rem 1 we can assume that Lleft is compact and hence by the
induction hypothesis X`,a

j = max{xj , T [i, `, k, a]+Wj}, i.e.,

the values in θk,ci,j are actually X`,a
j for some pairs (`, a).

It remains to show that X`,a
j ∈ θk,ci,j if and only if the

pair (L`, a) ∈ F (i, j, k, c). We start with the case k = 1.
If (L`, a) ∈ F (i, j, 1, c), then obviously i ≤ ` < j and also
T [i, `, 1, a] ≤ xj since otherwise Lj cannot be in a feasible
position. Moreover, for the total weight of the labeling to be
c, the weight of the labels in S∩{Li, . . . , L`} must be c−wj ,
since in a single row Lj is the only label to the right of L`.
If, on the other hand, the three constraints for the set θ1,ci,j

hold, we can combine a compact (i, `, 1, a)-labeling (which
exists due to T [i, `, 1, a] < ∞) with weight a and the label
Lj with weight wj placed in row 1 at position Xj = xj +Wj

into an (i, j, 1, c)-labeling for c = a+ wj . Therefore, (L`, a)
is indeed a feasible predecessor pair in F (i, j, 1, c).

In the general case for k > 1 the argument is similar to
k = 1. Let first (L`, a) ∈ F (i, j, k, c) be a feasible predecessor
pair. Then i ≤ ` < j and T [i, `, k, a] ≤ xj as before, but
additionally any (`, a)-compact labeling induces a labeling
Lright of labels S ∩ {L`+1, . . . , Lj−1} that is strictly below
row k, to the right of x` and to the left of xj . Furthermore,
Lright has weight c − a − wj . Again, we extend Lright to
an (`, j, k − 1, b)-labeling by placing L` and Lj in row k − 1
with x-coordinates X` = x` and Xj = xj + Wj , similar to
the situation depicted in Fig. 4. Note that the weight b of
this labeling is b = c−a−wj +w`+wj so that all constraints

put on set θk,ci,j are satisfied.

Conversely, if all constraints for θk,ci,j are satisfied we can
compose a feasible (i, j, k, c)-labeling L from a compact (i, `, k, a)-
labeling Lleft and a compact (`, j, k− 1, b)-labeling Lright as
sketched in Fig. 4. The labels in S ∩{Li, . . . , L`} are placed

as in Lleft, the labels in S∩{L`+1, . . . , Lj−1} as in Lright and
Lj at xj +Wj . The weights of the sub-labelings are chosen
such that the weight of L correctly adds up to c.

3.4 Label Number Maximization
In this section we present an algorithm to solve MaxLa-

bels, i.e., to place as many labels as possible in K given rows.
Note that we could solve this problem by the MaxWeight
algorithm of the previous section if we set wi = 1 for all
1 ≤ i ≤ n. However, this would result in a running time
of O(kn5). Here we show that we can actually do better by
using an exchange argument based on the fact that all labels
have the same weight.

We first introduce an adapted notation for cardinality-
maximal labelings. We define a cm-(i, j, k)-labeling to be a

feasible labeling of a subset P̂ ⊆ Pi,j = {pi, . . . , pj} in rows
1 to k with both Li and Lj placed in row k such that there
is no feasible labeling of another subset P̄ ⊆ Pi,j with the

same properties but |P̄ | > |P̂ |. We say a cm-(i, j, k)-labeling
L is cm-compact if there is no other cm-(i, j, k)-labeling with
smaller x-value.

We will compute two three-dimensional tables T and K.
An entry T [i, j, k] for 0 ≤ i ≤ j ≤ n+1 and 1 ≤ k ≤ K stores
the x-value of a cm-compact cm-(i, j, k)-labeling. We note
that T can no longer contain the value∞ since for any i, j, k
there is always a feasible labeling with P̂ = {pi, pj} and their
labels placed disjointly in row k. An entry K[i, j, k] stores
the actual cardinality of a cm-(i, j, k)-labeling.

The recursive definitions of T and K are as follows:

T [i, j, k] =

{
xi if i = j

min θki,j else
, (1)

with θki,j =max {xj , T [i, `, k] +Wj}

∣∣∣∣∣∣
i ≤ ` < j, T [i, `, k] ≤ xj ,

K[i, j, k] =
K[i, `, k] +K[`, j, k − 1]− 1

 ,

K[i, j, k] =

{
1 if i = j

maxκk
i,j else

, (2)

with

κk
i,j =

{
K[i, `, k] +K[`, j, k − 1]− 1

∣∣∣∣ i ≤ ` < j,
T [i, `, k] ≤ xj

}
.

The dynamic-programming algorithm for MaxLabels com-
putes K and T in a bottom-up fashion analogously to our
previous algorithms. Note that for each triple i, j, k we first
compute K[i, j, k] and then based on that T [i, j, k]. The final
solution can be obtained by backtracking from T [0, n+1,K]
and has K[0, n+ 1,K]− 2 selected labels.

Theorem 4. MaxLabels can be solved by dynamic program-
ming in O(kn3) time.

Proof (Sketch). The running time of the dynamic-program-
ming algorithm follows from the fact that the tables are both
of size O(kn2) and computing each entry consists of finding
the minimum or maximum of a set of O(n) elements.

The correctness proof follows exactly the same arguments
about the decomposition of a cm-(i, j, k)-labeling L into two
labelings Lleft and Lright by splitting L at the predecessor L`

of Lj in row k (Fig. 4). The definition of θki,j implies that a

value X`
j = max{xj , T [i, `, k]+Wj} is contained in the set if

and only if it leads to a cm-(i, j, k)-labeling; this is achieved
by requiring K[i, j, k] = K[i, `, k] + K[`, j, k − 1] − 1. Note
that here we need to subtract 1 because label L` is counted
twice otherwise. The set κk

i,j contains the cardinalities of all
feasible (T [i, `, k] ≤ xj) compositions of a cm-compact cm-
(i, `, k)-labeling and a cm-compact cm-(`, j, k − 1)-labeling.
Entry K[i, j, k] is then simply the maximum value in κk

i,j .
The interesting aspect for showing the correctness is the

following exchange argument. Assume that there is a cm-
(i, j, k)-labeling L with predecessor L` of Lj but T [i, `, k] >
xj , i.e., the x-value of this labeling is not contained in θki,j .
Since T [i, `, k] > xj it follows that the sub-labeling L′ for
Pi,` induced by L is not cardinality-maximal (recall that
T [i, `, k] stores the smallest x-value of all cm-(i, j, k)-labelings).
So in order to have L` as the predecessor of Lj some other
label left of L` in row k must be removed from the selected
labels, i.e., we loose at least one label from S. But since
all labels are worth the same, we can just as well remove
L` itself from S and use label L`′ , the predecessor of L`

in a cm-compact cm-(i, `, k)-labeling, as Lj ’s predecessor.
Since L`′ is the predecessor of L` in that labeling we know

T [i, `′, k] ≤ x` < xj , so that the x-value X`′
j is in fact con-

tained in θki,j .

pi p`′ pj

k

p`Lmid LrightLleft

Figure 6: Construction of a labeling for Theorem 4.

It remains to argue that this labeling with predecessor L`′

is at least as good as L. By removing label L` from the cm-
compact cm-(i, `, k)-labeling we obtain a labeling of a subset
of Pi,`−1 that contains exactly K[i, `, k] − 1 labels but still
has at least as many labels as the part of L for points Pi,`.
This labeling is further split into the part Lleft from pi to
p`′ and the part Lmid from p`′+1 to p`−1, see Fig. 6. Finally,
there is a labeling Lright for the points P`+1,j−1 that in L has
at most K[`, j, k− 1]− 2 labels. Now obviously by removing
the leader of p` separating Lmid from Lright we obtain that
K[`′, j, k − 1] ≥ K[`′, `, k − 1] +K[`, j, k − 1]− 2. So in total
we get

K[i, j, k] ≥ K[i, `′, k] +K[`′, j, k − 1]− 1
≥ K[i, `′, k] +K[`′, `, k − 1] +K[`, j, k − 1]− 3
≥ K[i, `, k]− 1 +K[`, j, k − 1]− 1
≥ |L|,

where |L| denotes the number of labels in L. This means
that our algorithm indeed finds a labeling that has at least
as many labels as L.

4. EXTENSIONS
In this section we sketch several extensions to our algo-

rithms. With some extensions we aim at handling additional
constraints, e.g., to ensure that two labels or a label and a
leader of another label do not come too close. With this
particular constraint the problem MinRow can become in-
feasible if the distance between two input points is too small.

Similar problems can arise with other extensions. We do not
address these problems in detail; often they can be revealed
and possibly resolved in a pre-processing step.

4.1 Label spacing
Our algorithms ensure that no two labels intersect and

that no label intersects a leader other than its own. It is
possible, however, that two labels (or a label and a leader)
get arbitrarily close to each other. To avoid this, we add
the requirement that the horizontal distance between two
labels in the same row (or between a label and the leader
of a label in a higher row) must not be smaller than a user-
defined value ε ≥ 0. Algorithm 1 ensures this requirement
if we replace the condition T [i, `, k] ≤ xj in the definition
of θki,j with T [i, `, k] ≤ xj − ε. Similarly we extend our
algorithms for MaxWeight and MaxLabels.

4.2 Horizontal space constraints
In Sect. 3 we tried to compute labelings that use a small

number of rows but we did not care about space consump-
tion in the horizontal direction. If we want to ensure, e.g.,
that all labels are placed inside R, we have to restrict the
sliding of labels. This can be done by changing the definition
of the two dummy points p0 and pn+1 in Sect. 3.2, i.e., we
set x0 = xmin and xn+1 = xmax, where xmin (xmax) is the
smallest (largest) allowed x-coordinate for the left (right)
boundary of a label. Then, for instance, a (0, n + 1, k)-
labeling with the minimum feasible value for k is an optimal
solution to the horizontally constrained version of MinRow.

4.3 360◦ panoramas
We consider a 360◦-panorama as an image curved around

the inside of a cylinder, thus it does not have a left or right
boundary. We can extend our algorithm for MinRow to
handle such images. Our extension is based on the following
observation: if there is a solution to MinRow with k rows,
there is also a solution with k rows that contains one of the
labels Li at position Xi = xi, Yi = k.

Our idea is to extend table T , which so far contained
values T [i, j, k] only for i ≤ j. The new version of the al-
gorithm computes values T [i, j, k] for all 1 ≤ i, j ≤ n and
1 ≤ k ≤ k∗, where k∗ is the smallest feasible number of
rows. If j < i, a labeling corresponding to T [i, j, k] sim-
ply contains labels Li+1, ..., Ln and L1, ..., Lj . We compute
T [i, j, k] as before, ignoring the fact that in a 360◦-panorama
Li and Lj may intersect in the interval bounded to the left
by xj and to the right by xi. Nevertheless, it is easy to see
that the values in T allow us to decide for i = 1, ..., n and
k = 1, ..., dn/2e whether there is a feasible labeling in k rows
such that Xi = xi, Yi = k, and all labels fit into the interval
between xi − 360◦ and xi. With this change, Algorithm 1
still needs O(k∗n3) time.

4.4 Elite labels
For the most important sites, e.g., the Willis Tower in the

panorama of Chicago (see Figures 1 and 7), we may want
to guarantee that the solution contains the corresponding
labels. We term such a label an elite label. Now we can
ask for a feasible labeling that contains all elite labels plus
as many other labels as possible in a given number k of
rows. Assuming that such a solution exists, we can apply
our algorithm for MaxWeight. We simply have to set the
weight of each elite label to a large enough number (e.g.,

n + 1) and the weight of each non-elite label to one. With
this approach we have wtotal ∈ O(n2), thus the algorithm
requires O(kn7) time. With the following simple modifica-
tions of recurrences (2) and (1), however, we can reuse our
O(kn3)-time algorithm for MaxLabels.

Each (i, j, 1)-labeling with j > i contains a label L` pre-
ceding Lj . We have to avoid that we omit an elite label
between Li and Lj . To do so, we exchange the condition
i ≤ ` < j in the definitions of κ1

i,j and θ1i,j with e ≤ ` < j,
where Le is the last elite label among Li+1, . . . , Lj−1. Obvi-
ously, we do not lose any feasible solution with this. More-
over, the modification suffices since our algorithm always
constructs a solution based on feasible one-row solutions for
smaller (sub-)instances. Similarly we can extend our algo-
rithm for MaxWeight to find a labeling in k rows containing
all elite labels plus other labels of maximum total weight.

4.5 Optimizing label positions
A secondary criterion of æsthetically pleasing panorama

labelings is that the labels are as close as possible to being
centered above their respective sites. So far we did not con-
sider this criterion in our problem definitions. Moreover, the
algorithms described in Sect. 3 try to place all labels at their
leftmost feasible positions. We can remedy this unwanted
side effect by subsequently fine-tuning the horizontal label
positions. We traverse each row k of a given feasible label-
ing from right to left. Let Sk be the set of labels in row
k. During the traversal, we slide a label to the right if it
decreases the overall cost H =

∑
Li∈Sk

|∆i|, where ∆i is the
horizontal distance between the center of label Li and xi.
A right shift of a label triggers a right shift of another la-
bel if this reduces the overall cost and the labeling remains
feasible. It can be shown that for a given row our position-
ing algorithm minimizes H in O(n2) time, so that the total
post-processing time is covered by the running-time of the
labeling algorithm.

5. EXPERIMENTAL RESULTS
In this section we evaluate our algorithms, which we im-

plemented in C++ using GTK+ and Cairo for the visual
output. We tested the algorithms both for real-world in-
stances as well as randomly generated instances. For a dis-
cussion of a case study with the Chicago skyline see Fig. 7.

We executed the experiments on a single core of an AMD
Opteron 2218 processor that is clocked at 2.6 GHz and has
2×1 MiB of L2 cache. The machine is running Linux 2.6.34.8
and has 16 GiB of RAM. We compiled our C++ implemen-
tation with GCC 4.5, using optimization level 3.

For each set of test parameters we generated 1,000 test
instances. All input points have integer x-coordinates be-
tween 0 and 1280. These coordinates were chosen uniformly
at random. The label widths were randomly chosen over a
Gaussian distribution with mean 115 and standard deviation
σ = 20. These values stem from real-world experience.

Row Number Minimization.
The first set of our experiments focuses on our implemen-

tation of Algorithm 1. Table 1 reports the minimum, aver-
age, and maximum running time for labeling varying num-
bers of labels. We observe that even for instances where
the points lie unreasonably dense (e.g., instances with 150
labels where the average distance between points is roughly
8 pixels) our algorithm solves all instances in less than 0.5s.

Interestingly, the vast majority of instances with 75 or more
labels is formed by worst-case instances for MinRow, i.e.,
they require dn/2e rows. For reasonable real-world instances
we can expect that our algorithm generates an optimal so-
lution near-instantaneously.

#labels 10 25 50 75 100 125 150
min. [ms] <1 <1 3 14 52 171 460
avg. [ms] <1 <1 4 24 84 222 477
max. [ms] <1 1 5 26 87 228 492

Table 1: Evaluation of our implementation of Row
Number Miminization instances with 10–150 labels.

Label Number Maximization.
In the second set of experiments we investigate the run-

ning times of our algorithm for MaxLabels. We believe that
in most practical application no more than four rows of la-
bels are used and hence ran the first part of experiments
for K = 4. We observe from the data in Table 2 that our
algorithm performs again very well, even for large instances.
In this case it even outperforms the previous MinRow algo-
rithm. This is mainly due to the fact that many instances
are worst-case instances for the MinRow algorithm.

#labels 10 25 50 75 100 125 150
min. [ms] <1 <1 1 4 10 21 39
avg. [ms] <1 <1 1 5 11 22 41
max. [ms] <1 <1 1 5 17 23 46

Table 2: Label number maximization for 4 rows.

Our algorithm is also able to quickly generate solutions
for more unrealistic instances where we allow the labels to
be placed in at most 50 rows, see Table 3. We observe that
even in the worst-case scenario, i.e., placing 150 labels in at
most 50 rows, the execution time is less than 900ms.

#labels 10 25 50 75 100 125 150
min. [ms] <1 <1 7 38 142 337 789
avg. [ms] <1 <1 8 40 155 345 810
max. [ms] <1 <1 9 45 163 354 895

Table 3: Label number maximization for 50 rows.

Weight Maximization.
Finally, we evaluate our MaxWeight algorithm. For this

we experiment with two different types of weight distribu-
tions. In some use cases it might be useful to define a ranking
of the label importance. Then, for a set of n labels, we assign
each label a distinct integer weight between 1 and n. In all
generated instances the weights were distributed uniformly
at random. A different way of determining label weights
is to group labels into classes of equal importance. Gener-
ally, we can expect that there is only a limited number of
such classes. In the experiment we defined four classes and
the labels were assigned to the classes uniformly at random.
Labels in class i have weight 2i.

We report the running times of our MaxWeight algorithm
for both types of weight distributions in Tables 4 and 5,
respectively. These results were again generated using K =
4 rows. Note that the measured execution times in these

tables are reported in seconds and not milliseconds as before.

#labels 10 25 30 40 50 75
min. [s] <0.01 0.16 1.62 10.3 50.47 722.56
avg. [s] <0.01 0.17 1.81 12.1 54.76 778.2
max. [s] <0.01 0.19 2.02 13.6 61.84 866.09

Table 4: Weight maximization for ranked labels.

#labels 10 25 50 75 100
min. [s] <0.01 0.03 1.02 28.27 112.98
avg. [s] <0.01 0.07 1.34 32.96 127.91
max. [s] <0.01 0.09 1.73 38.6 137.83

Table 5: Weight maximization for labels in four im-
portance classes and weights {1, 2, 4, 8}.

Since the algorithm has a pseudo-polynomial running time
the higher execution times compared to our other algorithms
were expected. Although the results reported in both ta-
bles confirm this expectation, we observe that for small and
medium numbers of rows and labels, the algorithm still runs
within an acceptable time frame. However, if we raise the
number of available rows substantially or increase the total
number of labels, the execution time grows quickly and may
become unacceptable.

6. CONCLUSION
We have presented algorithms for label placement using

a new boundary label model that allows multiple rows of
sliding unit-height rectangular labels. In this model, each
label is connected with its associated point by a vertical line
segment. We have presented an O(k∗n3)-time algorithm for
the basic problem MinRow, which minimizes the number of
rows needed to place all labels. If the labeling is restricted by
the input to k rows, however, we cannot generally place all
labels. Therefore, we have investigated the problem MaxLa-
bels, which aims at maximizing the total number of labels in
k rows, and the problem MaxWeight, which aims at maxi-
mizing the total weight of labels in k rows. While MaxLabels
can be solved in O(kn3) time, MaxWeight turned out to be
weakly NP-hard, yet allowed for an O(kn3w2

total)-time algo-
rithm, where wtotal is the total weight of all input labels.

According to our experiments, the algorithms for MinRow
and MaxLabels are very fast for instances typically arising
in practice, i.e., they solve instances with up to 150 labels
in less than one second. The algorithm for MaxWeight is
fast if the weights are not too large. For example, with inte-
ger weights between 1 and 8, we can solve instances with 50
labels in less than two seconds. We think that our setting
is realistic, since labeled images already with more than 50
labels quickly appear visually cluttered and more than 150
labels seems unrealistic in most cases. Similarly, if sites are
assigned importance levels, there are usually few of them
(e.g., main landmarks, distinctive buildings, public build-
ings, other). We conclude that our algorithms can quickly
produce visually pleasing labelings of real-world panorama
images. An interesting open question is how to handle labels
of different heights that would take up more than one row
or how to deal with area sites instead of point sites.

Acknowledgments. This work was started at Schloss Dag-
stuhl during Seminar 10461“Schematization in Cartography,
Visualization, and Computational Geometry” in November
2010. Andreas Gemsa and Martin Nöllenburg received fi-
nancial support by the Concept for the Future of KIT within
the framework of the German Excellence Initiative.

7. REFERENCES
[1] M. A. Bekos, M. Kaufmann, M. Nöllenburg, and

A. Symvonis. Boundary labeling with octilinear
leaders. Algorithmica, 57(3):436–461, 2010.

[2] M. A. Bekos, M. Kaufmann, K. Potika, and
A. Symvonis. Multi-stack boundary labeling problems.
In S. Arun-Kumar and N. Garg, editors, Proc. 26th
Conf. Found. Softw. Technol. and Theor. Comput. Sci.
(FSTTCS’06), volume 4337 of Lecture Notes Comput.
Sci., pages 81–92. Springer-Verlag, 2006.

[3] M. A. Bekos, M. Kaufmann, K. Potika, and
A. Symvonis. Area-feature boundary labeling. Comp.
J., 53(6):827–841, 2010.

[4] M. A. Bekos, M. Kaufmann, A. Symvonis, and
A. Wolff. Boundary labeling: Models and efficient
algorithms for rectangular maps. Comp. Geom. –
Theor. Appl., 36(3):215–236, 2007.

[5] M. Benkert, H. Haverkort, M. Kroll, and
M. Nöllenburg. Algorithms for multi-criteria boundary
labeling. J. Graph Algorithms Appl., 13(3):289–317,
2009.

[6] M. Formann and F. Wagner. A packing problem with
applications to lettering of maps. In Proc. 7th Annuual
ACM Sympos. on Computational Geometry
(SoCG’91), pages 281–288, 1991.

[7] M. R. Garey and D. S. Johnson. Computers and
Intractability; A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York,
NY, USA, 1990.

[8] M. Garrido, C. Iturriaga, A. Márquez, J. R. Portillo,
P. Reyes, and A. Wolff. Labeling subway lines. In Proc.
12th Internat. Symp. Algorithms and Computation
(ISAAC’01), volume 2223 of Lecture Notes Comput.
Sci., pages 649–659. Springer, Berlin, Germany, 2001.

[9] H.-C. Y. Hao-Jen Kao, Chun-Cheng Lin. Many-to-one
boundary labeling. In Proc. Asia-Pacific Sympos. on
Visualisation (APVIS’07), pages 65–72. IEEE, 2007.

[10] M. Kaufmann. On map labeling with leaders. In
S. Albers, H. Alt, and S. Näher, editors, Festschrift
Mehlhorn, volume 5760 of Lecture Notes Comput. Sci.,
pages 290–304. Springer-Verlag, 2009.

[11] C.-C. Lin. Crossing-free many-to-one boundary
labeling with hyperleaders. In Proc. IEEE Pacific
Visualisation Symposium (PacificVis’10), pages
185–192, 2010.

[12] M. Nöllenburg, V. Polishchuk, and M. Sysikaski.
Dynamic one-sided boundary labeling. In Proc. 18th
ACM SIGSPATIAL Internat. Conf. Advances
Geograph. Inform. Syst. (ACM GIS 2010), pages
310–319, 2010.

[13] S.-H. Poon, C.-S. Shin, T. Strijk, T. Uno, and
A. Wolff. Labeling points with weights. Algorithmica,
38(2):341–362, 2003.

[14] A. Wolff and T. Strijk. The Map-Labeling
Bibliography, 1996.

(a) Solution of a MinRow instance that requires ten rows. We observe that the solution is æsthetically not appealing. In the
center of the panorama the arrangement of labels is reminiscent of the worst-case scenario illustrated in Fig. 2.

(b) Solution of a MaxLabels instance in three rows. Due to restricting the number of label rows, the result is much more
pleasing than the MinRow solution (a). Of all 33 labels 23 are displayed. This indicates that only a few labels of densely
placed points are responsible for the visually unpleasing MinRow result.

(c) Solution of a MaxWeight instance in three rows. We divided the buildings into four equal-size classes based on their height,
i.e., the dn/4e tallest buildings have weight 8, and the other classes have weights 4, 2, and 1 accordingly. This yields the
maximum total weight of all labels wtotal = 128. Of the 33 labels 19 labels are displayed and they have a total weight of 108.
Although the two labelings in 7(b) and 7(c) look similar at first sight, note that for instance the MaxWeight solution contains
a label for “The Legacy at Millennium Park”, the fourth tallest building in the panorama, while the MaxLabels solution misses
that label.

Figure 7: A case study with the Chicago skyline using three of our algorithms. The input data for all three
Figures is the same. It consists a total of 33 labels. On a laptop clocked at 2.4 Ghz it took roughly 1ms to
compute the panorama labelings in Figures (a), (b) and about 160ms to compute the labeling shown in (c).
Photography: c©J. Crocker (http://en.wikipedia.org/w/index.php?title=File:2010-02-19_16500x2000_chicago_
skyline_panorama.jpg).

