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Abstract. We consider the distributed construction of a deterministic
local broadcasting schedule in the SINR model of interference. During
the execution of such a schedule each node should be able to transmit one
message to its neighbors. Our construction requires only O(∆ logn) time
slots, where ∆ is the maximum node degree in the network and n the
number of nodes. We prove that the length of the constructed schedule is
asymptotically optimal, i.e. of length O(∆). Considering the simulation
of CONGEST algorithms in the SINR model, our deterministic schedule
achieves a runtime of O(τ∆2 +∆ logn) time slots, where τ is the original
runtime in the CONGEST model. We show that there is a lower bound
of Ω(∆2) for the simulation of each one of the τ rounds, hence our
simulation is optimal apart from the logarithmic factor. If we restrict the
knowledge of the nodes and let the maximum node degree ∆ be unknown,
we can prove that at least Ω(D +τ∆2) time slots are required to simulate
synchronized CONGEST algorithms in the SINR model of interference,
where D is the diameter of the network. For our algorithms we assume
location information to be given. Regarding the case without location
information we argue that a deterministic algorithm to compute local
broadcasting schedules by Derbel and Talbi [ICDCS’10], which requires
transmission power adaption, needs messages of size O(logn) to simulate
CONGEST algorithms. This is a logarithmic factor less than stated by
the authors.

1 Introduction

Local broadcasting is one of the most fundamental task in wireless networks.
In contrast to global broadcasting, where one message must be spread over the
whole network, in the problem of local broadcasting each node must send one
message only to all direct neighbors. In wireless networks usually only a fraction
of all nodes can broadcast simultaneously due to the signal interference of multi-
ple transmissions. Hence local broadcasts must be coordinated in order to avoid
too high interference. Since interference is modeled relatively realistic in the
SINR model (Signal-to-Interference-and-Noise-Ratio model, cf. Section 2), the
problem of finding a local broadcasting schedule must be tackled by algorithms
designed for this model, whereas for many other models such as the message-
passing based CONGEST or LOCAL models [1] the broadcasting problem does



2 F. Fuchs, D. Wagner

not occur as interference-free communication is assumed (cf. Section 2). Thus, in
these models message reception is guaranteed regardless of other transmissions.

However, wireless technology is becoming more and more ubiquitous and
hence distributed computing in a wireless context—along with the SINR model—
received increasing attention in recent research. Local broadcasting is a funda-
mental problem in the SINR model that can be used as a building block to
solve higher-level problems. Hence it is quite well studied and can be solved in
O(∆ log n) time slots [2] (where ∆ is the maximum number of nodes in any trans-
mission region of the network) if ∆ is known. Further results will be discussed in
Section 1.1. Due to the vast amount of algorithms designed for message-passing
models, one particularly interesting application of local broadcasting is to sim-
ulate algorithms designed for message-passing models in the SINR model.

For complex algorithms it may be more effective to invest some time in a
preprocessing step in order to achieve faster local broadcasting. In fact, this
can be beneficial and both Derbel and Talbi [3] and Jurdzinski and Kowal-
ski [4] achieve—using different methods and assumptions—local broadcasting in
O(∆), which is optimal due to a trivial lower bound1 For Derbel’s and Talbi’s
approach such a preprocessing requires O(∆ log n) time slots while Jurdzinski’s
and Kowalski’s approach requires O(∆ log3 n) slots. Inspired by both approaches
we describe how to construct a deterministic local broadcasting schedule with
optimal length O(∆) and preprocessing time of O(∆ log n) time slots. We use
distributed node coloring proposed by Derbel and Talbi [3] to construct an in-
feasible local broadcasting schedule and combine it with the concept of dilution
by Jurdzinski and Kowalski [4], which enables us to achieve feasibility of the
schedule while increasing the length of the schedule only by a constant factor.
We require the nodes to know an upper bound on the number of nodes n, the
maximum node degree ∆ in the network, their own ID, and location informa-
tion. We do not require carrier sensing and restrict ourselves to uniform and
non-adjustable transmission powers.

Our deterministic local broadcasting algorithm differs from the previously
mentioned algorithms in various ways. In contrast to the distributed node color-
ing by Derbel and Talbi [3] we do not require the nodes to tune their transmission
power, while they require the nodes to tune the transmission power by a con-
stant factor. With regard to the backbone structure constructed by Jurdzinski
and Kowalski [4] the method described in this work is faster by a polylogarithmic
factor.

Using the local broadcasting schedule to simulate algorithms (with original
runtime τ) designed for the CONGEST model, we achieve a runtime of O(τ∆2+
∆ log n) time slots in the SINR model. Regarding the case that nodes do not
know the global maximum degree, we show a lower bound of Ω(τ∆2 + D) (with
diameter D) on the runtime in the SINR model for the simulation of synchronized
CONGEST algorithms.

1 As only one transmission can be received in a time slot, ∆ nodes in a transmission
region require Ω(∆) time slots to transmit to one (shared) neighbor.
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Finally, we argue that the local broadcasting based on a coloring described
in [3] is capable of simulating message-passing algorithms with messages that
are by a factor of log n smaller than stated. This results in an approach that is
capable of simulating CONGEST algorithms in O(τ∆2+∆ log n) using messages
of size O(log n). This is as fast as the deterministic local broadcasting schedule
described in this work, however, note that they assume the nodes to tune their
transmission power by a constant factor, while we require location information
to be given.

1.1 Related Work

A few years ago, the SINR model has only been considered for basic communica-
tion problems in wireless networks such as connectivity [5,6], link scheduling [7],
or local broadcasting [2]. However, it recently attracted considerable attention
even in the distributed computing community. There are now initial works con-
sidering distributed computing problems in the SINR model, for example dis-
tributed node coloring [3, 8], independent sets [8] or dominating sets [9].

However, due to the complexity of analyses in the SINR model, it is reason-
able to use local broadcasting as a building block in order to run more evolved
distributed computing algorithms on wireless networks. By simulating a round-
based message-passing environment through local broadcasting even complex
distributed algorithms such as for example all-pairs shortest paths [10] or graph
partition [11] designed for the message-passing-based CONGEST model can be
made available in the SINR model.

The simulation of message-passing algorithms in radio networks (in which a
message is successfully received if the receiver is silent and only one of its neigh-
bors is transmitting) has first been studied by Alon et al. in [12]. They propose
a separate simulation of each round of the message-passing algorithm. Among
other results they proved a bound of Θ(∆2) for the case that each node trans-
mits a different message to each of its neighbors. The lower bound translates to
the SINR model with a slightly modified proof (see Section 4.1), while the upper
bound has not yet been reached. Kuhn et al. [13] proposed an abstract interface—
an abstract MAC layer—that enables easier models (i.e., message-passing based
models) to be executed in more realistic models for wireless communication.
However, they did only describe an implementation of the abstract MAC layer
by local broadcasting in the radio network model, which does not account for
global interference.

Local broadcasting in the SINR model has first been studied by Goussevskaia
et al. in [2]. They considered local broadcasting with known and unknown com-
petition (which is the number of nodes within a certain region around the node)
in asynchronous networks and propose two randomized algorithms for the asyn-
chronous SINR model with runtimes of O(∆ log n) and O(∆ log3 n) for known
and unknown competition. Yu et al. [14] improve the approximation ratio for
the unknown competition by a logarithmic factor to O(∆ log2 n) and propose
two algorithms for the synchronized model (with synchronous and asynchronous
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wake-up) that make use of carrier sensing and thereby achieve local broadcast-
ing in O(∆ log n) time slots. In [15] Yu et al. improve the algorithm for asyn-
chronous time slots and unknown competition further to O(∆ log n+log2 n) and
provide a lower bound of Ω(∆+ log n) for randomized algorithms in this model.
Halldórsson and Mitra [16] provide an algorithm with the same running time of
O(∆ log n+ log2 n) in the same model, that is slightly simpler and more robust.
They also provide an algorithm that achieves a running time of O(∆ + log2 n)
per round of local broadcasting with the assumption that acknowledgments are
received freely.

The first result that achieves local broadcasting in the synchronized SINR
model in O(∆) after a preprocessing stage of O(∆ log n) time slots is from Der-
bel and Talbi [3]. They transfer a distributed node coloring algorithm proposed
by Moscibroda and Wattenhofer [17] to the SINR model and, by tuning the
transmission power during the coloring step, achieve a deterministic local broad-
casting schedule of length O(∆) that is feasible in the SINR model. A second
result by Jurdzinski and Kowalski [4], which assumes the location to be known to
the nodes, achieves the optimal runtime of O(∆) for local broadcasting without
requiring the capability of nodes to tune their transmission power. However, the
preprocessing stage requires O(∆ log3 n) time slots. The authors introduce the
concept of dilution (cf. Section 2.2) and build a deterministic backbone structure
that enables communication to the backbone in O(∆) and local broadcasts from
within the backbone in constant time. This backbone structure also enables local
broadcasting in O(∆).

Publication Assumptions Runtime

Goussevskaia et al. [2] asynchron model (async), ∆ O(∆ logn)
Goussevskaia et al. [2] async O(∆ log3 n)
Yu et al. [14] async O(∆ log2 n)
Yu et al. [14] sync. model, carrier sense (c.s.) O(∆ logn)
Yu et al. [15] async O(∆ logn+ log2 n)
Halldórsson & Mitra [16] async, c.s. or free ACKs O(∆+ log2 n)

Publication Assumptions Runtime +prepr.

Derbel & Talbi [3] sync, ∆, tune transmission power O(∆) +O(∆ logn)
Jurdzinski & Kowalski [4] sync, ∆, location O(∆) +O(∆ log3 n)
This work sync, ∆, location O(∆) +O(∆ logn)

Table 1. Local broadcasting results for the SINR model. Ordered chronologically by
appearance with separation in algorithms with and without preprocessing.

1.2 Structure

The rest of this paper is structured as follows. In the next section, we describe
required models and state some basic definitions. In Section 3, the construction
of the deterministic local broadcasting schedule is described and we show its fea-
sibility in the SINR model. Afterwards we consider the simulation of CONGEST
algorithms in the SINR model in Section 4. We conclude this work with some
final remarks in Section 5.
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2 Model and Definitions

We consider a wireless network consisting of n nodes, that are placed arbitrarily
on the Euclidean plane. The global maximum number of nodes within a trans-
mission region is called the maximum degree of any node in the network and
denoted by ∆. We usually assume that all nodes in the network know their ID
and an upper bound ñ on n, with ñ ≤ nc for some constant c ≥ 1. As the upper
bound influences our results only by a constant factor we usually write n even
though only ñ may be known by the nodes.

In the geometric SINR model a transmission from node v to node w is suc-
cessful iff the SINR condition holds:

Pv
dist(v,w)α∑

u∈I
Pu

dist(u,w)α +N
≥ β (1)

where Pv (Pu) denotes the transmission power of node v (u), α is the attenuation
coefficient2 depending on the network environment, the SINR-threshold β ≥ 1
is a hardware-defined constant, N is the environmental noise and I is the set of
nodes sending simultaneously with v. We assume uniform transmission powers,
hence Pv = P for each node v.

Based on the SINR condition the maximum transmission range of each node
is ( P

Nβ )1/α. However, as soon as only one other node in the network transmits
simultaneously, this transmission range cannot be achieved anymore. Having
only one transmission in the whole network is clearly not desired, hence we define
the maximum transmission range RT such that twice the amount of noise can be
tolerated: RT = ( P

2Nβ )1/α. Note that this is a usual assumption and consistent

with [3]. We do not exactly require twice the amount of noise, any constant
factor b > 1 would also be sufficient. The area that is within the transmission
range of a node v is denoted by Dv

T .

2.1 Simulating CONGEST Algorithms in the SINR Model

Let us first introduce the CONGEST model of distributed computation [1]
briefly. This model focuses on the effects of congestion in distributed networks.
Algorithms in the CONGEST model enforce a O(log n) limitation on the maxi-
mum message size, while messages can only be sent to neighboring nodes. Note
that with one message only a constant number of node IDs in the range [0, . . . , n]
can be transmitted in this model. Hence, unlike in the LOCAL model which al-
lows messages of unlimited sizes but restricts the runtime to a constant number
of rounds [1] only a small fraction of the possibly obtained information can be
made known to neighbors in reasonable time.

For a simulation of algorithms designed for the CONGEST model of dis-
tributed computation in the geometric SINR model we require the following
properties to hold:

2 The higher α is, the faster the signal fades. Usual values are α ∈ [2, 6].
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– Locality: The neighbors of each node v must be reachable in our model,
i.e., in the nodes transmission area Dv

T .
– Disambiguity: Each message is intended to one receiver, which is specified

in the message by the receivers ID.
– Synchronization: Two neighbors are not allowed to be in different rounds

of the CONGEST algorithm.

For the simulation to be successful we require that one or more transmission
per sender-receiver-pair must be feasible in the SINR model of interference with
high probability (w.h.p.—at least probability 1 − 1

nc for a constant c > 0) in
each round of the CONGEST algorithm. Note that by disambiguity messages
that are overheard by a node but not intended for it are discarded upon recep-
tion. This is not required in any part of our algorithms but increases clarity of
the required properties. We usually assume the network to be connected, hence
synchronization in combination with connectivity implies that all nodes must be
in the same round of the CONGEST algorithm.

2.2 Dilution and Backbone Structure

In accordance with [4] we call a partition of the 2-dimensional plane in boxes of
size γ × γ, where γ = RT /

√
2, the pivotal grid Gγ . Note that the dimensions

of the box are such that all nodes within the same box are within each others
transmission radius. Formally each box includes its bottom and left side but does
not include its top and right side. We assume box C(i, j) to be the box with
lower left coordinates (i, j) ∈ R2. A node with position (x, y) is in box C(i, j) iff
bxγ c = i and b yγ c = j.

A local broadcast schedule can be seen as an assignment of 0/1-bitstrings to
nodes indicating in which time slots the node is allowed to broadcast. In the
deterministic schedule constructed in this work, however, each node sends only
once throughout an execution of the schedule. Hence we can simply store the
number of the time slot instead of a 0/1 bitstring.

In order to combine geometric information with local broadcast schedules,
we use the concept of dilution as introduced in [4]. For a constant δ, which de-
termines the distance between two active transmissions and will be defined later,
we assign each node v local coordinates (lvx, l

v
y) = (bxγ c mod δ, b yγ c mod δ) = (i

mod δ, j mod δ). This ensures that nodes in the same box of Gγ share the same
local coordinates. Now, we can dilute a local broadcast schedule by a factor of
δ2 by allowing each node v with local coordinates (lvx, l

v
y) to send in time slot

tδ2 + lvxδ + lvy iff v was allowed to send in time slot t in the original schedule.

3 Deterministic Local Broadcasting Schedule

One main approach for wireless transmission scheduling problems is to find a
graph coloring and then use this coloring to decide when and for how long each
node is allowed to transmit a message. This can be done by simply associating
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each color with a time slot. Let us first consider the simpler protocol model, in
which a transmission is successful iff in the interference range (which often equals
the transmission range) of the receiver only one node is transmitting at a given
time. Even in this simpler model a node coloring which ensures that two nodes
are assigned different colors if they are within each others transmission range
is not sufficient to directly build a feasible transmission schedule as depicted
in Figure 1. However, for the protocol models this can be overcome by using
a distance-2-coloring (i.e., a coloring which ensures unique colors within each
transmission region DT ).

Due to the global nature of interference in the SINR model, finding some
sort of agreement about transmission schedules (i.e., medium access) is required
for deterministic local broadcasting schedules. In the case of coloring in the
SINR model, even the more refined coloring that achieves unique colors within
each transmission region is not sufficient as shown in Figure 1(b). However,

v w u

(a) Unique colors within distance RT

u2

u1

15
16RT

v
w

RT < distance ≤ 1.002 ·RT

(b) Unique colors within each transmis-
sion region

Fig. 1. Using a coloring as depicted on the left does not yield a feasible local broad-
casting schedule in the protocol model as the transmission from v to w is not feasible
as according to the coloring u and v transmit simultaneously. However, the coloring on
the right corresponds to a local broadcasting schedule that is feasible in the protocol
model. Still it is not feasible in the SINR model as the SINR constraint is violated (at
least for α ≤ 6).

schedules can be made feasible if the node coloring ensures unique colors in an
area larger than the transmission region. Unfortunately finding such a coloring
is not possible if we cannot reach nodes outside the transmission region. Finding
a coloring can be made possible by tuning the nodes transmission power to reach
a larger transmission region, cf. [3], investing time in Ω(D) (given the network
is connected), or having additional knowledge such as location information or
knowledge about the topology. As computation of the diameter requires Ω(n)
time slots [], we restrict ourselves to some additional knowledge. In this work
we consider location information to be known by each node. In the following
theorem we show that we can distributedly construct a feasible local broadcasting
schedule based on the location information and a given node coloring, even if
the coloring does not ensure unique colors within each transmission region DT .
Note that such a coloring is easy to compute within O(∆ log n) time slots even
in the SINR model [3]. If not noted otherwise we assume such a coloring.
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Theorem 1. Given a network of nodes in which each node knows its location,
the color assigned by a coloring using at most cmax = O(∆) colors, and cmax

itself. Then we can distributedly compute a local broadcasting schedule that is
feasible under the SINR model of interference with length in O(∆).

In order to prove the theorem we first show that such a coloring is a local
broadcasting schedule in which at most one node sends in each box of the pivotal
grid Gγ (Lemma 1), and then prove that we can achieve a feasible schedule by
applying dilution to this schedule (Lemma 2).

Lemma 1. Given a network in which each node has a unique color within dis-
tance RT . This implies a local broadcast schedule in which in each slot at most
one node is transmitting in each box of the pivotal grid Gγ .

Proof. As each node knows the number c of its color and a shared upper bound
cmax on the number of colors assigned to the nodes in the network we can assign
each color to one of cmax time slot. Consider a node v within box C(i, j) and
color c. Since the diameter of each box is exactly RT , the coloring ensures that
there is no other node within box C(i, j) that has color c.

We extend Proposition 1 in [4] by explicitly giving a formula to compute the
constant δ (depending only on α) that enables us to prove feasibility of a δ-diluted
schedule in the SINR model of interference for α > 2. For α = 2 we can also
achieve feasibility, however for δ ∈ O(log n), which is now additionally dependent
on n. This leads to an increase in the schedule length of a multiplicative factor
of δ2 ∈ O(log2 n).

Lemma 2. Let α > 2 and δ =

(
8P

∑∞
k=1

1

kα−1

N γα

)1/α

+3. Then a local broadcasting

schedule S in which at most one node in each box of the pivotal grid Gγ transmits
in each time slot can be made feasible in the SINR model of interference with a
constant increase in the schedule length.

The case α = 2 is considered after the proof.

Proof. Let length(S) be the length of the local broadcasting schedule S. In order
to achieve a feasible schedule, we dilute the schedule S by a constant δ2 and
obtain a feasible schedule S ′ with length(S ′) = O(length(S)·δ2) = O(length(S)).
In this schedule S ′ a node v with local coordinates (lvx, l

v
y) sends in time slot

tδ2 + lvxδ + lvy if and only if the node would have sent in time slot t of schedule
S.

Let us now consider an arbitrary time slot of schedule S ′, a node v that
transmits a message in this time slot, and another node w that is within the
transmission region of v. Let C(i, j) be the box in which v is located and ac-
cordingly (lvx, l

v
y) = (i mod δ, j mod δ) the local coordinates of v. We claim

that w can successfully receive the message sent by v and hence—as we con-
sidered an arbitrary sender, receiver and time slot—this schedule is feasible in
the SINR model. To show this claim we bound the interference received by w
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from simultaneously transmitting nodes by first upper bounding the number of
simultaneously transmitting nodes within certain distances and then computing
an upper bound on the interference of all those nodes on w.

The application of δ-dilution ensures that only nodes u with local coordinates
(lux , l

u
y ) = (i mod δ, j mod δ) = (lvx, l

v
y) transmit simultaneously with v. Note

that local coordinates are shared by all nodes in the same box. Hence we call
boxes that have nodes with the same local coordinates as v, i.e. boxes that are
also allowed to send in the considered time slot, active. Due to the cyclicity of
the modulo operator, δ-dilution results in a grid of active boxes with distance
ξ := (δ − 1)γ between each two active boxes, as depicted in Figure 2. Note that
according to Lemma 1 at most one node in each active box transmits in each
time slot.

i+ δ . . . ξ . . .

i

i− δ

j − 2δ j j + δ

...
ξ
...

j − δ j + 2δ

. . . ξ . . .

...
ξ
...

...
ξ
...

...
ξ
...

...
ξ
...

...
ξ
...

...
ξ
...

...
ξ
...

...
ξ
...

...
ξ
...

. . . ξ . . . . . . ξ . . .

. . . ξ . . . . . . ξ . . .

. . . ξ . . . . . . ξ . . .. . . ξ . . . . . . ξ . . .

. . . ξ . . . . . . ξ . . .

Fig. 2. Grid cells of Gγ that are active simultaneously to a transmission originating
from box C(i, j). Note that in order to increase readability ξ := (δ − 1)γ.

Let us now examine how many active boxes there are at specified distances.
We consider the boxes in so-called rings, which actually are the border layer of
active boxes of a square centered at the box C(i, j). In the situation of Figure 2
all depicted nodes in columns j − δ , j and j + δ except for C(i, j) itself are in
boxes of ring level 1 from C(i, j). It can be observed that in each ring of level
k ≥ 1, exactly 8k active boxes can be accommodated. Also, each node in level k
has distance at least k((δ − 3)γ) from w (δ − 3 since w can be at most 2 boxes
away from v).

Using this relation we can now upper bound the interference received by w
from all nodes sending simultaneously with v, which are at most 8k nodes from
each ring level k. Hence the interference at w is at most∑

u∈V \{v},
u sending simultaneously with v

P

dist(u,w)α
≤

∞∑
k=1

(8k)
P

(k(δ − 3)γ)α
(2)

≤
∞∑
k=1

8 P k

kα(δ − 3)αγα
≤ 8 P

(δ − 3)αγα

( ∞∑
k=1

1

kα−1

)
≤ N (3)

where the first equation follows from applying the considerations about the ring
levels and the last equation follows by insertion of δ. Note that the sum, which
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is the generalized harmonic number of order (α− 1), evaluates to a value lower
than 6 for α > 2.2 and is in O(1) for any α > 2 [18].

Evaluating the SINR at node w yields

SINRw =

P
dist(v,w)α∑

u∈V \{v},
u sending simultaneously with v

P
dist(u,w)α +N

≥
P
RαT

2N
≥ β

where the first inequality follows from dist(v, w) ≤ RT and Equation 3 and
the last inequality follows from the definition of the transmission range RT =
( P
2Nβ )1/α. This concludes the proof for α > 2.

We will now briefly consider the case of α = 2.

Corollary 1. Let α = 2 and δ =

(
8P

∑n
k=1

1

kα−1

N γα

)1/α

+ 3. Then a local broad-

casting schedule S in which at most one node in each box of the pivotal grid Gγ
transmits in each time slot can be made feasible in the SINR model of interfer-
ence with a factor δ2 ∈ O(log2 n) increase in the schedule length.

Proof. Note that we changed the sum introduced in Equation 2 from
∑∞
k=1

to
∑n
k=1. This is possible as at most n non-empty ring levels exist. Since the

distance of the levels increases it holds that∑
non-empty ring levels k

1

kα−1
≤

n∑
k=1

1

kα−1
(4)

and hence the resulting sum
∑n
k=1

1
k can be evaluated to O(log n) [18]. This

implies δ ∈ O(log n) and finally length(S ′) = O(length(S) · δ2) = O(length(S) ·
log2 n) as claimed in the corollary.

A pseudo code of the procedure described above is given in Algorithm 1. First
an initial schedule is computed by distributed node coloring, then this schedule
is diluted in order to obtain a schedule that is feasible in the SINR model. We
can see that the algorithm itself is very simple. For a definition of the parameters
cf. Section 2. Note that regarding δ neither the ceiling nor limiting the sum at
n affects our theoretic results.

4 Simulating CONGEST Algorithms in SINR

Using the deterministic local broadcasting schedule constructed in Section 3,
CONGEST algorithms with a runtime in O(τ) can be simulated in O(τ∆2 +
∆ log n) for α > 2. This can be done by first computing the local broadcasting
schedule in O(∆ log n) and then simulating the algorithm using so-called single-
round-simulation as introduced by Alon et al. [12]. This requires ∆ executions of
the local broadcasting schedule for each round of the message-passing algorithm.
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Algorithm 1 Distributed computation of a feasible local broadcasting schedule
at node v
Require: location information (xv, yv), α, N, β, P, ∆, n
c ← color assigned by distributedNodeColoring(∆, n, α, N , β, P) (e.g., [3])

δ ←

⌈(
8P

∑n
k=1

1
kα−1

N γα

)1/α
⌉

+ 3 // dilution constant

(lvx, l
v
y)← (bx

v

γ
c mod δ, b y

v

γ
c mod δ) // local coordinates

active slot ← δ2c+ δlvx + lvy

We restrict ourselves to the simulation of general CONGEST algorithms
in most parts of our work. In this model a node can send a different message
of size O(log n) to each neighbor in each round (cf. Section 2.1). However the
methods transfer to the simulation of algorithms designed for similar models,
for example if the same message is sent to all neighbors or if differently-sized
messages are used. In particular for messages of arbitrary size s in a message-
passing algorithm, the message size during simulation in the SINR model is
O(s+log n). If unlike in the CONGEST model the same message is sent to each
neighbor the runtime of the simulation decreases to O(τ∆+∆ log n).

4.1 The Maximum Node Degree and the Simulation of
(Synchronized) CONGEST Algorithms

Regardless of which local broadcasting strategy we use to simulate the rounds
of the message-passing algorithm, all nodes must know the maximum number
of time slots required to simulate one round of the message-passing algorithm.
This number is needed so that each node can determine the time slot in which
all nodes should finish with a certain round of the CONGEST algorithm. In the
case of our local broadcasting schedule the number of slots required per round is
r = ∆(δ2 · cmax) ∈ O(∆2), where cmax is the number of colors used by the node
coloring.

So far we assumed the global maximum node degree ∆ to be known to all
nodes. In this section we will show that without an upper bound on the maximum
node degree we cannot simulate a synchronized message-passing algorithm in less
than Ω(D + τ∆2) time slots, where D is the diameter of the network. In order
to show this results, let us briefly consider a lower bound on the number of time
slots required to simulate one round of a general message-passing algorithm.
Such a lower bound has already been stated by Alon et al. in [12] for the radio
network model. However, it does not directly transfer to the SINR model. Note
that we show the lower bound for message-passing models that allow to send a
different message to each neighbor in each round (which is consistent with the
assumptions of Alon et al.). This includes the general CONGEST model.

Lemma 3. One round of a message-passing algorithm cannot be simulated in
less than Ω(∆2) time slots, where ∆ is the maximum node degree of all nodes in
the network.
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Proof. Assume a graph with all nodes within one transmission radius RT and
let this graph consist of two clusters Sl, Sr of the same (geometric) diameter d.
Let those clusters be at least η times the diameter apart from each other and
η > 1 be chosen such that P

(ηd)α − P
((η+2)d)α < N (note that the left part tends

towards 0 for increasing values of η). Such clusters are shown in Figure 3.

∆
2

∆
2

∆
2 × ∆

2 ∈ Ω(∆2)

...
Sl Sr

Fig. 3. Two clusters of same diameter
within one transmission region. The dis-
tance between the clusters is more than η
times the diameter of the cluster.

· · · · · ·
n− a

a

Fig. 4. The network is constructed such
that a nodes are in the cluster on the
right. For a > 2 the maximum node de-
gree ∆ occurs in the cluster on the right
and must be communicated through the
network. The transmission range is such
that on the left part at most two nodes are
within each others transmission range.

Let us only consider the transmission from the left cluster to the right cluster.
Each node in the left cluster must transmit one different message to each node
in the right cluster. This yields ∆

2 × ∆
2 ∈ Ω(∆2) inter-cluster-transmissions.

We will now show that at most one inter-cluster transmission can occur in
one time slot. Let v ∈ Sl be in the left cluster and w ∈ Sr be in the right cluster.
Assume v transmits to w in time slot t and assume another node u transmits to
any other node in the same time slot. There are 2 cases: u can either be in Sl or
Sr. In both cases u transmits simultaneously to v and we show that w cannot
successfully receive v’s message due to a SINR of less than 1. Let u ∈ Sl, then
the SINR constraint (cf. Section 2) evaluates to

P
dist(v,w)α

P
dist(u,w)α +N

≤
P

(ηd)α

P
((η+2)d)α +N

<

P
(ηd)α

P
((η+2)d)α + P

(ηd)α − P
((η+2)d)α

=

P
(ηd)α

P
(ηd)α

= 1 ≤ β

where the first inequality holds since dist(v, w) ≥ ηd and dist(u,w) ≤ (η + 2)d
and the strict inequality follows from the selection of η. Hence w cannot receive
v’s message. Otherwise, if u in Sr the SINR is

P
dist(v,w)α

P
dist(u,w)α +N

≤
P

(ηd)α

P
(d)α +N

<
1

ηα
< 1 ≤ β

where the first inequality again holds since dist(v, w) ≥ ηd and dist(u,w) ≤ d,
the second inequality follows from 0 < N and cancellation of P

dα and the third
inequality holds since ηα > 1. Hence at most one transmission from the left to
the right cluster can happen in one time slot. This shows that ∆

2 × ∆
2 ∈ Ω(∆2)

time slots are needed to simulate one round of a message-passing algorithm.
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We can now prove the main result of this section, which provides a lower
bound on the simulation runtime if the global maximum degree is not known to
the nodes in the network.

Proposition 1. Let n be the only knowledge available to the nodes. Then the
simulation of a synchronized message-passing algorithm (e.g., CONGEST ) that
requires τ rounds in the message-passing model cannot be executed in less than
Ω(D +τ∆2) time slots in the SINR model.

Proof. According to Lemma 3,Ω(τ∆2) is a lower bound for simulating a message-
passing algorithm with runtime τ . To show the Ω(D) lower bound, note that
networks with ∆ =

√
D exist, and hence in those networks at least Ω(D) time

slots are required for each round of the simulation. However, there exist also
networks in which τ∆2 6∈ Ω(D) and still Ω(D) time slots are required for the
simulation. Hence Ω(D +τ∆2) is effectively a stronger bound than Ω(τ∆2).

Consider two networks. The first is the network depicted in Figure 4 with
a =
√
n, and the second a line network (which is equal to the depicted network

without the high-density part on the right, i.e. with a = 0). Clearly the line
network is a network in which τ∆2 6∈ Ω(D). For nodes on the left end of both
networks the view is exactly the same until at least Ω(D) time slots have passed
and information from the high-density part can reach the left end of the network.
Assume for contradiction that there is an algorithm that finishes the simulation
on both networks in less than Ω(D) time slots. This algorithm must compute
the number of time slots required for each round of the simulation in order
to synchronize the message-passing algorithm. Since the information about the
high-density part is not available to nodes on the left end of both networks
the algorithm computes the same number of required time slots in the leftmost
nodes of both networks. Regardless of the result the algorithm fails to simulate
the message-passing algorithm in one of the networks. If the result (i.e., the
required number of time slots per simulated round) is in o(

√
n), the algorithm

fails in the network depicted in Figure 4 with a =
√
n, as the network cannot

be synchronized. If the result is in Ω(
√
n) this results in Ω(n) = Ω(D) time

slots for the simulation, which contradicts the assumption that the algorithm
runs in less than Ω(D) time slots on both graphs. Hence any algorithm that
simulates a synchronized message-passing algorithm in the SINR model without
the knowledge of ∆ requires at least Ω(D) time slots.

Note that the proof relies on restrictions on simultaneous transmissions and the
synchronization of the CONGEST algorithm. Hence letting the node know the
diameter D or even its position does not circumvent the bound.

4.2 Notes on Location Information

After considering the case that the global maximum degree∆ is unknown, we will
now focus on the knowledge of location information. Local broadcasting in O(∆)
time slots (after a preprocessing stage of O(∆ log n) time slots) is also possible
by allowing nodes to tune their transmission power. Derbel and Talbi describe
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an algorithm that is based on distributed node coloring with tuned transmission
radius in [3] and they achieve a runtime of O(τ∆2 + ∆ log n). However, they
state a message size of O(s · log n), where s is the original message size. For the
simulation of CONGEST algorithms this results in messages of size O(log2 n)
instead of O(log n). We claim that messages of size O(log n) are possible and
hence this additional logarithmic factor is not necessary. The algorithm consists
of two parts. In the first part a distributed node coloring is computed. For this
only the node ID and the number of the color must be transmitted. Hence
messages of size O(log n) are sufficient. In the second part the actual simulation
takes place. Therefore the original message of size s along with a node ID (in
order to identify the receiver) must be transmitted. This requires messages of size
O(s+log n). For CONGEST algorithms this results in messages of size O(log n),
since s ∈ O(log n).

Hence for both cases, using either tuned transmission powers or location
information the same runtime of O(τ∆2 +∆ log n) and messages of size O(log n)
are sufficient to simulate a CONGEST algorithm with original runtime τ in the
SINR model.

5 Conclusion

In this work we introduced a new algorithm to compute a deterministic local
broadcasting schedule of optimal length O(∆) that is feasible in the SINR model
of interference. The construction of the schedule requires O(∆ log n) time slots,
which is optimal up to the logarithmic factor. The algorithm enables the simula-
tion of algorithms designed for message-passing models in more realistic models
of interference such as the SINR model: An algorithm with original runtime of
τ rounds in the CONGEST model can be simulated in O(τ∆2 + ∆ log n) time
slots in the SINR model. This is optimal apart from the logarithmic factor. Our
algorithm assumes that nodes know their position and the global maximum node
degree ∆. We showed a lower bound of Ω(D +τ∆2), thus the knowledge of ∆ is
required in order to achieve an efficient simulation.
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