
Drawing Metro Maps using Bézier Curves

Martin Fink1, Herman Haverkort2, Martin Nöllenburg3, Maxwell Roberts4,
Julian Schuhmann1, and Alexander Wolff1

1 Lehrstuhl für Informatik I, Universität Würzburg, Germany
2 Faculteit Wiskunde en Informatica, TU Eindhoven, The Netherlands

3 Institut für Theoretische Informatik, KIT, Germany
4 Department of Psychology, University of Essex, Colchester, U.K.

Abstract. The automatic layout of metro maps has been investigated quite in-
tensely over the last few years. Previous work has focused on the octilinear
drawing style where edges are drawn horizontally, vertically, or diagonally at
45◦. Inspired by manually created curvy metro maps, we advocate the use of the
curvilinear drawing style; we draw edges as Bézier curves. Since we forbid metro
lines to bend (even in stations), the user of such a map can trace the metro lines
easily. In order to create such drawings, we use the force-directed framework.
Our method is the first that directly represents and operates on edges as curves.

1 Introduction

The problem of drawing metro maps automatically has been investigated by a number
of publications over the last decade. It can be stated as follows. The input is a plane
graph G = (V,E), a map Π : V → R2 that associates with each vertex its geographic
location, and a line cover L of G, i.e., a set of paths in G with the property that every
edge is contained in at least one path. The desired output is a drawing of G that fulfills
or optimizes a set of aesthetic constraints. Previous algorithmic approaches [6,12,7]
for drawing metro maps have all used a similar set of constraints comprising topology
preservation, bend minimization, minimization of geographic distortion, edge length
uniformity, non-overlapping station label placement, and octilinearity, that is, the re-
quirement that edges must be drawn horizontally, vertically, or diagonally at 45◦.

Octilinearity vs. curvilinearity. A similar set of constraints, including octilinearity,
seems to be used by graphic designers; see, for example, the book of Ovenden [8]. Such
schematic maps potentially offer usability benefits by simplifying line trajectories, and
hence reducing the amount of information that is irrelevant for deciding how to travel
from one station to another. However, there is often a misbelief that it is merely the use
of straight lines and a restricted angle set that benefits the user, and as a consequence
many human designers fail to optimize octilinear maps, converting chaotic real-life line
trajectories into complex sequences of short straight-line segments and bends [10].

In other instances, the network structure itself makes the benefits of octilinearity
difficult to realize. A number of systems worldwide suffer from this, including the
Paris metro. In some cases, using a different level of linearity (e.g., based on multiples
of 30◦) that better matches the line trajectories permits more effective optimization, but



2 Fink et al.

b)

a)

Fig. 1: Metro Networks of a) Sydney and b) Montréal drawn by our algorithm.

in the case of a dense interconnected network, where line trajectories are complex, a lin-
ear schematic may simply fail to offer sufficient simplification because of the network
structure, irrespective of whether a human or computer attempts the design.

Under such circumstances, where the density of bends cannot be reduced, a curvi-
linear schematic may be attempted instead; see Fig. 1. Such a map seeks to simplify
line trajectories, but using curves rather than straight lines. The underlying logic is that
if a linear schematic yields sequences of many visually disruptive bends, then gen-
tle curves with imperceptible radius change are preferable. This translates into using
(fixed-degree) Bézier curves subject to the following criteria:

(B1) any pair of Bézier curves that are consecutive on a metro line must meet in a
station and must have the same tangent there, and

(B2) the aim for each individual metro line is to consist of the smallest number of
Bézier curves necessary in order to maintain interchanges,

(B3) points of inflection should be avoided.

In the specific case of the Paris metro, such a design is able to smooth and to emphasize
the orbital lines (lines 2 and 6), simplifying the appearance of the network and making



Drawing Metro Maps using Bézier Curves 3

salient its underlying structure. In a user study, a hand-drawn curvilinear design based
on the above criteria out-performed the conventional octilinear Paris metro map, with
up to 50% improvement in planning speed [11].

Previous work. Previous algorithmic work on drawing metro maps used (mostly) octi-
linear polylines rather than smooth curves to represent edges. Hong et al. [6] presented
a force-based algorithm [2] for drawing metro maps, where several attracting and re-
pelling forces act upon the vertices. The forces iteratively optimize the drawing until a
locally optimal equilibrium is reached; this is generally very fast. Afterwards the authors
use an interactive external labeling system to place station labels with few overlaps.

Another approach was suggested by Stott and Rodgers [12], who used multicriteria
optimization based on hill climbing for drawing metro maps. Their approach performs
local vertex moves as long as they improve the quality measure. They also integrated a
label placement heuristic, so that one iteration of vertex movements alternates with one
label placement iteration until no more local improvements are possible.

Nöllenburg and Wolff [7] used mixed-integer linear programming (MIP) to pro-
duce metro maps. Their approach always satisfies hard constraints like octilinearity and
overlapping-free labeling, and optimizes soft constraints, e.g., the number of bends or
geographic distortion. The runtime is high and determined by the time needed to solve
the MIP with an external solver; an instance of their model may have no feasible so-
lution at all. Yet, the layout quality in their case study is high and judged as the most
similar to manually designed maps in an expert survey conducted with 41 participants
who compared their layouts with those of Hong et al. [6] and Stott and Rodgers [12].

Wang and Chi [13] presented a system for octilinear on-demand focus-and-context
metro maps that highlight routes returned by a route planning system while showing the
rest of the network as less important context information. It can also be used to draw
non-focused metro maps. They deform the given geographic map by minimizing a set of
energy terms modeling the aesthetic constraints. Labeling is performed independently.
Their method is both fast and creates good layouts, e.g., for mobile devices.

Our contribution. Our drawing algorithm is based on the well-known force-directed
approach. This approach has been applied to drawing graphs with Bézier curves before;
Brandes and Wagner [3] used it for visualizing train connection data and Finkel and
Tamassia [4] for general-purpose graph drawing. In both cases, the authors turned all
control points into vertices of the graph and used algorithms for straight-line drawings.
Our algorithm, in contrast, uses additional, new forces that operate on the curves by
moving vertices and control points in different ways. Our new forces aim at producing
drawings that take the above requirements (B1) to (B3) into account.

We first describe our basic algorithm (see Sect. 3). By construction, it ensures re-
quirement (B1). We improve the visual complexity of the output of the basic algorithm
by merging, wherever possible, pairs of Bézier curves that are consecutive along a metro
line; see Sect. 4 (and Fig. 8). This optimizes requirements (B2) and (B3). Force-directed
algorithms depend a lot on their initial configuration; we run our algorithm on both
octilinear drawings and geographic layouts (see Sect. 5). We have implemented our
algorithm (in Java) and tested it on a number of real-world metro maps; see Sect. 6.



4 Fink et al.

2 Preliminaries

In what follows, we give a short introduction into the two main ingredients that we
make use of: First, we introduce Bézier curves and detail how our algorithm treats
them. Second, we quickly recall the well-known force-directed approach.

Bézier curves. Bézier curves are a special type of parametric curves. We use so-called
cubic Bézier curves. A cubic Bézier curve C is given by the cubic polynomial PC :
[0, 1]→ R2, t 7→ (1− t)3p+ 3(1− t)2tp′ + 3(1− t)t2q′ + t3q, where p, p′, q′, and q
are the control points of C [9]; see Fig. 2. We call p and q also the endpoints of C. We
say that p′ is the control point of C at p and q′ is the control point of C at q.

p

p′
q′

q

{
rC(p)

−→pC

Fig. 2: Cubic Bézier curve.

We use the fact that the curve leaves p in the direction
of p′, i.e., the line pp′ is the tangent ofC at p. Now, if there
is another curve D with a control point p̃ at p such that its
tangent is the same but p̃ is on the opposite side of p w.r.t.
p′, then the concatenation of C and D is smooth in p. Our
algorithm will ensure this behavior for consecutive edges
of a metro line by construction. This makes it easier for
the user of our metro maps to trace metro lines visually.
Technically, we encode the position of p′ by a unit-length
vector−→pC that gives the direction of the tangent and by the
distance rC(p) between p and p′. Since we want to share
a single tangent, as an object, between multiple curves, we allow rC(p) to be negative.

Our algorithm repeatedly needs to check whether two Bézier curves intersect or
come too close to each other. Computing intersections of cubic curves is not easy. Since
we just want to ensure that curves are not too close, it suffices to test polygonizations of
the curves at hand. Given a cubic Bézier curve with polynomial P and an accuracy λ ∈
Z>0, we define the polygonization of C to be the polygonal chain connecting the points
P (0), P (1/λ), . . . , P ((λ − 1)/λ), P (1). The larger we make λ, the more precise but
also the slower our closeness check gets. Since it is known [9] that a Bézier curve is
always contained in the convex hull of its control points (see the gray shaded region in
Fig. 2), we speed up our check by first testing the convex hulls for intersections.

Force-directed algorithms. Following the force-directed framework [5], our algorithm
starts with some initial plane drawing, and then, iteratively, computes forces on the ver-
tices (and control points). A force is a desired movement vector. At the end of each
iteration, the computed forces are applied and the drawing is modified. Then the next
iteration starts. Common forces are repulsive forces between vertices, and attractive
forces between adjacent vertices. In general, forces are defined so that they tend to,
gradually, improve the drawing. As all the forces together add up to the desired move-
ment vectors, they have to be weighted so that they have the right relative strength. This
is done by multiplying the force vectors with some weight factor; finding well-working
factors is a matter of testing; see Sect. 6.

While we reuse standard forces known from the literature, we also define new forces
that are specific to our drawing style. Whenever we have such a force that works on the
shape of a curve, we will use the representation for control points introduced in the



Drawing Metro Maps using Bézier Curves 5

Algorithm 1: Basic structure of the force-directed algorithm using curves
Input: plane graph G = (V,E), ε > 0, integer K > 0
obtain initial crossing-free drawing with Bézier curves
while number of iterations < K and maximum displacement > ε do

compute forces on vertices
compute forces on curves
apply the forces to the current drawing

return improved output drawing

previous section: If a force tries to move a control point, then this is represented as a
force that tries to rotate the tangent used by this control point, and another force that
tries to modify the (signed) distance between vertex and control point.

3 Basic Algorithm

Our algorithm follows the general idea of other force-directed algorithms as described
in the previous section; its basic structure is shown in Alg. 1.

Additionally, we have to deal with the metro lines in the given set L. From the
point of view of a station, we (usually) want each pair of incident edges that belong
to the same metro line to leave the station in opposite directions. Thus, we need extra
information. First, we need the set L of metro lines with access from lines to the edges
they use and vice versa. Second, for each vertex, we have a set of tangents given by
unit-length vectors pointing away from the vertex. Third, for each edge e incident to a
vertex v, we have a pointer to a tangent

−→
t of this vertex as well as the signed distance

re(v). Tangent and distance describe the position of the control point of e at v.
Our force-directed algorithm needs an initial drawing which must be crossing-free,

with edges drawn as Bézier curves. If several edges incident to the same vertex v are to
use the same tangent—but possibly in opposite directions—then this must be indicated
in the input. In each iteration of our algorithm—right from the start—we assume that we
have such a feasible drawing. In Sect. 5 we describe how to compute an initial Bézier
drawing given either a straight-line or an octilinear drawing of the metro network.

3.1 Forces on Vertices

We use the standard forces defined by Fruchterman and Reingold [5]; they strive to
move non-adjacent vertices far apart from each other and to make adjacent vertices
have a common distance l. The second goal is useful for metro maps as the number of
intermediate stops is normally a better indicator for the travel time than the geographic
distance. We let any vertex u exert on any vertex v the repulsive force F rep-vtx(u, v) =
(l/d(u, v))2 ·−→uv. If v and u are adjacent, vertex u additionally exerts the attracting force
F att(u, v) = d(u, v)/l · −→vu on v.

As a metro map represents a geographic metro network, stations should not be too
far away from their actual location on the map. Therefore, we also have, for any ver-
tex v, a force F orig(v) = −→vpv attracting v to its geographic position pv .



6 Fink et al.

3.2 Forces on Tangents and Control Points

Whereas previous force-directed graph-drawing algorithms did not directly operate on
curves, we now present new forces for that very purpose—in order to take advantage of
the power of Bézier curves.

Improving the shape of a curve. Consider an edge e = uv that is represented as a
curve with control point u′ at u. If the distance d(u, u′) is small compared to the length
of e, the curve could be very sharp, and almost have a bend. If, on the other hand, u′

is far from u, the curve gets too long. As a compromise, we aim at having d(u, u′) =
d(u, v)/3, which worked well in our tests. To achieve this, we combine an attracting
and a repulsive force on u′ like the Fruchterman-Reingold forces. We do not want to
change the tangent, just the (signed) distance re(u) between u and u′ in the direction of
the tangent vector. Hence, the desired change is

F shp(u, u′) =

(
(d(u, v)/3)

2

d(u, u′)
− d(u, u′)2

d(u, v)/3

)
· sgn(re(u)).

Note that this force is a scalar (and, hence, the same type of object as the distance re(u)).
Additionally, we aim at straightening curves, as a straight-line segment is the sim-

plest type of Bézier curve. To this end, we move vertices as well as tangents.
First, we try to move vertex v so that it lies on the tangent t of {u, v} at u. Let vt be

the point on t at distance l (the desired edge length) from u. Now the force

F str-vtx(u, v) = −→vvt
moves v towards vt.

Second, we aim at rotating tangent t at vertex u so that v lies on t as shown in
Fig. 3. Let α be the signed angle between t and −→uv. There may be multiple edges
incident to u using t as their tangent. As a bad curvature of long edges is worse than
a bad curvature of short edges, and the control point—and, thus, the curve—changes
much more if the distance between vertex and control point is high, we do not simply
sum up the individual forces on t, but use a sum that is weighted by the control point
distances (as in the law of the lever), see Fig. 4. Let v1, . . . , vk be the vertices whose
edges uv1, . . . , uvk use tangent t with control points c1, . . . , ck and imply a desired
change of the tangent by angles α1, . . . , αk. Then the rotational force is

F str-tng(t, u, v1, . . . , vk) =

∑k
i=1 αi · d(u, ci)∑k

i=1 d(u, ci)
.

Again, the force is a scalar, as a rotation is a one-dimensional movement.

Improving the angular resolution. We also aim at a good angular resolution at vertices,
i.e., we want to have large angles between tangents. For any pair of different tangents
t1, t2 at a vertex v we, therefore, add a repulsive force F rep-tng(t1, t2) = 1/α(t1, t2)
on t1, where α(t1, t2) ∈ [−π, π] is the (signed) angle formed by t1 and t2. Note that,
when measuring the angle, we have to take into account that some vectors are used in
both directions while others are just used at one side of the vertex, see Fig. 5.



Drawing Metro Maps using Bézier Curves 7

u v

t
vt

α

Fig. 3: Straightening
a Bézier curve.

Fig. 4: Rotational forces
applied to a tangent.

(a) before (b) after

Fig. 5: Improving the angular resolution.

3.3 Avoiding Crossings by Limiting Forces

In order to avoid edge crossings, we would like to limit the forces that we apply as
Bertault [1] does in his force-directed algorithm for straight-line drawings. In contrast
to his approach, we cannot compute limitations of movements by using zones, i.e., oc-
tants, as intersections of Bézier curves are more difficult to compute and predict than
crossings on straight-line segments. Instead, we check, for each pair of edges, whether
the intended changes would result in a crossing. If this is the case, we change the move-
ment vector of both endpoints so that the absolute value is half of the original value. We
do this until the application of the new forces does not result in a crossing on any edge.

4 Decreasing the Visual Complexity

The main visual complexity of a drawing of a metro map with curves is created by a
large number of inflection points (requirement (B3)), especially if adjacent curves of a
metro line do not fit well together. Ideally, a metro line consists of just one Bézier curve,
thus making it easy to trace the line visually. Often, this is not possible as intersections
of a line with other lines restrict its shape. We can, however, reduce the number of curves
significantly by merging consecutive curves on the same line. In our initial drawing, any
edge of the graph representing the metro network is a single Bézier curve. In a step of
our algorithm, we replace two consecutive curves by a single curve if this does not
change the topology of the network. We can perform the replacement if the two edges
are incident to a vertex of degree 2 or 4. We now sketch how we handle the two cases.

Merging curves on intermediate nodes. Suppose a degree-2 vertex v has two incident
edges e1 = uv and e2 = vw lying on a common metro line `. Then the two edges share
a tangent at v. We merge the edges into a new edge e = uw. We use the control point
of e1 at u and the control point of e2 at w and check whether the drawing of e intersects
that of any other edge. If this is not the case, we remove e1 and e2 and insert e into the
graph and its drawing, otherwise we keep e1 and e2 and discard e. Theoretically, the
chance of avoiding intersections could be increased by testing different values for the
control point distances of the merged edge. Our tests, however, suggest that this is not
necessary, since, in the final drawings, almost no vertices of degree 2 remained.

To keep track of vertices that are lost by merging edges, we have to maintain a sorted
list of such vertices for each edge. As the lists of both e1 and e2 may already contain



8 Fink et al.

virtual vertices, we concatenate the two lists with v in between to get the list for e. We
do not only use this list to produce the final drawing, placing the virtual vertices evenly
distributed along the drawing of e, but we also use the number of intermediate vertices to
adjust the desired length of the edge, especially when computing the attraction between
u and w. If l is the desired length for simple edges and e contains k virtual vertices,
then the desired length of e is (k + 1)l.

If deg(v) = 1, i.e., v is the terminal of some line, and the edge incident to v contains
some virtual vertices, then v typically represents a terminal located in a sparsely occu-
pied suburb. We can give more freedom to the drawing of such end edges by decreasing
the influence of the force F orig(v) that attracts v to its original position, e.g., by scaling
the force by some value c < 1 (in our tests, we used c = 1/50). This allows v to be
placed closer to the center, which makes the drawing more compact.

Merging curves on simple interchange nodes. Merging pairs of curves that meet at
vertices of higher degree is difficult since it is not clear how to ensure that three or
more merged curves actually meet in (or close to) a single point. We restrict ourselves
to degree-4 vertices in which two lines intersect.

Suppose that a vertex v is adjacent to vertices u, u′, w, w′ via edges e1, e′1, e2, and
e′2. Line ` contains edges e1 = uv and e2 = vw, and line `′ contains e′1 = u′v and
e′2 = vw′. We want to replace the concatenation of e1 and e2 by e = uw and that of e′1
and e′2 by e′ = u′w′. If we manage to do so, we represent v as a virtual vertex, i.e., as
the intersection of e and e′. At the same time, we have to make sure that the only new
crossing that is introduced is the one representing v. We try to find appropriate curves
for e and e′ by adjusting the distances of the control points to the respectice endpoints
while keeping the tangents (as we did for vertices of degree 2). For distance re(u),
we test values in the interval [re1(u), d(u,w)] at equal distances. It makes sense to
require re(u) ≥ re1(u) since the combined curve is longer than e1 and the new control
point should not be too far from u. By testing all different combinations of discretized
distances for the four involved control points, we often found feasible solutions.

Note that there is an additional constraint: the crossing that now represents v should
divide both new edges e and e′ roughly in proportion to the numbers of virtual vertices
on e and e′, respectively, on the two sides of v. If e contains k virtual vertices left of v
and k′ virtual vertices right of v, then the intersection with e′ should have a distance
to u that is (k + 1)/(k + k′ + 2) times the total length of the curve of e. We allow a
deviation from this optimal position by a factor of δ (we used δ = 20% in our tests)
times the length of the part of the curve to the left of v and to the right of v, respectively.
We call the allowed range the δ-zone of e.

In all further steps of the algorithm, we have to adhere to these zones for crossing
edges. Further mergings of lines including e are only allowed if v stays in the allowed
δ-zone Furthermore, we do not allow movements that would violate these constraints.
So we also consider these zones in the force limitation phase at the end of each iteration.

5 Creating a Feasible Input Drawing

As input, our algorithm expects the embedded graph representing the metro network,
the coordinates of stations, and information regarding the metro lines, see Sec. 3. Some



Drawing Metro Maps using Bézier Curves 9

of this information can be guessed automatically. Suppose, e.g., that exactly two of the
edges incident to v are used by a line `. Then, we assume that ` traverses the station
and, hence, the two edges must have the same tangent, leaving v in opposite directions.
Otherwise, we assume that the input contains an annotation saying, e.g., that the two
edges leave v in the same direction.

We need an initial feasible Bézier drawing before the first iteration starts, see Sect. 3.
This drawing must guarantee that (i) tangents obey their annotations and (ii) the topol-
ogy (i.e., embedding) is the same as in the plane input graph. We discuss two ways to
obtain such an initial drawing depending on the input graph; either from an octilinear
drawing or from the straight-line drawing induced by the coordinates of the stations.

Initial drawing from octilinear layout. Suppose that we are given an octilinear layout
which may either be computed, e.g., using the mixed integer program of Nöllenburg and
Wolff [7], or be a manually generated plan such as an official metro map. If there are
bends in edges, we first transform these bends into dummy vertices that do not corre-
spond to stations. Later, the algorithm may delete such dummy vertices by merging the
two incident curves. Given the dummy vertices, we now have a straight-line drawing.

12

3

4

4

5

5

12

3

12

3

4

4

5

5

12

3

Fig. 6: Example where it is impossible to
keep the embedding and ensure that both
edges of each line share the same tangent.

To get a drawing using only Bézier
curves, we place each control point at its in-
cident endpoint (or, conceptually, at a very
small distance) and let each tangent point to-
wards the other endpoint of the edge. Now,
we still have the same straight-line drawing,
but the edges are technically Bézier curves.
In this process, we must respect the annota-
tions of the tangents, so that the right curves
have common tangents at a vertex. Unfortu-
nately, there can be situations in which this is
not possible, see Fig. 6. In practice, however,
such situations are quite unlikely; they never
occurred in our tests.

At any vertex where the tangents are not yet correct, we now choose new tangents.
We do this one after the other, starting at tangents that are shared by edges. We choose
the first tangent so that it is closest to the tangents it replaces. We insert any new tangent
so that the clockwise order of the adjacent vertices is correct (if possible). Finally, by
moving the control points very close to the vertex, we get a drawing that is arbitrarily
close to the straight-line drawing and that does not have any crossing.

Initial drawing from geographic layout. If we do not have an octilinear drawing, the ini-
tial drawing can also be constructed given just the coordinates of the stations. Similarly
to Nöllenburg and Wolff [7], we start with the straight-line drawing induced by the sta-
tion positions. This drawing may have crossings; we replace them by dummy vertices
and get a crossing-free straight-line drawing. This drawing can then be transformed into
a crossing-free Bézier drawing as presented in the previous paragraph.

Since the introduced crossings, as dummy vertices, are preserved over all itera-
tions, they will also be present in the output drawing. Fortunately, their number is small



10 Fink et al.

in practice. (From a network point-of-view it indeed makes sense to have stations at
crossings.) E.g., the large London network (which was built by competing companies
operating single lines) has only four crossings—the same as in the official tube map.

Note that, in the initial drawing, there are only two different tangents at a dummy
vertex, each for one of the two crossing lines; this is also the case in the final drawing.
Additionally, in the more advanced version of the algorithm, we can even transform the
dummy vertex to a (dummy) virtual vertex before the algorithm starts; see Sect. 4.

6 Implementation and Tests

We implemented our algorithm in Java. For testing we used the metro networks of
four cities: London (297 vertices, 217 of which have degree 2, 13 metro lines), Vienna
(90/71/5), Montréal (69/59/4), and Sydney (173/144/10); see Fig. 1 for the latter two.
The input data contained the graph structure as well as information on the lines and
geographic positions of stations. We also used octilinear layouts of these cities as initial
drawings, which we generated using the MIP approach of Nöllenburg and Wolff [7]. In
both cases, tangents were annotated where necessary; see Sect. 5.

Fig. 7: Initial octilinear drawing.

Effects of virtual vertices. We were especially inter-
ested in how far making vertices virtual influenced the
visual complexity of metro maps. Figure 8 shows the
power of virtual vertices for the metro map of Vienna.
Starting with an octilinear layout (Fig. 7), drawing (a)
was computed without virtual vertices and, hence, no
curves were merged. Clearly, the drawing does not have
any sharp bends. The attraction to the geographic po-
sition of vertices, however, caused some unnecessary
inflection points. Next, we allowed for virtual vertices
of degree 2 (Fig. 8(b)). For Vienna, this worked on all
intermediate vertices, reducing the number of Bézier
curves significantly. Finally, we also enabled virtual
vertices of degree 4 (Fig. 8(c)). This worked for 8 of 9
possible vertices. Three lines were represented by just
one curve, while the two other lines need three curves.

It turned out that including virtual vertices of degree 2 always worked well, and
that they were fast to handle. There were almost no remaining vertices of this type
even after the very first iteration; hence, testing the remaining degree-2 vertices was
fast in all following iterations. In contrast, trying to merge edges at degree-4 vertices
was much slower because potentially many combinations of control point positions had
to be tested. Additionally, we observed that once many virtual vertices of degree 4 had
been added, the drawing did not change much any more. Apparently, the additional
constraints on the crossings make the drawing more rigid, and many movements get
forbidden. Therefore, we decided to first have many, i.e., hundreds, of iterations without
caring about virtual vertices of degree 4, and then treat them in a single (more time-
consuming) final iteration.



Drawing Metro Maps using Bézier Curves 11

(a) (b) (c)

Fig. 8: Metro network of Vienna (a) without virtual vertices, with (b) virtual vertices of degree 2
(highlighted by squares), and (c) additionally with virtual vertices of degree 4 (highlighted).

Running time. On the largest instance, the Underground of London, the running time
for creating a drawing starting with an octilinear layout was 224 seconds on a 3 Ghz
dual-core computer with 4 GB RAM. This includes the 156 seconds spent on the last
iteration, in which curves were merged by inserting virtual vertices of degree 4. In
contrast, the first 500 iterations just took 68 seconds.

Weights of forces. As noted in Sect. 2, weight factors are needed that let different forces
work well together. We group the forces depending on the object on which they operate.
In our tests, the following factors turned out to work well: F res

vert = (F rep-vtx + F att +
10F orig+3F str-vtx)/100 for vertices, F res

tan = 150F rep-tng+0.03F str-tng for tangents, and
F res
cpdist = F shp/20 for control point distances.

Initial drawing and F orig. We tested the algorithm both with a straight-line drawing
and an octilinear layout as input. When we defined F orig using the geographic station
locations, the version using the octilinear layout performed slightly better. The best re-
sults, however, we achieved when using the octilinear layout as input and defining F orig

w.r.t. the vertex positions in the octilinear input drawing. In this case, the center had
more space, and more curves could be merged, which reduced the visual complexity.
Figures 1 and 8 were computed this way.

7 Conclusion and Open Problems

The implementation of our algorithm performed well on small and medium-size net-
works (Vienna, Sydney, and Montreal in our tests). In such cases, many curves could be
merged so that, in the end, lines consisted only of few curves. We conclude that spend-
ing the extra time for merging as many curves as possible is worth it. In denser regions,
such as the center of London, many curves were merged, but there are also a number of
vertices that did not allow this, making the drawing more complex.

To further improve our drawings it would help to devise ways to merge curves that
intersect in vertices of degree other than 2 or 4. Consider a vertex v of degree 3 that is



12 Fink et al.

traversed by a line `1 and that is the terminal of another line `2 with a different tangent.
We can then merge the two edges of `1 and represent v by its position on `1. The edge
of `2 still has to maintain its own tangent and control point at v. This is also possible
if there are more lines whose tangent is not linked to `1. Similarly, if two lines `1
and `2 traverse a vertex v, we can merge their edges incident to v so that their crossing
represents v—if none of the remaining edges shares its tangent with `1 or `2.

In the future, however, we intend to approximate each metro line globally as one
C2-continuous cubic spline right from the start rather than piece-by-piece for every
edge. We want to apply curve-fitting techniques from computer graphics; the challenge
will be to additionally define and implement appropriate constraints that allow for a
sufficient and maybe context-dependent amount of distortion to smooth unimportant
bends and yet ensure, e.g., the desired angular properties in vertices of degree at least 3.

We also intend to incorporate the placement of station labels into our algorithm.
Acknowledgments. We thank André Lieutier and Hartmut Prautzsch for discussions
about curves in Bézier representation and the use of alternative types of splines.

References

1. Bertault, F.: A force-directed algorithm that preserves edge crossing properties. In: Kra-
tochvı́l, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 351–358. Springer, Heidelberg (2000)

2. Brandes, U.: Drawing on physical analogies. In: Kaufmann, M., Wagner, D. (eds.) Drawing
Graphs: Methods and Models, LNCS, vol. 2025, chap. 4, pp. 71–86. Springer, Heidelberg
(2001)

3. Brandes, U., Wagner, D.: Using graph layout to visualize train connection data. J. Graph
Algorithms Appl. 4(3), 135–155 (2000)

4. Finkel, B., Tamassia, R.: Curvilinear graph drawing using the force-directed method. In:
Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 448–453. Springer, Heidelberg (2005)

5. Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement. Softw.
Pract. Exper. 21(11), 1129–1164 (1991)

6. Hong, S.H., Merrick, D., do Nascimento, H.A.D.: Automatic visualisation of metro maps. J.
Visual Lang. Comput. 17(3), 203–224 (2006)

7. Nöllenburg, M., Wolff, A.: Drawing and labeling high-quality metro maps by mixed-integer
programming. IEEE Trans. Visual. Comput. Graphics 17(5), 626–641 (2011)

8. Ovenden, M.: Metro maps of the world. Harrow Weald: Capital Transport Publishing, 2nd
edition (2003)

9. Prautzsch, H., Boehm, W., Paluszny, M.: Bézier and B-Spline Techniques. Springer, Heidel-
berg (2002)

10. Roberts, M.J.: Underground maps unravelled: Explorations in information design. Wiven-
hoe, Essex: Published by the author (2012), see http://privatewww.essex.ac.uk/˜mjr.

11. Roberts, M.J., Newton, E.J., Lagattolla, F.D., Hughes, S., Hasler, M.C.: Objective ver-
sus subjective measures of Paris metro map usability: Investigating traditional oc-
tolinear versus all-curves schematics (2012), manuscript under review. Available at
http://privatewww.essex.ac.uk/˜mjr/underground/Roberts Metro.pdf

12. Stott, J., Rodgers, P., Martı́nez-Ovando, J.C., Walker, S.G.: Automatic metro map layout
using multicriteria optimization. IEEE Trans. Visual. Comput. Graphics 17(1), 101–114
(2011)

13. Wang, Y.S., Chi, M.T.: Focus+context metro maps. IEEE Trans. Visual. Comput. Graphics
17(12), 2528–2535 (2011)

http://dx.doi.org/10.1007/3-540-46648-7_36
http://dx.doi.org/10.1007/3-540-44969-8_4
http://dx.doi.org/10.7155/jgaa.00028
http://dx.doi.org/10.1007/978-3-540-31843-9_46
http://dx.doi.org/10.1002/spe.4380211102
http://dx.doi.org/10.1016/j.jvlc.2005.09.001
http://dx.doi.org/10.1109/TVCG.2010.81
http://dx.doi.org/10.1109/TVCG.2010.81
http://privatewww.essex.ac.uk/~mjr
http://privatewww.essex.ac.uk/~mjr/underground/Roberts_Metro.pdf
http://dx.doi.org/10.1109/TVCG.2010.24
http://dx.doi.org/10.1109/TVCG.2010.24
http://dx.doi.org/10.1109/TVCG.2011.205

	Drawing Metro Maps using Bézier Curves

