
Arc-Flag Compression

Student thesis

Andreas Gemsa
Supervising tutor: Prof. Dr. Dorothea Wagner, Dipl. Inf. Daniel Delling

December 19, 2008

1

Contents

1 Introduction 5

2 Preliminaries 5
2.1 Shortest Path . 5
2.2 Solving the Shortest Path Problem . 6

2.2.1 Dijkstra’s Algorithm . 6

3 Speed-up techniques 6
3.1 Arc-Flags . 7

3.1.1 Definitions . 8
3.2 SHARC . 8

4 Bloom Filter 9
4.1 Fundamentals . 9
4.2 Application to Arc-Flags/SHARC . 11

4.2.1 Simple . 12
4.2.2 A little more elaborate . 12

4.3 Reducing the Number of Bits Set . 12
4.3.1 Anchor . 12
4.3.2 Chains . 13
4.3.3 Consider only some Flags for the Bloom Filter 14

5 Compression 14
5.1 Basic principle . 15
5.2 Application . 15

5.2.1 The cost function . 16
5.2.2 Finding the best flags to remap . 17

5.3 Finding the best flag . 17
5.3.1 Simple version . 17
5.3.2 Slightly enhanced version . 18
5.3.3 Fast version . 18

5.4 The cost function revisited . 20

6 Experiments 20
6.1 Bloom Filter . 21

6.1.1 Basic version . 22
6.1.2 Extended version . 24
6.1.3 Discussion . 25

6.2 Compression . 25
6.2.1 Confirming the initial Assumption . 25
6.2.2 Comparison of good cost functions . 26
6.2.3 Other road networks . 29
6.2.4 Artificial Graphs . 33
6.2.5 Detailed comparison and analysis . 35
6.2.6 Best results . 37

7 Conclusion 41

3

Acknowledgement

I want to thank Prof. Dr. Dorothea Wagner and Daniel Delling for providing me with the possibility
to work on this very interesting subject. Especially Daniel Delling for the advice and encouragement
given throughout the work on this thesis. Finally, I want to thank my siblings as well as my parents
for their support.

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig angefertigt habe und nur die
angegebenen Hilfsmittel und Quellen verwendet habe.

Karlsruhe, 19. Dezember 2008

4

1 Introduction

Motivation. In recent times the use of speed-up techniques for Dijkstra’s algorithm to find an
optimal route in a road network for private as well as professional use has become increasingly popular.
The computing environments for such a problem range from server grids to small hand held devices
with limited storage and computing power. Although there are several techniques to solve the problem
of finding an optimal route in an adequate time have been developed improvements are still possible.
As most speed-up techniques for shortest path queries use additional overhead the space consumption
can be significantly higher than without those information. One speed-up technique, SHARC (c.f.
[BD09]), uses arc-flags (or simply flags), to determine during a shortest path query, which roads may
be and which roads may not be part of the shortest path. Unfortunately, the number of unique flags
can pose a significant overhead. This paper deals with way to reduce the space needed for those flags.
A space reduction may be very useful for handheld devices which normally lack a large RAM and a
huge hard disk. Furthermore, a better performance of the algorithm may be achieved due to better
cache utilization.

Main Contribution. The work in this paper is mainly based on SHARC and the overhead it
introduces. One of the overhead factors are the arc-flags, the other one is caused by the shortcuts. In
this paper we examine two different methods which are able to reduce the space needed for storing
the unique flags used by SHARC. An explanation of the fundamentals of both approaches is provided.
Finally, both techniques are evaluated through numerous different experiments and the results are
discussed.

Overview. This work is organized as follows. In the next section we give an overview over the basics
of the shortest path problem. Dijkstra’s algorithm is discussed briefly. Then we give an outline of
two techniques which solve the shortest path problem but yield a considerable speed up compared to
Dijkstra’s algorithm. The first method which is able to reduce the space for the arc-flags is discussed in
Section 4. It uses the probabilistic data structure called bloom filter. The second method is introduced
in Section 5. Its basic idea is completely different to the method before. Through a mechanism unique
flags are removed from and all references pointing to them are changed to point to another flag. Several
different algorithms to determine the flags which are removed are discussed in this section. In Section
6 experiments are conducted and the results are discussed. Some characteristic for the parameters
which yield good results are established. We conclude our paper in Section 7.

2 Preliminaries

To solve any problem with a computer a mathematical model of that problem is necessary. The
standard model for the search for the optimal route between two points in a road-network includes a
directed graph G = (V,E), which consists of the set of nodes V and the set of the edges E. A certain
metric (i.e. a cost function) has to be applied to the graph to weight the edges. In the standard case
for road networks the weights are positive and a lower weight means a better or preferable connection
between two nodes. Generally, the traveling time is used as a cost metric, although others might be
used in different approaches.

2.1 Shortest Path

First, we define what a path in a given directed Graph G = (V,E) is. A path between two nodes vs, vt

in a given directed graph G = (V,E) is a set of edges E′ = (e1, . . . , en) ⊂ E with e1 = (vs, v1), en =
(vn, vt),∀i∈{2,...,n−1} : ei = {vi, vi+1}. The shortest path in a given directed Graph G = (V,E) with a
cost function c : E → R between two nodes s, t ∈ V is the path p between s and t where

∑
e∈P c(e)

is minimal among all paths between s and t.

5

2.2 Solving the Shortest Path Problem

There are various algorithms which can solve the shortest path problem. Because many of them are
well known and have been extensively studied (cf. [CLRS01]), we only introduce one of them briefly.
This is Dijkstra’s algorithm which is the classic algorithm for solving the shortest path problem for
any given directed graph. It is also the basis for the speed-up techniques introduced in the later
sections.

2.2.1 Dijkstra’s Algorithm

In the case of a cost function c which only maps to non-negative values Dijkstra’s algorithm solves the
shortest path problem for any given directed Graph G = (V,E) (cf. [Dij59]). The algorithm uses a set
S which contains all the nodes whose shortest path, from the source s have already been determined
and a priority queue Q, which manages the remaining nodes V \S by their key. The key is the minimal
known cost for a path from s. There is an array d, in which all known distances from s to all other
nodes are kept, and an array π which maintains the predecessor on the shortest path from s for all
nodes, are needed.

During the execution of the algorithm, the node u with the smallest key is chosen and added to
the set S, and all outgoing edges of V are relaxed. That means, if any node contained in Q can be
reached through u by one of its outgoing edges and with a smaller cost than currently known minimal
cost, the key in Q for that particular node is updated to the smaller cost. That process is repeated
until the extracted node u from Q is the target node. The shortest path can be obtained through π,
and its cost is d[t] = d[u].

The principle of Dijkstra’s algorithm is shown in Algorithm 1. Its worst case running time is in
O(|E|+ |V | log |V |) (cf. [CLRS01]).

Algorithm 1: Dijkstra’s algorithm
input : Directed graph G = (V,E), source node s, target node t
output: Shortest path from s to t

Initialize Q, d and π;1

S = ∅;2

Fill Q with V \ {s};3

while Q 6= ∅ and u 6= t do4

u = Q.extractMin();5

S = S ∪ {u};6

foreach Outgoing edge e = (u, v) do7

if d[u] + c(e) < d[v] then8

d[v] = d[u] + c(e);9

π[v] = u;10

Q.updateKey(v, d[v]);11

3 Speed-up techniques

Although Dijkstra’s Algorithm solves the shortest path problem its running time in large graphs is
relatively high. Before the algorithm reaches the target node it visits all nodes which are closer to
the source node than the target node. In large graphs this yields a very high running time. Thus,
speed-up techniques have to be devised. They all share a common idea. In an offline phase the graph
on which the shortest path query is performed is analyzed and enriched with additional information.
This information helps in the online phase to speed-up a shortest path query. However, the ideas used
in both phases may differ from one speed-up technique to another. An overview of some of them can
be found in [DSSW09]. We briefly explain two of them.

6

3.1 Arc-Flags

The basic idea behind the conventional Arc-Flags approach (described in [Lau04], [MSS+06] and
[HSWW06]) is to use Dijkstra’s Algorithm (see Section 2.2.1) and try to minimize the number of
edges which are considered by the algorithm. It does so by including some preprocessing of the graph
data.

In the preprocessing phase the set of nodes V of the directed graph G = (V,E) is partitioned into
several cells C := {C1, . . . , Cn}, so that

⋃|C|
i=1 = V and ∀Ci

∀j 6= i : Ci ∩ Cj = ∅. That means every
node of V belongs to exactly one cell Cl, and there is a function fV : V 7→ C, which maps the nodes
to the Cells they are contained in. A bit vector fe, called flag, with the size |C| is added for all edges
e ∈ E. Every bit corresponds to a cell Ci, and fe(i) is set to 1 if the edge e the flag belongs to is
contained in at least one shortest path to a node within that cell. Initially all bits are set to zero
except the bit corresponding to the cell the edge belongs to. The next step in the preprocessing phase
is to determine for every edge for every cell Ci if it is included in at least one shortest path starting
from any node to another node which lies within Ci. This can be achieved by calculating the border
nodes or boundary nodes, nodes that have at least one neighbouring node which belongs to a different
cell, and computing shortest path trees beginning at those boundary nodes to all nodes outside this
cell to the border nodes. If an edge e is part of a shortest path to a border node of a cell Ci the bit
of the flag belonging to the edge fe(i) is set to one. Some details on how the shortest path trees can
be computed with a centralized shortest path algorithm efficiently are demonstrated in [HKMS08].
An important factor which affects the preprocessing time as well as the time needed to determine
a shortest path between two nodes with the arc-flag approach is the way the partitioning is chosen.
There are very simple ideas like dividing a graph geographically into rectangles or more sophisticated
techniques like the multi-way arc separator. Several possible ways to partition a graph are discussed
in [KMS05] and in [MSS+05]. The authors of both papers come to the conclusion that the multi-way
arc separator yields very good results. Among the different multi-way arc separators evaluated are
those provided by METIS (c.f. [Lab07]).

After the preprocessing phase has finished, a shortest path query can be implemented with Di-
jkstra’s algorithm and only one additional line where the algorithm considers only those edges (cf.
Algorithm 2 l. 8) with the flag-bit set to one that corresponds to the cell the target belongs to.

Algorithm 2: Arc-Flag algorithm
input : Directed graph G = (V,E), source node s, target node t, set of Flags F
output: Shortest path from s to t

Initialize Q, d and π;1

S = ∅;2

Fill Q with V \ {s};3

while Q 6= ∅ and u 6= t do4

u = Q.extractMin();5

S = S ∪ {u};6

foreach Outgoing edge e = (u, v) do7

if cellBit(t) is set in F(e) then8

if d[u] + c(e) < d[v] then9

d[v] = d[u] + c(e);10

π[v] = u;11

Q.updateKey(v, d[v]);12

Because the main concern of this work is dedicated to the flags we want to illustrate two points.
The most obvious way for storing the flags would be to save each flag separately with the edges they
belong to. But most likely it should be avoided. Furthermore, many flags appear more than once and
depending on the size of each individual flag (i.e. the number of cells) it is more feasible to save all
flags at one location and to save only an index pointing to the appropriate flag with every edge. All

7

the ideas in this paper are based on the latter approach. The second point we want to stress is that
if the bit at position i is set in a flag and this bit is flipped to zero, the result of a shortest path to a
target node within cell Ci may become erroneous. If on the other hand a bit on position i is flipped
to one, a shortest path query to a target node within Ci is always correct. Only the time needed for
the computation may rise. This is proven in the following theorem.

Theorem 3.1

Let G = (V,E) be a directed graph and F its set of flags which is created with the preprocessing
phase of the Arc-Flags algorithm. If a bit of a flag f ∈ F is changed from zero to one the Arc-Flags
algorithm still delivers the correct results for a shortest path query between two arbitrary nodes s
and t in G.

Proof : As already mentioned, the difference between the Arc-Flags algorithm and Dijkstra’s algorithm
is only one added line (cf. Algorithm 2 l. 8). It checks if the cell bit of the target node is set in the
flag the algorithm considers. If it is, it means the considered edge may be part of the shortest path
from s to t. If not, the edge cannot be part of the shortest path. That means if a bit of a flag is
changed from zero to one the Arc-Flags algorithm may consider it a candidate for a shortest path.
But it always turns out that either this edge does not lead into the target cell or any path containing
this edge has larger costs than the actual shortest path. If this would not be the case, the Arc-Flags
algorithm would not solve the shortest path problem correctly. But in [HKMS08] the correctness of
the Arc-Flags algorithm could be proven. Thus, the theorem follows.

3.1.1 Definitions

Now that the term flag has been established it is useful to introduce some definitions. These definitions
are used in the following sections.

Definition 3.1 (Population count)

The population count of a flag is the number of bits set to one. For a flag f it may be referred to
as |f |.

Definition 3.2 (Subset)

A flag f1 is called subset of a flag f2 if f2 has at least the same bits set to one as f1. The flag f1
must not contain bits set to one that are not set in f2. This property may be indicated with

f1 ⊂ f2

Definition 3.3 (One-flag)

The flag with all bits set to 1 is called one-flag.

Definition 3.4 (Zero-flag)

The flag with all bits set to 0 is called zero-flag.

3.2 SHARC

The general idea behind SHARC Routing [BD09] is to use Arc-Flags and apply Shortcuts, a technique
developed for Highway Hierarchies [SS06], to achieve very small query times. It also aims to overcome
two major disadvantages of Arc-Flags. One of the disadvantages is that the search does not gain any
speedup within one cell. Furthermore, if a search approaches its target cell, the number of edges which
have to be considered rises significantly. SHARC Routing solves these problems by using multilevel
partitions, which is a family of partitions Φ = {P 0, . . . , P l} with ∀i<jC

i
k ∈ P i ∃Ci+1

m ∈ P i+1 : Ci
k ⊆

Ci+1
m instead of only one partition of cells P := {C1, . . . Cn}. The cell Ci+1

m for which Ci
k ⊆ Ci+1

m holds
true is called super cell. Note that due to the multilevel partitions |P l| bits of the arc-flags represent

8

the cells of the highest level. Exactly |P l−1| bits represent the cells of the next lower level and so on.
This is an important fact used in the following sections.

As mentioned before, SHARC Routing uses Shortcuts, which are introduced by contracting the
graph. That means nodes are bypassed by removing and adding edges that represent the distances
between the remaining nodes. These new edges skip the node n, which is to be bypassed, and are
connected to all nodes which n has outgoing edges to. The length of a new edge enew = {u, v} is the
sum of lengths of the edge e1 = {u, n} and of the edge e2 = {n, v}. If there are more than one edge
from u to v, only the shorter one is kept. Through a parameter c it can be determined if a node n
should be contracted or bypassed. The total number of new edges are called #shortcuts. Should the
following condition hold, the node n is contracted: #shortcuts ≤ c · (degin(n) + degout(n). Of course
not all nodes can be contracted easily. Boundary nodes have the important property that they border
their cell and are connected to another node of another cell. Although bypassing boundary nodes may
lead to an increase in boundary nodes it is possible to add additional boundary shortcuts to improve
performance by decreasing the hop count from source to target node.

Because SHARC-Routing uses arc-flags all edges have to be assigned a flag, even the removed ones.
The flags of the non-removed edges can be computed by the same mechanism as described in Section
3.1 with the exception that the shortest path trees are grown from the boundary nodes only until all
shortest paths from every node of the supercell are determined. The flags for all other edges (i.e. the
removed edges) are either set to zero on all positions except for their own cell (called own-cell bit)
or they are all set to one. The former is done if the node the edge originates from is bypassed. The
latter is done otherwise. All shortcuts get their own cell bit set to zero, because there is no gain in
speedup in relaxing shortcuts. However, this procedure does not yield optimal results and there are
some possible refinements possible as described in [BD09], which may result in an additional speed-up.

The resulting graph is different from the original one in that it contains additional shortcuts. A
shortest path query using SHARC uses multi-level Arc-Flags Dijkstra and the graph constructed by
the preprocessing of SHARC. The modifications of the original Dijkstra are that, when settling a node
u, i.e. taking it out of the priority queue and adding it to the set S (cf. Algorithm 1 lines 5-6), the
lowest level i for which u and the target node t are in the same super cell is calculated. When an
outgoing edge is relaxed (cf. Algorithm 1 lines 7-12), only those edges with arc-flag set for level i are
considered.

Although the differences to the conventional Arc-Flags mechanism are quite extensive, the property
mentioned in Section 3.1 in Theorem 3.1 still holds true. If any bit of any flag is flipped from zero to
one the query still calculates the shortest path correctly. This is important because all of the following
approaches to minimize the space needed for the flags are based on that fact.

4 Bloom Filter

A bloom filter is a probabilistic data structure that was introduced in [Blo70] by Burton Bloom. It
uses hash functions for a set membership test. This test returns true if the element has been inserted
into the bloom filter. Due to the probabilistic nature of this data structure a membership query may
return true even if the element has not been inserted. Although it may not seem obvious how this
can help in reducing space needed for the arc-flags, it is possible and is explained in the following.
But first the bloom filter is introduced.

4.1 Fundamentals

As already mentioned, a bloom filter supports membership queries for elements of a set. The query
guarantees to return true if the element has been inserted into the bloom filter and may return true
or false, depending on a false positive rate, if the element has not been inserted. The false positive
rate depends on three factors. The length l of the bit vector used by the bloom filter, the number of
elements d which are inserted into the bloom filter and the number of hash functions k. An element
is inserted into a bloom filter by calculating k hashes by the k hash functions. These hashes represent
positions in the bit vector and are all set to one. If a membership query is carried out, the bloom
filter calculates the k hashes again and tests whether all bits at the positions corresponding to hashes

9

in the bit vector are set or not. If all are set to one, it returns true (i.e. meaning the element is
probably included in the set) and false if one or more positions are set to zero. The pseudo code of
inserting and testing elements is given in Algorithms 3 and 4.

Algorithm 3: Bloom filter insert function
input: Element e, number of hash functions k, bit vector size l

for i = 1 to k do1

hash value = hashfunctioni(e);2

hash value = hash value modulo l;3

bitvector[hash value] = 1;4

Algorithm 4: Bloom filter contains function
input : Element e, number of hash functions k, bit vector size l

for i = 1 to k do1

hash value = hashfunctioni(e);2

hash value = hash value modulo l;3

if bitvector[hash value] == 0 then4

return false;5

return true;6

The number of hash functions used is important as it can significantly improve or deteriorate the
false positive rate. We give a short overview on how the optimal number of the hash functions can be
chosen and how to calculate the false positive probability.

If one element is inserted into the bloom filter and only one hash function is used, the probability
that any given bit is not set to one is

1− 1
l

and thus if k hash functions are used the probability is(
1− 1

l

)k

.

After inserting d elements the probability that a bit has remained zero is:(
1− 1

l

)kd

.

That means that the probability that a bit is set to one is

1−
(

1− 1
l

)kd

.

To calculate the false positive rate for a membership query, recall that the bloom filter for an element
that has not been inserted returns true iff all bits at positions calculated by the hash functions have
to be set to one. Thus the false positive rate (FPR) is

FPR(l, d, k) =

(
1−

(
1− 1

l

)kd
)k

(1)

It can be shown (cf. [Mit02]) that for optimal results the value for k can be obtained by the
following equation, but remember that k is the number of hash functions and hence has to be integer:

k =
l

d
ln 2

10

l/d FPR
1 61.85%
2 38.25%
3 23.66%
5 9.05%
8 2.14%
10 0.82%
15 0.07%
20 0.006%

Table 1: False positive rate depending on l and d with optimal k

Assuming the optimal value for k has been chosen and the parameters l and d are known, the FPR
can be computed either by Equation (1) or approximated by

FPRapprox(l, d) = 0.6185l/d (2)

Some examples of l/d values and their approximate false positive rates are shown in Table 1. These
results suggest that if the ratio of bits in the bit vector to the number of inserted elements is 10:1, the
false positive rate is below 1%, which is most likely a very good result, but if we have a worse ratio
like 3:1, the false positive rate is around 23%.

4.2 Application to Arc-Flags/SHARC

The general idea behind all of the following approaches is very similar in that the bloom filter is used
to save flags and restore them with a certain degree of correctness. It is important to note is that a
bit of a restored flag must never be erroneously set to zero. As mentioned in Section 3.1 in Theorem
3.1 any bit of any flag may be set to one. The algorithm still determines the correct shortest path.
This property is exploited as follows:

Remember that the bloom filter is used to evaluate set membership tests. To store a flag with the
help of a bloom filter every bit of every flag has to be assigned a unique number or identifier. This
identifier represents the element for the set membership query.

Inserting a flag f into a bloom filter is very simple. For every bit set to one in f its unique
identifier is computed and inserted into the bloom filter. Restoring a flag f works intuitively. All
unique identifiers for all bits of f are created and the contains function (cf. Algorithm 4) is called
for every element. If the element has been inserted into the bloom filter (i.e. the bit of f has been
set to one), it returns true and the bit of the reconstructed flag f̃ is also set to one (we denote the
reconstructed flag for a flag f as f̃). Note that f̃ has all bits set that are set in f but may also contain
some bits set that are not set in f due to the probabilistic nature of the bloom filter. This guarantees
correct results but may imply a higher computational time.

It is necessary to modify the query algorithm of SHARC, so that the bloom filter is used to
reconstruct the flags. Note that it suffices to only restore the cell bit which has to be tested. That
implies the complexity of a bloom filter membership query is independent from the size of the flags.
However, to simplify matters, we always call that process the reconstruction of flags.

A potential problem for the running time of a query is that it is necessary to execute at least one
hash computation for every outgoing edge, of all nodes that are settled. Due the the complexity of
hash computations it is very likely, that there is a penalty regarding the running time of a shortest
path query. The complexity of the hash functions used may heavily influence the time needed for
processing a shortest path query. Although this is not part of the analysis presented in this paper it
must be considered if implemented. A more detailed analysis of some of the problems bloom filter
suffer from and ways to minimize their effects is presented in [PSS07].

The indices at the edges originally pointing to the flag may seem unnecessary, but they are needed
to create the unique id of the flag which is required for the bloom filter rebuilding process. Thus

11

they cannot be eliminated and the only opportunity for space consumption improvement is possible
by reducing the space needed for saving the flags.

4.2.1 Simple

The most basic approach is to take all flags, calculate all unique identifiers for all the bits set to one
and insert them into the bloom filter. However, this approach may be problematic because many flags
may have set many bits to one, which would significantly worsen the false positive rate. Note that
even with no improvement in space consumption the false positive rate can be unacceptably high. For
example, if the average amount of bits set to one is 1/3 of the size of the flag for all flags, the false
positive rate is about 23.66% (cf. Table 1).

4.2.2 A little more elaborate

Due to the multilevel partition used in SHARC some bits represent the cells of the highest level, some
bits represent the cells of the next lower and so on. That means if a bit is changed from zero to one
that represents one of the cells of the highest level, the number of edges the algorithm unnecessarily
considers may rise significantly. However, if a bit is changed from zero to one that represents one of
the cells of the lowest level the impact on the search scope (i.e. the edges the algorithm considers) is
most likely much lower. All this implies that it may be a good approach not to use only one bloom
filter but many of them and to use the parameters l and k to tune that bloom filter for optimal results.
In SHARC most of the query is carried out on the topmost level. Only when the search approaches
its target the lower levels are important. Hence, it may be useful to “steal” bits from the bit vector of
bloom filters which represent low level cells and add those bits to the bit vector of a bloom filter which
represents high level cells. Although d is not tunable because it represents the number of elements
inserted into the bloom filter, it is known at the construction time. So, it can be used to influence l
and k, which makes it possible to adjust the false positive rate. However, this approach comes with
certain unavoidable overhead. Instead of storing only one set of parameters l and k for one bloom
filter as it would be necessary for the approaches in the previous section, it is now mandatory to save
these combinations for every bloom filter. Depending on the number of bloom filters this may be too
expensive.

Although the false positive rate for certain bits can be improved, the same drawback as described
in Section 4.2.1 still applies. Therefore, it may be desirable to reduce the number of bits set to one in
all the flags.

4.3 Reducing the Number of Bits Set

4.3.1 Anchor

In an effort to reduce the number of bits set to one before inserting them into the bloom filter the
following approach can be used: A certain set A of flags, so called anchor-flags, is chosen that remains
unchanged. For any other flag f a new flag fx is computed by choosing a flag fa ∈ A and calculating:

fx = f XOR fa (3)

The newly created flag fx is inserted into the bloom filter instead of f . The reconstruction of the
flag f resulting in f̃ suffers from some drawbacks. First of all we need to reconstruct fa and fx as
described in earlier sections, which results in the flags f̃a and f̃x. The obvious approach would be to
calculate f̃a XOR f̃x and assign f̃ the result, but this may lead to wrong results of the shortest path
query. An example, why for a reconstructed flag f̃ a bit may be set to zero where it should be one, is
illustrated in Figure 1. Therefore, the only way to reconstruct f safely is to use the following equation

f̃ = f̃x OR f̃a (4)

It is easy to see that this way of recovering a flag cannot lead to a bit mistakenly set to zero, albeit
it may lead some bits unnecessarily set to one in the reconstruction process of f̃ . The probability of

12

the false positive rate for any bit of f rises from that described in Section 1 to

FPRa(l, d, k) = 1−

(
1−

(
1− 1

l

)kd
)2k

According to the approximation given in Equation (2) the following holds. The probability that one
bit is not set to one is:

1− FPRapprox(l, d) = 1− 0.6185l/d

Hence the probability that two bits are not set is (1−0.6185l/d)2 which leads to the false positive rate
approximation of a bit of a reconstructed flag of:

FPRapproxa
(l, d) = 1− (1− 0.6185l/d)2 (5)

Because f and its anchor flag fa cannot be the same flag, there must be bits set either in f or in fa

that are not set in the respective other flag. If a bit is set in fa and not in f , the bit (cf. Equation
(4)) is set in f̃ , due to the reconstruction, even though it is not set in the original f . To avoid that, it
may seem useful to ensure that the flag fa, which is an anchor to another flag f , has no bit set that
is not set in f . But this may limit the number of possible anchor candidates to choose from.

With this idea some additional overhead is created, because every flag has to save a reference to
its own anchor flag (if it is itself an anchor, it must be obvious from that reference).

Figure 1: Example how a reconstruction using an anchor flag and XOR through a bloom filter can
lead to a flag with a bit erroneously set to zero

4.3.2 Chains

The following idea takes the anchor approach a step further. Instead of applying Equation (3) to
a flag f1 and its anchor-flag fa, it is applied to f1 and another non-anchor flag f2. That process is
repeated with the flag f2 and another flag f3 and so on until an anchor flag is reached. The flags
have now created a chain (f1, f2, f3, . . . , fa1) in which flag f1 is only reconstructable (cf. Equation
(4)) if flag f2 is known and so on. Chains may vary in length. Due to the restrictions mentioned in
Section 4.3.1 it is recommended to choose the flags of the chain in such a way that for a flag fi the
flag fi+1 has no bit set that is not set in fi. This idea has a great potential for reducing the number
of bits set throughout all flags. Unfortunately, there are two major drawbacks. The more obvious one
is that if the first flag fc of a chain is requested, the flag f2 has to be reconstructed, which requires a
reconstruction of flag f3 and so on until the anchor flag is reached. This requires many bloom filter
accesses and may be unsuitable for an actual implementation. The other, even more serious problem,
is a very high false positive rate which is the result of the decoding process. To illustrate this, imagine

13

l/d c FPR
3 1 23.66%

2 41.72%
5 74.07%
10 93.28%

5 1 23.66%
2 17.28%
5 37.77%
10 61.28%

10 1 0.82%
2 1.63%
5 4.03%
10 7.90%
20 15.17%

Table 2: False positive rate depending on l, d and c with optimal k

that a flag fi needs to be reconstructed. Every flag in the chain which is between fi and the anchor
flag fa has to be rebuilt. If only one of those recovered flags fj (including the flag fa) has a bit set
at a position which was in its original state not set, it becomes set for all reconstructed flags fc with
c < j. That means even if for a single bit the false positive rate is relatively small, it may become very
high for bits of flags which are distanced from the anchor-flag. The false positive rate for a bit of a
flag fi depending on the number c of flags which have to be reconstructed before fi can be calculated
with:

FPRapproxa
(l, d, c) = 1− (1− 0.6185l/d)c (6)

Some examples of combinations of l, d and c and their false positive rate can be seen in Table 2. Even
if the false positive rate for a single bit is less than 1%, the probability that a bit of a flag is erroneously
set to one may be significantly higher.

In general the drawbacks mentioned are so severe that this approach should most likely not be
considered for implementation.

4.3.3 Consider only some Flags for the Bloom Filter

As mentioned throughout the previous sections, the ratio of bits set in all flags to the number of bits
in the bit vector of the bloom filter is the main factor that influences the false positive rate. If the
ratio is high, the number of bits erroneously set to one is small and increases if the ratio decreases.
Due to the fact that some flags are less populated with ones than others it may be good to insert only
flags with a certain maximum population count, which is the number of bits set to one, into the bloom
filter. The flags not inserted into the bloom filter remain untouched and the conventional approach
is used. Of course this may heavily limit the number of flags that are inserted into the bloom filter
and, hence, may limit the space consumption improvement. However, it can guarantee a low false
positive rate. If for example only flags with at most 1/15 bits of the flags length are set to one and
space is reduced by one half of the required size for storing them in the conventional approach, the
false positive rate is about 2.41% (cf. Table 1).

One thing to keep in mind when using this approach is that during the modified Dijkstra of SHARC
for every flag it must be decided if the conventional approach or the bloom filter is used to determine
if a certain bit of a flag is set. This branching may be a drawback.

5 Compression

Some of the drawbacks of the bloom filter approach mentioned in Section 4 are the modification of the
algorithm to include the bloom filter and the possible high complexity of the numerous hash function

14

calls during a shortest path query. It may seem better to approach the problem from a different
perspective and create a less invasive procedure.

5.1 Basic principle

As already mentioned, the flags are stored at one location and only an index is stored at the edges.
That means no two flags are stored twice in the array (which is exactly the advantage over saving the
flags directly with the edges). That does not mean that there are no flags which are similar, i.e., they
share a common set of bits set to one. If there is a flag f1, which differs in only one or a few bits to
a flag f2, it might be possible to remove flag f1 from the array with only a small impact on the time
needed for a shortest path query. Of course, all indices of edges pointing to f1 have to be changed
so that they point to f2. Note that to ensure correctness, f1 has to be a subset of f2 (cf. Definition
3.2). The combination of removing flag f1 and changing all indices as explained is in the following
referred to as remapping of f1 to f2 and f1 may be called mapping source and f2 mapping target. If
this process is repeated, the number of unique flags and thus the space needed for storing them can
drastically decrease. Note that it is practically guaranteed that this process can be repeated until
only one flag is left (the one-flag). All flags can be mapped to that particular flag and the shortest
path query would still deliver the correct result. The algorithm would behave like the unmodified
version of Dijkstra’s algorithm. If the number of flags can be reduced significantly it may be possible
to reduce the size of the index stored at the edges pointing to their flag. This may yield a significant
space consumption improvement, as this concerns every edge of the graph.

Figure 2 shows two examples for the remapping process. At the top are flags consisting of 6 bits.
They represent the mapping source. At the bottom are two other flags which represent the mapping
targets. The example on the left is a valid pair of mapping source and mapping target the other one
is not.

Figure 2: Mapping example. The example on the left represents a valid mapping. The other one is
not valid.

One of the most appealing factors of this idea is that there are no changes needed to the SHARC
algorithm itself as only flags are removed and the indices of the edges are changed accordingly. All of
that is done in the preprocessing phase and does not require any modifications of the query algorithm.

5.2 Application

Let F be a set of flags. The main problem of this approach is to find a pair of flags (f1, f2) with
f1, f2 ∈ F and the property that if f1 is remapped, the running time of the shortest path query is
affected minimal under all possible combinations of flags (fi, fj) with fi, fj ∈ F . Even for very small
graphs testing all possible combinations is not feasible, hence another way of selecting two flags has
to be devised. Three factors that influence the quality of a pair (f1, f2) can easily be obtained and
most likely influences the running time of shortest path query.

1. The first one is the number of times a certain flag is referenced by the edges of the graph. If this
number is high and the bits which are set to one in f2 and not in f1 have a much greater impact
on the query time, because these bits of these flags are tested much more frequently than it
would be the case if f1 is referenced seldom. Hence flags which are selected for removing should
occur as seldom as possible.

15

2. Another factor which negatively affects the running time of a SHARC query is the number of
bits which are changed from zero to one1. The more bits are unnecessary set to one the more
edges are considered unnecessarily.

3. Due to the multilevel partition approach of SHARC the position of those bits is important, too.
If a bit representing a cell of a high level is changed the number of edges that are considered
but cannot be part of the shortest path are much higher than if a bit of a cell of a low level is
changed from zero to one.

Summarizing, the flag ffrom which is remapped should be referenced seldom, the mapping target
fto should only differ in few bits from ffrom. Furthermore, the bits that differ from fto to ffrom

should represent lower cells. An essential requirement is that ffrom is a subset of fto. Otherwise
shortest path queries leads to erroneous results.

Algorithm 5: Remapping of flags
input: Set of flags F , cost function cost, number of flags to remove n

foreach flag f ∈ F do1

min cost[f] = min{cost(f, fi};2

flags mapped = 0;3

while flags mapped < n do4

min cost flag = min{min cost[f]};5

min cost[f] = ∞;6

if isRemoved[to[f]] then7

recalculate min cost[f];8

else9

remap f ;10

isRemoved[f] = true;11

flags mapped++;12

5.2.1 The cost function

In the following sections the cost function cfi
(fj) is always in the form of

cfi
(fj) =

{
o · (#references(fi) + a) + c · bitflip(fi, fj) , if fi ⊂ fj

∞ , otherwise

where the #references(fi) is the number of times the flag fi is referenced by edges of the graph. The
variables a, o and c can be chosen arbitrarily and bitflip(fi, fj) is a function that assigns certain cost
to every bit that is set to one in fj and is not set in fi. This cost function (in the following called
bitflip cost function) may be influenced by the multilevel partition used by SHARC. In Figure 3 two
examples of a bitflip cost function are shown. The flags consists of 6 bits and are partitioned into two
level (indicated by the vertical line). Below the flags there is the the bitflip cost function indicated.
In both cases the cost of changing one bit from zero to one for the two leftmost bits are 1 for each and
for the remaining 4 bits the cost per bit is 2. The mapping target is below this indication and at last
the total bitflip cost is displayed, and bits representing lower bits may be called bit of a lower level.

It seems reasonable that the flipping of bits representing cells of higher level should be more
expensive than the flipping of bits representing lower ones. In the following the bits representing a
cell of a higher level may be called bit of a high level.

1Note that this occurs every time a flag is remapped

16

Figure 3: Example of a bitflip cost function

5.2.2 Finding the best flags to remap

Let F be a set of flags and R the set of flags already remapped. In this paper only cost functions
of the form explained in Section 5.2.1 or Section 5.4 are used. The cost function helps to determine
which flag is remapped next. For every flag fi another flag fj is determined with the smallest cost
value for cfi

(fj) for all fj ∈ F \ {fi} ∪ R and is stored at min cost[fi] and the flag fj for which
cfi

(fj) is minimal stored at to[fi]. Note that as long as the one-flag is included in F , there is at
least one flag fj for every flag fi with fi ⊂ fj (except for the one-flag itself). In the next step the
minimum min cost[fl] for all fl ∈ F \ R is determined and fl is remapped to the flag to[fi]. This
process is repeated until a desired number of flags have been removed (i.e. remapped) or there are no
candidates for removal left. Observe that if a flag is remapped which has been a mapping target for
already removed flags, the edges with the indices to that flag have to be updated appropriately. As it
is not feasible to calculate all possible min cost[fi] values every time a flag has been removed, we use
a minimal binary heap with lazy evaluation which is explained in the following.

First, all min cost[fi] values are be calculated and then the flags are inserted into the priority
queue with their cfi value as key. The priority queue maintains the flag with the smallest min cost[fi]
value at its top. The top element is extracted and remapped, unless its mapping target has been
remapped. If the mapping target has already been remapped, the calculated minimal costs are invalid
and an new mapping target as well as its mapping costs have to be determined. This is where lazy
evaluation is used. Instead of checking after every flag removal, all to[fk] values if they are valid
(i.e. pointing to a non removed flag) this is done only for flags that are extracted from the priority
queue. If the extracted flags mapping target has been removed, the minimal costs are recalculated and
the element is reinserted into the priority queue. Otherwise the flag is remapped. A simple boolean
vector suffices to maintain the state (removed or not removed) for all flags. Its principle is illustrated
in Algorithm 5.

5.3 Finding the best flag

The biggest problem with this approach is to find for a flag fi another flag fj so that cfi
(fj) is minimal.

It is needed for the first step, the population of the priority queue and later on for recalculating the
minimum costs. In the following, we explain three approaches which solve this problem.

5.3.1 Simple version

The simplest method is to determine for every flag f all the candidates which are mapping targets
(i.e. the flag f is a subset of those) and calculate the mapping costs to each of those candidates.
The minimum mapping cost is determined and every flag is inserted into the priority queue with its
minimum mapping costs as key. The subset test of two different flags is done with a simple logical

17

AND operation. A flag fi is subset of another flag fj iff fiANDfj = fi holds true. This approach for
filling the priority queue, is illustrated in Algorithm 6. Obviously the running time is in O(|F |2) and
may lead to unacceptably high computation times for graphs with many unique flags.

Algorithm 6: Fill priority queue
input: Priority Queue Q, set of flags F

for i = 1 to |F | do1

min cost[f] = infinity;2

for j = 1 to |F | do3

if i == j then4

continue;5

else6

if F [i] ⊂ F [j] then7

if min cost[i] < cost(F [i], F [j]) then8

min cost[i] < cost(F [i], F [j]);9

Q.insert(i, min cost[i]);10

5.3.2 Slightly enhanced version

The fundamental idea for this principle is that for every two flags fi and fj exactly one of the following
conditions holds true:

• fi ⊂ fj . That means fi may be mapped to fj .

• fj ⊂ fi. That means fj may be mapped to fi.

• No flag is subset of the other one. No flag may be mapped to the other one.

So instead of calculation fiANDfj and checking whether this equals fi and some time later calculation
fj AND fi and checking whether this equals fj only one time fi AND fj is calculated and it is tested
whether it equals fi or fj . Algorithm 7 displays this algorithm, which populates the priority queue.
Although the asymptotic running time is still in O(|F |2) the number of logical AND operations used
is less than in the simple version of this algorithm. Although this leads to a noticeable speed up, a
far better approach can be devised if some restrictions for the cost functions are applied.

5.3.3 Fast version

The basic idea behind this approach is to apply some restrictions to the cost function so that it is
possible to reduce the search scope for the mapping candidates. To achieve this, the flags are sorted
by the cost the bitflip cost function would determine if the zero flag would be mapped to them. Then,
it can be proven that for an arbitrary flag fi the flag fj with minimal mapping cost is the flag which
is the first flag in the sorted order to which fi is a subset to. This is formulated in Theorem 5.1 and
is proven in the following.

Theorem 5.1

Let cfrom(fto) be a cost function like the one explained in Section 5.2.1 with the restriction that
the bitflip function only assigns strictly positive values and the mentioned variables a, o and c are
independent from the mapping target. Further let f0 be the zero flag (cf. Definition 3.4) and F
a set of flags. Then, for a flag fi ∈ F the flag fj with minimal mapping cost is the flag with the
smallest cf0(fj) greater than cf0(fi) and which satisfies fi ⊂ fj .

To Proof this theorem we first prove two simple corollaries.

18

Algorithm 7: Fill priority queue - small improvement
input: Priority Queue Q, set of flags F

for i = 1 to |F | do1

min cost[f] = infinity;2

for i = 1 to |F | do3

for j = i+ 1 to |F | do4

subset test = F [i] AND F [j];5

if subset test == F [i] then6

if min cost[i] < cost(F [i], F [j]) then7

min cost[i] < cost(F [i], F [j]);8

else if subset test == F [j] then9

if min cost[j] < cost(F [j], F [i]) then10

min cost[j] < cost(F [j], F [i]);11

Q.insert(i, min cost[i]);12

Corollary 5.1

Let F be a set of flags. If a flag f1 ∈ F is mapped to a flag f2 ∈ F the population count of f2 is
always greater than that of f1.

|f1| < |f2|

Proof : This corollary follows directly from the fact that for a mapping source f1 and a mapping target
f2 the statement f1 ⊂ f2 holds true and that f1 6= f2.

Corollary 5.1 implies that to find a candidate for mapping an arbitrary flag f only the flags with a
higher population count than f need to be considered.

Corollary 5.2

Let cfrom(fto) be a cost function like the one explained in Section 5.2.1 with the restriction that
the bitflip function only assigns strictly positive values and the mentioned variables a, o and c are
independent from the mapping target. Let F be a set of flags and let f0 be the zero flag. Then,
to find for an arbitrary flag f1 ∈ F another flag f2 ∈ F with f1 ⊂ f2 only the flags fj ∈ F with
cf0(fj) > cf0(fi) need to be considered.

Proof : As proven in Corollary 5.1 the population count for mapping target f2 has to be higher than the
population count of the mapping source f1. That means at least one bit in f2 is set that is not set in
f1. Because the bitflip function assigns only strictly positive values and the equation cf0(f2) > cf0(fi)
has to be true for any possible mapping target f2, which proves the corollary.

Now it is possible to prove Theorem 5.1.
Proof of Theorem 5.1 : As we have seen in Corollary 5.2 for to find a mapping target for a flag fi, only

flags with a higher value for cf0(fj) need to be considered. Now we need to prove that not only all
mapping candidates fulfill that requirement but the flag fj with the smallest cfi(fk) for all fk ∈ F is
the flag fj with fi ⊂ fj and the smallest cf0(fj) larger than cf0(fi).

Let ffrom be a flag and fto the flag for which cffrom(fto) is minimal. Further let f1 and f2 be
flags with ffrom ⊂ f1 and ffrom ⊂ f2 and cf0(f1) < cf0(f2). Thus f1 and f2 are candidates for fto

(the mapping target). It is proven that the mapping costs from ffrom to f1 are always less than those
from ffrom to f2. Remind yourself of the structure of the cost function explained in Section 5.2.1. The
number of times an edge is referenced is completely independent from the mapping target and hence is
ignored here. Thus, the cost function depends mainly on the bitflip costs. But we are able to calculate
these costs, because the bitflip cost for the mapping from ffrom to f1 is cf0(f1)− cf0(ffrom) =: c1 and
ffrom to f2 equals cf0(f2)− cf0(ffrom) =: c2. It is easy to see, that c1 < c2. Combining this and the

19

insight from Corollary 5.2, that only flags fj with a higher value for cf0(fj) need to be considered the
theorem follows.

Observe that a conversion from a bitflip function, that assigns not only strict positive values, to one
that does is conceivable.

Due to Theorem 5.1 it is now possible to devise an algorithm which outperforms Algorithms 6
and 7. The first thing that has to be done is to compute all values cf0(fi) for all fi ∈ F , sort them
in ascending order and store that order in array O. To find for a flag ffrom = O[i] the flag fto with
minimal mapping costs it suffices to look at every value O[j], j > i and stop as soon as a flag O[j] with
ffrom ⊂ O[j] has been found. This principle is demonstrated in Algorithm 8, which fills the priority
queue with the initial values.

Algorithm 8: Fast way of filling the priority queue
input: Priority Queue Q, set of flags F

for i = 1 to |F | do1

A[i] = cost(0, F[i]);2

sort flags in ascending order according to A and store them in O;3

for i = 1 to |F | do4

j = i + 1;5

while !(O[i] ⊂ O[j]) do6

j++;7

min cost[i] = cost(O[i], O[j]);8

Q.insert(i, min cost[i]);9

5.4 The cost function revisited

The cost function mentioned in Section 5.2.1 is unfair. Consider two flags f1 and f2. Both have
the same #references value and the same bitflip costs if they are mapped. The algorithm chooses
one or the other one not considering that for example f1 may be a mapping target to numerous
already removed flags and f2 may be not a mapping target for any flag. Thus, it seems reasonable to
include the flags already mapped to a flag in the cost function. The easiest solution is to add i to an
additional #mapped variable of a flag f every time i flags are mapped to f . Then, the bitflip costs
can be calculated with (#mapped(fi) + 1) · bitflip, which means we add the bitflip costs for all flags
mapped to f , but only for those bits which differ from f and its target. Those that differ from the
mapped flag to f have already been “paid” for. All that leads to the following cost function:

c̄fi(fj) =

{
o · (#references(fi) + #mapped(fi)) + (#mapped(fi)) + 1) · bitflip(fi, fj) , if fi ⊂ fj

∞ , otherwise

Note that even though the cost function has been changed, Theorem 5.1 still holds true. The part
o ·(#references(fi)+#mapped(fi)) is independent of the mapping target. Given that the bitflip cost
function itself assigns strictly positive values to the flipping of bits the expression (#mapped + 1) ·
bitflip(fi, fj) changes only by a constant factor. This constant factor equals the factor c (c.f. Section
5.2.1). Thus, the new cost functions satisfies the precondition of Theorem 5.1.

6 Experiments

In this section all experimental results are shown. To make the experiments independent from the
underlying hardware (and implementation of the bloom filter) the quality of the approaches is judged
by the number of settled nodes, i.e., the number of nodes taken from the priority queue, by the SHARC

20

algorithm. To get reliable results 5000 shortest path queries are executed every time a certain number
of flags has been remapped or a certain compression level of the bloom filter space has been reached.

The x-axis of all diagrams shown below shows the percentage of flags removed (or space saved).
The y-axis shows the average number of nodes which are settled by the SHARC algorithm.

Input. All graphs, which are used in the experiments, are generated with the preprocessing
algorithm of SHARC. The graphs are created using the following command:

genSHARC -g <graph file> -p <partitioning file> -L 0

The SHARC queries are executed by one of the following commands:

runSHARC -f <bloom filter file> -g <graph file> -c 2 -m 5000
runSHARC -f <sharc flag file> -g <graph file> -c 1 -m 5000

The parameter -c 2 indicates that runSHARC has to use a bloom filter. Thus, the first command is
used by the method which utilized a bloom filter (Section 6.1). The parameter -c 1 is used for all
experiments in Section 6.2. As already mention, for every experiment 5000 random SHARC queries
are executed. This is specified with -m 5000.

Setup. An overview of the graphs used in the experiments and some additional information regarding
them are shown in Table 3. Especially the number of unique flags and the partition is important.
The string in the last row shows how many cells on a given level. The number of cells of the lowest
level is denoted by the left most number and the number of cells of the highest level is denoted by the
rightmost number. Observe, that for all partitions there are exactly 128 cells. Thus, the size of each
flag is 128 bit.

graph unique flags nodes edges partition
eur2dist 2,304,672 18,010,173 57,590,331 4-4-4-4-8-104
eur2time 948,663 18,010,173 53,375,388 4-4-4-4-8-104
eur2unit 1,151,629 18,010,173 55,505,351 4-4-4-4-8-104
grid 2dim 323,060 250,000 1,684,403 4-4-120
grid 3dim 856,994 250,047 2,138,911 4-4-120
unit disc (degree 5) 78,495 994,980 5,102,577 4-4-8-112
unit disc (degree 7) 760,112 996,394 8,268,245 4-4-8-112

Table 3: Information on the graphs used in the experiments

6.1 Bloom Filter

As mentioned in the Section 4 the number of bits set to one in all flags is an important factor, which
influences the false positive rate. Thus, in the following sections only flags with a certain maximum
number of bits set to one inserted into a bloom filter. Although the maximum number of bits set in
the flags in the experiments are only between 5 and 12 bits (of a total of 128 bits per flag) there is
still a significant number of flags, which fall into that category (cf. Table 4). The optimal number of
hash functions are always calculated according to Equation (2).

Although mentioned, the ideas for reducing the number of bits set presented in Sections 4.3.1 and
4.3.2 are not implemented. The anchor approach reduced the number of bits set, but could not reduce
it to a large degree. The chain variant is not implemented for the reasons stated in Section 4.3.2. So
we only evaluate two different approaches. Both of them consider only flags with a certain maximum
number of bits set. But the first one uses only one bloom filter and the second one uses one bloom
filter for every level.

21

graph number of flags with at most 10 bits set total number of flags
eur2dist 667,819 (28.98%) 2,304,672
eur2time 397,772 (42.06%) 945,663
eur2unit 494,152 (42,91%) 1,151,629

Table 4: Number of flags with at most 10 bits set

6.1.1 Basic version

The first idea tested is based upon Section 4.2.1 and the idea explained in Section 4.3.3. Only flags
with a relatively small number of bits set are inserted into the bloom filter. The other flags remain
unchanged and stored in their original state.

Setup. The first experiment considers only flags with at most 5 bits set for the bloom filter. The
number of flags satisfying this condition is determined and the size of the bit array of the bloom filter
is set to the size of space consumption of the flags which are considered. Then, the flags are inserted
into the bloom filter. In each iteration the size of the bit array of the bloom filter is repeatedly reduced
by 5% of its original size. After every reduction 5000 random shortest path queries are executed by the
SHARC algorithms and the average number of settled nodes is determined. This process is repeated
with flags with at most 6 bits set, and then with at most 7 bits set, and so on until flags with at most
12 bits set are inserted into a bloom filter. The results of this with the graphs eur2dist, eur2time and
eur2unit are depicted in Figures 4, 5 and 6.

0 5 10 15 20 25

40
00

80
00

12
00

0

space saved [%]

se
ttl

ed
 n

od
es

5
6
7
8
9
10
11
12

eur2dist graph − Bloom Filter

Figure 4: eur2dist graph with simple bloom filter. The numbers in the legend are the number of
maximum bits set in the flags which are inserted into the bloom filter.

Results. If only flags with at most 5 bits set are inserted into a bloom filter the total space consump-
tion can be reduced between 2.5% and 5% without a penalty. After that a sharp rise is identifiable.

22

0 5 10 15 20 25

10
00

15
00

20
00

25
00

30
00

space saved [%]

se
ttl

ed
 n

od
es

5
6
7
8
9
10
11
12

eur2time graph − Bloom Filter

Figure 5: eur2time graph with simple bloom filter. The same properties for the legend as in Figure 4
apply.

0 5 10 15 20 25

10
00

20
00

30
00

space saved [%]

se
ttl

ed
 n

od
es

5
6
7
8
9
10
11
12

eur2time graph − Bloom Filter

Figure 6: eur2unit graph with simple bloom filter. The same properties for the legend as in Figure 4
apply.

23

best results
graph compression max number of bits settled nodes(increase[%])

eur2dist

00% - 3,044 (0%)
05% 7 3,242 (6.50%)
10% 9 5,720 (87.91%)
15% 10 10,345 (239.85%)
20% 10 146,910 (4,726.22%)

eur2time

00% - 642 (0%)
05% 7 668 (4.05%)
10% 9 758 (18.07%)
15% 9 1,286 (100.31%)
20% 9 2,023 (215.11%)

eur2unit

00% - 739 (0%)
05% 11 833 (12.72%)
10% 11 1,089 (47.36%)
15% 11 1,939 (162.38%)
20% 11 3,760 (408.80%)

Table 5: Results for the basic bloom filter (c.f. 6.1.1) with different degrees of compression and with
different graphs.

This is sharp rise follows after a certain threshold of compression, after which the false positive rate
of the bloom filter rises significantly. This trend is noticeable with the other bloom filter as well. A
higher compression can be reached, if more flags are inserted into the bloom filter. It is possible to
reach a 5% compression in the eur2dist and a 10% compression in the eur2time and eur2unit graphs
with a rise in the average number of settled nodes by about 10%.

Flags with at most 7-11 bits set seem to be the best candidates for this approach. If flags with more
bits set are chosen the initial false positive rate of the bloom filter is already quite high. Although
at a certain compression level using flags with a higher number of bits set delivers better results, the
penalty for the number of nodes settled is then already relatively high. This can be seen in Figure
5. The approach where flags with at most 12 bis are used performs better than the other approaches
only after a compression of about 22%. But at that point the number of nodes settled is about 5
times of its initial value.

The best results of this approach are depicted in Table 5.

6.1.2 Extended version

Setup. As mentioned in Section 4.2.2 it may be a good idea to manage a bloom filter for every level
of the partition and “steal” bits from the bit array of the bloom filter for the lower levels and add
them to the bit array of the highest level. The general idea of the following experiments is first to
reduce the size of the bit array of the bloom filter that represents the lowest level repeatedly by 5%
until the size has been reduced to 50% of its original size. After every reduction 5000 shortest path
queries are executed by the SHARC algorithm with the resulting bloom filter. After the bit array of
the first bloom filter has been reduced by 50% the bit array of the bloom filter representing the bits
of the second lowest level is reduced repeatedly by 5% until its size is 50% of the original. This is
repeated until the size of all bit arrays of all bloom filters is half of its original size.

Results. Unfortunately, the results are much worse than those of the basic version. A comparison
between them and those of the basic version are depicted in Table 6. Those results are caused by
an uneven distribution of bits set in the different parts of the flags which represent different cells of
different level. As it turns out there are very few bits of the highest level set. The number of bits set
of lower levels are set much more often. This leads to a high false positive rate for all bits of lower
levels. This may happen even if the space for them is not compressed.

24

compression
5% 10% 15% 20%

bloom filter basic 833 1089 1939 3760
bloom filter extended 27,649 27,992 30,798 31,987

Table 6: Comparison of both bloom filter variants discussed in Sections 6.1.1 and 6.1.2. Results are
the average number of settled nodes of 5000 random SHARC queries - (eur2unit graph)

6.1.3 Discussion

It can be shown that if only one bloom filter is used it is possible to achieve a certain degree of
compression (5-10%) of the space needed for the flags with only a small penalty regarding the average
number of settled nodes of a SHARC query. Unfortunately, the use of multiple bloom filters, one for
each level, and reducing the size of the bit array of the bloom filters of the lower levels proves to be
a bad choice. The average number of settled nodes of a SHARC query rises sharply even for a small
compression.

Although a certain degree of compression is possible this approach still suffers from some draw-
backs. The running time of a shortest path query may be heavily influenced by the repeated hash
computations. That and the insight, that the compression without a high penalty for the average
number of settled nodes is relatively small leads us to the conclusion that this approach is not very
useful.

6.2 Compression

The following sections show the experimental results of the remapping process according to Section
5 with several different graphs and cost functions. To give the reader a better “feeling” on how the
different results compare the y-axis of all diagrams shows the interval from the lowest value to three
times of that value (except stated otherwise).

6.2.1 Confirming the initial Assumption

In the last paragraph of Section 5.2 three properties are named that seem logical to be a good influence
on the cost function. Those three are

1. The number of times a flag is referenced in the graph should be as low as possible

2. The number of bits which have to be changed due to the remapping process should be as low
as possible

3. The bits which are changed should represent cells with a low level

To confirm that assumptions 2 and 3 are correct several different bitflip cost functions are tested.
Each of those assigned a certain cost to every bit of a flag, which has to be flipped from 0 to 1 due
to the remapping. The bitflip cost functions are identified by string of the from “A B C D E F” with
one letter for every level of the partition. Every letter represents the costs for changing one bit of its
corresponding level from zero to one (bitflip costs). The bitflip costs are ordered from left to right
from bitflip cost of bits of the lowest level to bitflip cost of bits of the highest level. For the example
depicted in Figure 3 this string would be “1 2”.

In the diagrams (Figures 7, 8 and 9) experiments are shown with different bitflip cost functions
and a fixed the weighting factor o (c.f. Section 5.4) value of 1. The x-axis depicts the percent-
age of flags removed and the y-axis depicts the number of nodes settled by the SHARC algorithm.
All three diagrams display roughly the same trend. The bitflip cost function “1 2 4 8 16 32” and
“1 3 8 27 84 243”, which both assign higher costs for flipping bits of higher levels deliver far better
results than all others. Neglecting the importance of the level and assigning every bit the same bit
flip cost (“1 1 1 1 1 1”) leads to a rise of the number of nodes settled with a higher number of flags

25

remapped. Weighting the bits representing the cells of levels which are neither the lowest nor the
highest provides worse results. The worst results are achieved by assigning the lowest costs to bits
representing the cells of the highest level (“32 16 8 4 2 1”). Thus the initial assumption is confirmed
and we only study bitflip cost functions, which are similar to “1 2 4 8 16 32” and “1 3 8 27 84 243”.
We can now be reasonably sure that the assumptions 2 and 3 are indeed correct. It remains to test if
assumption 1 proves to be true.

0 10 20 30 40 50

30
00

50
00

70
00

90
00

removed flags [%]

se
ttl

ed
 n

od
es

1_2_4_8_16_32
1_1_1_1_1_1
1_3_9_27_81_243
1_2_4_4_2_1
1_4_16_16_4_1
32_16_8_4_2_1

eur2dist graph − weighting factor 1 − variable cost function

Figure 7: eur2dist graph - The legend depicts the different bitflip cost functions as explained in Section
6.2.1. The weighting factor of all cost functions is 1.

In Figures 10, 11 and 12 different values for the weighting factor o combined with the bitflip cost
function “1 2 4 8 16 32” are depicted. Again we see similar trends in the diagrams. Obviously, the
value 0 (i.e. neglecting the number of times a flag is referenced) delivers results not as good as the rest,
which confirms assumption 1. A high value for o seems to cause a earlier rise in the number of nodes
settled by the SHARC algorithm with a increasing number of flags mapped, than values between 0
and 1 (not including 0). Those seem to be the best choices, but a precise “best” value among them is
not easy to identify.

The diagrams (Figures 7, 8 and 9) suggest that this approach may deliver very good results
considering that with a “good” cost function and 50% removed flags there is no penalty concerning
the number of settled nodes. It remains to be enquired if this is just a random result or if it can be
reproduced with other graphs.

6.2.2 Comparison of good cost functions

The Figures 13, 14 and 15 show several good bitflip cost functions with the weighting factor 1. The
general trend in all graphs is nearly identical. Until about 60% of all flags have been remapped, the
different bitflip cost functions deliver results which are good (i.e. a rise in settled nodes is barely
noticeable) and are basically the same. It does not seem to matter which bitflip cost function is
chosen. After the 60% mark has been passed the results start to be distinct from one another even
though most of them do not differ much. The bitflip cost function “1 2 4 8 16 32” delivers the worst
results among all different bitflip cost functions with about 80% flags removed. This is most likely

26

0 10 20 30 40 50

60
0

80
0

12
00

16
00

removed flags [%]

se
ttl

ed
 n

od
es

eur2time graph − weighting factor 1 − variable cost function

1_2_4_8_16_32
1_1_1_1_1_1
1_3_9_27_81_243
1_2_4_4_2_1
1_4_16_16_4_1
32_16_8_4_2_1

Figure 8: eur2time graph - The legend depicts the different bitflip cost functions as explained in
Section 6.2.1. The weighting factor of all cost functions is 1.

0 10 20 30 40 50

10
00

15
00

20
00

removed flags [%]

se
ttl

ed
 n

od
es

1_2_4_8_16_32
1_1_1_1_1_1
1_3_9_27_81_243
1_2_4_4_2_1
1_4_16_16_4_1
32_16_8_4_2_1

eur2unit graph − weighting factor 1 − variable cost function

Figure 9: eur2unit graph - The legend depicts the different bitflip cost functions as explained in Section
6.2.1. The weighting factor of all cost functions is 1.

27

0 20 40 60 80

30
00

50
00

70
00

90
00

removed flags [%]

se
ttl

ed
 n

od
es

eur2dist graph − cost function: 1_2_4_8_16_32

0
0.25
0.5
0.75
1
2
5
10

Figure 10: eur2dist graph - The legend depicts the different values used for the weighting. The bitflip
cost function is “1 2 4 8 16 32”.

0 20 40 60 80

60
0

80
0

12
00

16
00

removed flags [%]

se
ttl

ed
 n

od
es

eur2time graph − cost function: 1_2_4_8_16_32

0
0.25
0.5
0.75
1
2
5
10

Figure 11: eur2time graph - The legend depicts the different values used for the weighting. The bitflip
cost function is “1 2 4 8 16 32”.

28

0 20 40 60 80

10
00

15
00

20
00

removed flags [%]

se
ttl

ed
 n

od
es

eur2unit graph − cost function: 1_2_4_8_16_32

0
0.25
0.5
0.75
1
2
5
10

Figure 12: eur2unit graph - The legend depicts the different values used for the weighting. The bitflip
cost function is “1 2 4 8 16 32”.

due to the fact, that bits which represent cells of the highest level get flipped earlier than in all other
cost functions. On the other hand the bitflip cost function “1 2 4 8 16 128”, which heavily weights
those bits also does not perform that well in comparison to the other functions. The most reasonable
explanation for this is, that because flipping a bit representing the highest level is very expensive
flags with less of those bits but are referenced more often are much more likely to be remapped. This
means a tradeoff between the weighting of bits of higher regions and the weighting of the times a
flag is referenced by the edges has to be found. The bitflip cost function “1 3 9 27 81 243” with the
weighting factor of 1 delivers consistently good results and may represent such a tradeoff.

6.2.3 Other road networks

As already mentioned, it remains to examine, if good bitflip cost functions illustrated in the previous
sections are good bitflip cost functions for other road networks or entirely artificial graphs.

The graphs used for the next experiments are road networks of the united states. All of them
have the same 6 level partitioning. Different good bitflip cost functions with the weighting factor
of 1 are used. The results are depicted in Figures 16, 17 and 18. The trend resembles those in the
diagrams of the european road network. A 60% compression can be reached without a sharp rise of
the number of settled nodes. After the 60% mark the results clearly worsen, although not that much
compared to the european road network graphs. Especially the usa dist graph with the bitflip cost
function “1 3 9 27 81 243” leads after 80% of all flags have been removed to “only” an increase of
settled nodes of about 50%.

All those results suggest, that for a road network the remapping process can lead to a serious
reduction of unique flags and thus to a significant reduction in space needed for storing them. It
remains to examine if those good results are reproducible for artificial graphs.

29

0 20 40 60 80

30
00

50
00

70
00

90
00

removed flags [%]

se
ttl

ed
 n

od
es

1_2_4_8_16_32
1_2_4_8_16_64
1_2_4_8_16_128
1_2_4_8_16_256
1_2_4_8_32_64
1_2_4_8_32_128
1_2_4_8_32_256
1_3_9_27_81_243

eur2dist graph − weighting factor 1 − variable cost function

Figure 13: eur2dist graph - The legend depicts the different good bitflip cost functions as explained
in Section 6.2.1. The weighting factor of all cost functions is 1.

0 20 40 60 80

60
0

80
0

12
00

16
00

removed flags [%]

se
ttl

ed
 n

od
es

eur2time graph − weighting factor 1 − variable cost function

1_2_4_8_16_32
1_2_4_8_16_64
1_2_4_8_16_128
1_2_4_8_16_256
1_2_4_8_32_64
1_2_4_8_32_128
1_2_4_8_32_256
1_3_9_27_81_243

Figure 14: eur2time graph - The legend depicts the different good bitflip cost functions as explained
in Section 6.2.1. The weighting factor of all cost functions is 1.

30

0 20 40 60 80

10
00

15
00

20
00

removed flags [%]

se
ttl

ed
 n

od
es

eur2unit graph − weighting factor 1 − variable cost function

1_2_4_8_16_32
1_2_4_8_16_64
1_2_4_8_16_128
1_2_4_8_16_256
1_2_4_8_32_64
1_2_4_8_32_128
1_2_4_8_32_256
1_3_9_27_81_243

Figure 15: eur2unit graph - The legend depicts the different good bitflip cost functions as explained
in Section 6.2.1. The weighting factor of all cost functions is 1.

0 20 40 60 80

40
00

60
00

80
00

10
00

0

removed flags [%]

se
ttl

ed
 n

od
es

usa_dist graph − weighting factor 1 − variable cost function

1_2_4_8_16_128
1_2_4_8_16_256
1_2_4_8_32_128
1_2_4_8_32_256
1_3_9_27_81_243

Figure 16: usa dist graph - The legend depicts the different good bitflip cost functions as explained
in Section 6.2.1. The weighting factor of all cost functions is 1.

31

0 20 40 60 80

10
00

15
00

20
00

25
00

removed flags [%]

se
ttl

ed
 n

od
es

usa_time graph − weighting factor 1 − variable cost function

1_2_4_8_16_128
1_2_4_8_16_256
1_2_4_8_32_128
1_2_4_8_32_256
1_3_9_27_81_243

Figure 17: usa time graph - The legend depicts the different good bitflip cost functions as explained
in Section 6.2.1. The weighting factor of all cost functions is 1.

0 20 40 60 80

15
00

25
00

35
00

45
00

removed flags [%]

se
ttl

ed
 n

od
es

1_2_4_8_16_128
1_2_4_8_16_256
1_2_4_8_32_128
1_2_4_8_32_256
1_3_9_27_81_243

usa_unit graph − weighting factor 1 − variable cost function

Figure 18: usa unit graph - The legend depicts the different good bitflip cost functions as explained
in Section 6.2.1. The weighting factor of all cost functions is 1.

32

6.2.4 Artificial Graphs

Four different artificial graphs are tested. Two different unit disc graphs and two different grid graphs
are used (cf. Table 3).

The results for the degree 5 unit disc graph (Figure 19) are similar to those of the road network
graphs. The results of all different bitflip cost functions are so similar that it does not seem to matter
which one is chosen. This might be the case because there are not many unique flags (only 78,495) in
this graph and thus there are not many candidates for the remapping process. Illustrated in Figure
20 are the results for the degree 7 unit disc graph. They are not as good as the results of the degree
5 unit disc graph, but about 40% of the flags can be remapped without a penalty. This is still a
good result. In this case the results for different bitflip cost functions differs noticeable in the interval
between a 55% and a 75% remapping of flags. Before and after that they seem to be produce very
similar results. A cause for this is not apparent.

Figure 21 displays the results for the remapping of the unique flags for a 2 dimensional grid with
a 3 level partitioning. The results again are very similar to those of the road network graphs, but two
bitflip cost functions deliver far worse results than the other three, after the 60% remapping mark
has been reached. As both of them (“1 2 32” and “1 4 32”) very heavily weight bits of the highest
level and the others (i.e. the ones that produce better results) do not this behaviour may be caused
by remapping too many flags which are referenced often instead of flags which are referenced far less
but are populated with some high level bits.

For the three dimensional grid (again with a 3 level partitioning) the results (Figure 22) of the
bitflip cost functions do not seem to produce different results from one another. After 40% of the flags
have been remapped a nearly linear increase in the number of settled nodes can be seen. Before the
30% mark a negative effect is barely noticeable.

0 20 40 60 80

30
0

40
0

50
0

60
0

70
0

removed flags [%]

se
ttl

ed
 n

od
es

UnitDist_deg5 graph − weighting factor 1 − variable cost function

1_2_4_32
1_2_4_64
1_2_8_64
1_2_8_32
1_3_9_27

Figure 19: Unit Disc (degree 5) graph - The legend depicts the different good bitflip cost functions as
explained in Section 6.2.1. The weighting factor of all cost functions is 1.

33

0 20 40 60 80

15
00

20
00

25
00

30
00

35
00

removed flags [%]

se
ttl

ed
 n

od
es

UnitDist_deg7 graph − weighting factor 1 − variable cost function

1_2_4_32
1_2_4_64
1_2_8_64
1_2_8_32
1_3_9_27

Figure 20: Unit Disc (degree 7) graph - The legend depicts the different good bitflip cost functions as
explained in Section 6.2.1. The weighting factor of all cost functions is 1.

0 20 40 60 80

10
00

15
00

20
00

25
00

removed flags [%]

se
ttl

ed
 n

od
es

Grid 2dim graph − weighting factor 1 − variable cost function

1_4_32
1_2_16
1_2_32
1_3_9
1_4_16

Figure 21: Grid (2dim) graph - The legend depicts the different good bitflip cost functions as explained
in Section 6.2.1. The weighting factor of all cost functions is 1.

34

0 20 40 60 80

60
00

80
00

12
00

0
16

00
0

removed flags [%]

se
ttl

ed
 n

od
es

Grid 3dim graph − weighting factor 1 − variable cost function

1_2_16
1_2_32
1_3_9
1_4_16
1_4_32

Figure 22: Grid (3dim) graph - The legend depicts the different good bitflip cost functions as explained
in Section 6.2.1. The weighting factor of all cost functions is 1.

6.2.5 Detailed comparison and analysis

To understand how certain cost functions perform, a more detailed analysis is needed. In Figure 23
the y-axis depicts the number of bits of a certain level, which are flipped. The x-axis depicts, as
before, the percentage of flags remapped. As an example we compare only two different bitflip cost
functions. Most of the other good bitflip cost functions behave like one of the two shown. In the
diagram (Figure 23) those two different bitflip cost functions with the weighting factor 1 are shown.
One is the very good performing “1 3 9 27 81 243” bitflip cost function and the other is the bitflip
cost function “1 2 4 8 16 128” (cf. 24), which performs not as good as the one before. The difference
is only noticeable in the interval between 60% and 80% remapped flags. The bitflip cost function
“1 3 9 27 81 243” does change much more bits from the three lowest levels form 0 to 1 than the other
one. The biggest difference can be seen in the number of bits of level 6. Bits of level 6 are flipped
much less by that bitflip cost function. This is leads to a decreased number of unnecessary considered
edges by the SHARC algorithm (compared to the behaviour of the other bitflip cost function) and is
most likely the cause for the better performance of “1 3 9 27 81 243”.

If we compare the good performing “1 3 9 27 81 243” with the cost function “1 1 1 1 1 1” which
performs far worse, we see the reason why it performs so poorly (Figure 25). As one might expect
the number of bits changed from zero to one of the latter bitflip cost function is throughout every
level nearly the same. There is no resemblance to the results of the better performing bitflip cost
function. Interestingly, after about 35% removed flags, the bits of the highest level get changed far
more often than the other ones. This might be due to the uneven distribution of bits in the flags
which is mentioned in Section 6.1.2. Thus it may be, that flags differ mostly in the parts representing
the lower level and a this causes the high level bits to be flipped more often.

If we want to focus on the weighting factor o, we can see in Figure 26 the bitflip cost function
“1 2 4 8 16 64” with three different values for the weighting factor. It is obvious that the weighting
factor o = 1 delivers the best results. In Figure 27 we can see from what this derives. Applying such a
weighting factor, we observe the following: Bits representing upper levels are flipped at a later point,

35

0 20 40 60 80

0
50

0
10

00
15

00
20

00

removed flags [%]

#B
its

 fl
ip

pe
d

(in
 1

,0
00

)

eur2dist graph − weighting factor 1

level 1
level 2
level 3
level 4
level 5
level 6

1_2_4_8_16_128
1_3_9_27_81_243

Figure 23: eur2dist - Comparison between two bitflip cost functions

0 20 40 60 80

30
00

50
00

70
00

90
00

removed flags [%]

se
ttl

ed
 n

od
es

1_2_4_8_16_128
1_3_9_27_81_243

eur2dist graph − weighting factor 1 − two bitflip cost functions

Figure 24: eur2dist - Comparison between two bitflip cost functions regarding the average settled
nodes of 5000 random SHARC queries.

36

0 20 40 60 80

0
50

0
10

00
15

00
20

00

removed flags [%]

#B
its

 fl
ip

pe
d

(in
 1

,0
00

)
eur2dist graph − weighting factor 1

level 1
level 2
level 3
level 4
level 5
level 6

1_1_1_1_1_1
1_3_9_27_81_243

Figure 25: eur2dist graph - Comparison between a good and a bad performing bitflip cost function.
It is shown how many bits of which level are flipped by the remapping process.

and less of them are flipped. This is caused by the fact that a high value for o favours the remapping
of flags which are referenced rarely but may have even high level bits set. Flags which are referenced
more often are not favoured for the remapping process. Flipping high level bits later delivers better
results because most of a shortest Path query is carried out at the topmost level.

Altogether this leads to the insight that, as we have seen at the beginning of this section, the
number of bits of the lower levels is not very important. It may be even logical to make it even
cheaper to flip bits of those levels. But the changing of bits of the highest level should not be much
more expensive than the changing of bits of the second highest level. This is done by the bitflip
cost function “1 2 4 8 16 128” and delivered not as good results as other bitflip cost functions. The
weighting factor, as already mentioned in Section 6.2.1, should not be too high.

6.2.6 Best results

Three comprehensive tables (7, 8 and 9) show best results for every graph with the cost function
which produced those results. They suggest, that a 50% removal of flags of graphs representing road
networks, does lead to only a very small penalty. Even a removal of 60% of all flags can be achieved
with only a small rise (2.67% to 14.71%) in the number of settled nodes by the SHARC algorithm. If
more flags are removed the results begin to worsen significantly.

The results of the artificial graphs are not as good but are still remarkable. The increase of settled
nodes per search query rises are between 12.03% and 49.81%. Table 9 suggest, that a 80% reduction of
the number of unique flags leads to a significant increase (between 59.82% and 708.3%) in the number
of average nodes settled by the SHARC algorithm. The results for the artificial graphs show an even
higher increase of settled nodes. If 50% of all flags are removed the results are, compared to those of the
road networks, not as good but are still exceptional (increase between 4.83% and 22.12%). Although
applying the remapping technique delivers better results with graphs of road networks, reducing the
number of flags by one half and gaining only such a small penalty is remarkable. If even less flags of

37

0 20 40 60 80

30
00

50
00

70
00

90
00

removed flags [%]

se
ttl

ed
 n

od
es

eur2dist graph − cost function: 1_2_4_8_16_64

1
5
10

Figure 26: eur2dist graph - A Comparison between different weighting factor regarding the average
settled nodes of 5000 random SHARC queries.

the artificial graphs are removed (between 30%-40%) a rise in the number of settled nodes is hardly
noticeable. Hence, the running time of a shortest path query differs not from the one that uses all
arc-flags. So even for artificial graphs, this approach can lead to a substantial decrease in unique flags
without a penalty regarding the running time.

38

0 20 40 60 80

0
50

0
10

00
15

00
20

00

% removed flags

#B
its

 fl
ip

pe
d

(in
 1

,0
00

)

eur2dist graph − 1_2_4_8_16_64

level 1
level 2
level 3
level 4
level 5
level 6

o = 1
o = 5
o = 10

Figure 27: eur2dist graph - Comparison between three different weighting factors for the bitflip cost
function “1 2 4 8 16 64”. It is shown how many bits of which level are flipped by the remapping
process.

best results
graph removed flags bitflip weighting settled nodes(increase[%])

eur2dist

00% - - 3044 (0%)
50% 1 3 9 27 81 243 1 3086 (1.38%)
60% 1 2 4 8 32 128 1 3492 (14.71%)
70% 1 2 4 8 32 128 1 3816 (19.12%)
80% 1 2 4 8 32 128 1 5110 (67.87%)

eur2time

00% - - 642(0%)
50% 1 3 9 27 81 243 1 660 (2.80%)
60% 1 2 4 8 32 256 1 701 (9.20%)
70% 1 3 9 27 81 243 1 824 (28.35%)
80% 1 2 4 8 32 256 1 1066 (66.04%)

eur2unit

00% - - 739 (0%)
50% 1 3 9 27 81 243 1 765 (3.52%)
60% 1 3 9 27 81 243 0.5 823 (14.71%)
70% 1 3 9 27 81 243 0.5 1024 (38.57%)
80% 1 3 9 27 81 243 0.5 1443 (95.26%)

Table 7: Best results for european road network graphs

39

best results
graph removed flags bitflip weighting settled nodes(increase[%])

usa dist

00% - - 3899 (0%)
50% 1 3 9 27 81 243 1 3928 (0.74%)
60% 1 3 9 27 81 243 1 4070 (4.39%)
70% 1 3 9 27 81 243 1 4482 (14.95%)
80% 1 3 9 27 81 243 1 5819 (49.24%)

usa time

00% - - 876 (0%)
50% 1 3 9 27 81 243 1 909 (3.76%)
60% 1 3 9 27 81 243 1 979 (11.76%)
70% 1 3 9 27 81 243 1 1029 (17.47%)
80% 1 3 9 27 81 243 1 1504 (71.69%)

usa unit

00% - - 1563 (0%)
50% 1 3 9 27 81 243 1 1569 (0.38%)
60% 1 3 9 27 81 243 1 1676 (7.23%)
70% 1 3 9 27 81 243 1 2028 (29.75%)
80% 1 3 9 27 81 243 1 2638 (68.78%)

Table 8: Best results for usa road network graphs

best results
graph removed flags bitflip weighting settled nodes(increase[%])

grid 2dim

00% - - 931 (0%)
50% 1 3 9 1 976 (4.83%)
60% 1 3 9 1 1043 (12.03%)
70% 1 3 9 1 1161 (24.70%)
80% 1 3 9 1 1488 (59.82%)

grid 3dim

00% - - 5334 (0%)
50% 1 3 9 1 6514 (22.12%)
60% 1 3 9 1 7613 (42.72%)
70% 1 3 9 1 8726 (63.60%)
80% 1 3 9 1 10610 (98.91%)

unit disc deg 5

00% - - 229 (0%)
50% 1 3 9 27 1 244 (6.55%)
60% 1 3 9 27 1 296 (29.26%)
70% 1 3 9 27 1 547 (138.86%)
80% 1 3 9 27 1 1851 (708.30%)

unit disc deg 7

00% - - 1306 (0%)
50% 1 3 9 27 1 1467 (12.33%)
60% 1 3 9 27 1 1815 (38.97%)
70% 1 2 4 32 1 2319 (77.57%)
80% 1 2 4 32 1 3743 (186.60%)

Table 9: Best results for artificial graphs

40

7 Conclusion

In this paper two different mechanism of reducing space needed for storing arc-flags have been studied.
One is based on a probabilistic data structure, the bloom filter. The other approach removes flags
and changes all references inside the graph accordingly.

Some ideas on how to use the bloom filter to reduce the space needed for storing the flags have
been presented. Unfortunately most of them proved not to be a good choice. Only one idea lead to a
positive result. With it, we are able to save up to 10% space, without invoking to much penalty for
the running time of a shortest path query using SHARC. But it suffers from two major disadvantages.
First, the SHARC query algorithm itself has to be modified to use the bloom filter. Second, bloom
filters yield a higher overhead due to the hash operations. Hence, running time increases.

The second approach, the deletion of some arc-flags and changing the indices pointing to them to
other arc-flags, proves to be a far better choice. Three general characteristics of good cost functions,
which help to determine the best candidates for removal, have been explained. Furthermore, a more
detailed analysis of those characteristics has been been presented. With this approach it is possible to
remove 50-60% of all flags of the tested road network graphs with only a small penalty concerning the
number of settled nodes and thus the running time. A very appealing factor of this approach is, that
it does not suffer from the disadvantages of one using the bloom filter. There is no need to modify any
code of the SHARC algorithm and thus there is no additional overhead during a shortest path query.
The computational effort lies completely in the preprocessing phase, but for large graphs it may be
significant, even though a fairly quick way of finding the mapping target with minimal mapping cost
has been devised.

Future Work. SHARC introduces two forms of overhead. One of them are the arc flags. The other
overhead factor is caused by the shortcuts. This paper dealt with the former overhead problem and
showed one mechanism which yields very high compression rates for the arc-flags with only a very
small penalty regarding the running time of a SHARC query. The overhead posed by shortcuts is a
problem which might be yield enormous potential for space consumption improvement. Recall that
the graph is enriched by additional edges and nodes which can lead to a significant rise in the size
of the graph. This is even more problematic for the time dependent SHARC variant, which is not
discussed in this paper. Information regarding it can be found in [Del09]. It seems to be a good idea
to test if it is possible to determine if there are less important shortcuts in a graph which can be
removed without deteriorating the running time of a SHARC query too much.

41

References

[BD09] Reinhard Bauer and Daniel Delling. SHARC: Fast and Robust Unidirectional Routing.
Invited submission to a special issue of the ACM Journal of Experimental Algorithmics
devoted to the best papers of ALENEX 2008, 2009. 5, 8, 9

[Blo70] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun.
ACM, 13(7):422–426, 1970. 9

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-
duction to Algorithms. MIT Press, 2nd edition, 2001. 6

[Del09] Daniel Delling. Time-Dependent SHARC-Routing. Invited submission to a the special
issue of Algorithmica devoted to the best papers of ESA 2008, 2009. 41

[Dij59] Edsger W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik, 1:269–271, 1959. 6

[DSSW09] Daniel Delling, Peter Sanders, Dominik Schultes, and Dorothea Wagner. Engineering
Route Planning Algorithms. In Jürgen Lerner, Dorothea Wagner, and Katharina A.
Zweig, editors, Algorithmics of Large and Complex Networks, Lecture Notes in Computer
Science. Springer, 2009. To appear. 6

[HKMS08] Moritz Hilger, Ekkehard Köhler, Rolf H. Möhring, and Heiko Schilling. Fast Point-to-
Point Shortest Path Computations with Arc-Flags. In Camil Demetrescu, Andrew V.
Goldberg, and David S. Johnson, editors, Shortest Paths: Ninth DIMACS Implementation
Challenge, DIMACS Book. American Mathematical Society, 2008. To appear. 7, 8

[HSWW06] Martin Holzer, Frank Schulz, Dorothea Wagner, and Thomas Willhalm. Combining
Speed-up Techniques for Shortest-Path Computations. ACM Journal of Experimental
Algorithmics, 10, 2006. 7

[KMS05] Ekkehard Köhler, Rolf H. Möhring, and Heiko Schilling. Acceleration of Shortest Path
and Constrained Shortest Path Computation. In WEA’05 [WEA05], pages 126–138. 7

[Lab07] Karypis Lab. METIS - Family of Multilevel Partitioning Algorithms, 2007. 7

[Lau04] Ulrich Lauther. An Extremely Fast, Exact Algorithm for Finding Shortest Paths in Static
Networks with Geographical Background. volume 22, pages 219–230. IfGI prints, 2004. 7

[Mit02] Andrei Broder I Michael Mitzenmacher. Network applications of bloom filters: A survey.
In Internet Mathematics, pages 636–646, 2002. 10

[MSS+05] Rolf H. Möhring, Heiko Schilling, Birk Schütz, Dorothea Wagner, and Thomas Willhalm.
Partitioning Graphs to Speed Up Dijkstra’s Algorithm. In WEA’05 [WEA05], pages
189–202. 7

[MSS+06] Rolf H. Möhring, Heiko Schilling, Birk Schütz, Dorothea Wagner, and Thomas Willhalm.
Partitioning Graphs to Speedup Dijkstra’s Algorithm. ACM Journal of Experimental
Algorithmics, 11:2.8, 2006. 7

[PSS07] Felix Putze, Peter Sanders, and Johannes Singler. Cache-, hash- and space-efficient bloom
filters. In WEA, pages 108–121, 2007. 11

[SS06] Peter Sanders and Dominik Schultes. Engineering Highway Hierarchies. In Proceedings of
the 14th Annual European Symposium on Algorithms (ESA’06), volume 4168 of Lecture
Notes in Computer Science, pages 804–816. Springer, 2006. 8

[WEA05] Proceedings of the 4th Workshop on Experimental Algorithms (WEA’05), Lecture Notes
in Computer Science. Springer, 2005. 42

42

	Introduction
	Preliminaries
	Shortest Path
	Solving the Shortest Path Problem
	Dijkstra's Algorithm

	Speed-up techniques
	Arc-Flags
	Definitions

	SHARC

	Bloom Filter
	Fundamentals
	Application to Arc-Flags/SHARC
	Simple
	A little more elaborate

	Reducing the Number of Bits Set
	Anchor
	Chains
	Consider only some Flags for the Bloom Filter

	Compression
	Basic principle
	Application
	The cost function
	Finding the best flags to remap

	Finding the best flag
	Simple version
	Slightly enhanced version
	Fast version

	The cost function revisited

	Experiments
	Bloom Filter
	Basic version
	Extended version
	Discussion

	Compression
	Confirming the initial Assumption
	Comparison of good cost functions
	Other road networks
	Artificial Graphs
	Detailed comparison and analysis
	Best results

	Conclusion

