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Abstract. We define strict confluent drawing, a form of confluent drawing in
which the existence of an edge is indicated by the presence of a smooth path
through a system of arcs and junctions (without crossings), and in which such a
path, if it exists, must be unique. We prove that it is NP-complete to determine
whether a given graph has a strict confluent drawing but polynomial to determine
whether it has an outerplanar strict confluent drawing with a fixed vertex ordering
(a drawing within a disk, with the vertices placed in a given order on the boundary).

1 Introduction

Confluent drawing is a style of graph drawing in which edges are not drawn explicitly;
instead vertex adjacency is indicated by the existence of a smooth path through a system
of arcs and junctions that resemble train tracks. These types of drawings allow even very
dense graphs, such as complete graphs and complete bipartite graphs, to be drawn in a
planar way [4]. Since its introduction, there has been much subsequent work on confluent
drawing [7,6,9,10,13,17], but the complexity of confluent drawing has remained unclear:
how difficult is it to determine whether a given graph has a confluent drawing? Confluent
drawings have a certain visual similarity to a graph drawing technique called edge
bundling [3,5,11,12,14], in which “similar” edges are routed together in “bundles”, but
we note that these drawings should be interpreted differently. In particular, sets of edges
bundled together form visual junctions, however, interpreting them as confluent junctions
can create false adjacencies.

Formally, a confluent drawing may be defined as a collection of vertices, junctions
and arcs in the plane, such that all arcs are smooth and start and end at either a junction
or a vertex, such that arcs intersect only at their endpoints, and such that all arcs that
meet at a junction share the same tangent line there. A confluent drawing D represents
a graph G defined as follows: the vertices of G are the vertices of D, and there is an
edge between two vertices u and v if and only if there exists a smooth path in D from



u to v that does not pass any other vertex. (In some variants of confluent drawing an
additional restriction is made that the smooth path may not intersect itself [13]; however,
this constraint is not relevant for our work.)

(a) (b)

Fig. 1. (a) A drawing with a
duplicate path. (b) A draw-
ing with a self-loop.

Contribution. In this paper we introduce a subclass of con-
fluent drawings, which we call strict confluent drawings.
Strict confluent drawings are confluent drawings with the
additional restrictions that between any pair of vertices there
can be at most one smooth path, and there cannot be any
paths from a vertex to itself. Figure 1 illustrates the forbid-
den configurations. To avoid irrelevant components in the
drawing, we also require all arcs of the drawing to be part
of at least one smooth path representing an edge. We believe
that these restrictions may make strict drawings easier to read, by reducing the ambiguity
caused by the existence of multiple paths between vertices. In addition, as we show, the
assumption of strictness allows us to completely characterize their complexity, the first
such characterization for any form of confluence on arbitrary undirected graphs.

We prove the following:

– It is NP-complete to determine whether a given graph has a strict confluent drawing.
– For a given graph, with a given cyclic ordering of its vertices, there is a polynomial

time algorithm to find an outerplanar strict confluent drawing, if it exists: this is a
drawing in a disk, with the vertices in the given order on the boundary of the disk

– When a graph has an outerplanar strict confluent drawing, an algorithm based on
circle packing can construct a layout of the drawing in which every arc is drawn
using at most two circular arcs.

See Fig. 2(a) for an example of an outerplanar strict confluent drawing. Previous work
on tree-confluent [13] and delta-confluent drawings [6] characterized special cases of
outerplanar strict confluent drawings as being the chordal bipartite graphs and distance-
hereditary graphs respectively, so these graphs as well as the outerplanar graphs are all
outerplanar strict confluent. The six-vertex wheel graph in Fig. 2(b) provides an example
of a graph that does not have an outerplanar strict confluent drawing. (The central vertex
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Fig. 2. (a) Outerplanar strict confluent drawing of the GD2011 contest graph. (b) A graph with no
outerplanar strict confluent drawing.



u needs to be placed between two of the outer vertices, say, a and b. The smooth path
from u to the opposite vertex d separates a and b, so there must be a junction shared by
the u–d and a–b paths, creating a wrong adjacency with d.)

2 Preliminaries

Let G = (V,E) be a graph. We call an edge e in a drawing D direct if it consists only
of a single arc (that does not pass through junctions). We call the angle between two
consecutive arcs at a junction or vertex sharp if the two arcs do not form a smooth path;
each junction has exactly two angles that are not sharp, and every angle at a vertex is
sharp (so the number of sharp angles equals the degree of the vertex).

Lemma 1. Let G be a graph, and let E′ ⊆ E be the edges of E that are incident to at
least one vertex of degree 2. If G has a strict confluent drawing D, then it also has a
strict confluent drawing D′ in which all edges in E′ are direct.

Proof. Let v be a degree-2 vertex in G with two incident edges e and f . We consider
the representation of e and f in D and modify D so that e and f are single arcs. There
are two cases. If e and f leave v on two disjoint paths, then these paths have only merge
junctions from v’s perspective. We can simply separate these junctions from e and f as
shown in Fig. 3(a). If, on the other hand, e and f share the same path leaving v, then
their paths split at some point. We need to reroute the merge junctions prior to the split
and separate the merge junctions after the split as shown in Fig. 3(b). This is always
possible since v has no other incident edges. Because D was strict and these changes do
not affect strictness, D′ is still a strict confluent drawing and edges e and f are direct. �
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Fig. 3. The two cases of creating single arcs for edges incident to a degree-2 vertex.

Lemma 2. Let G be a graph. If G has no K2,2 as a subgraph, whose vertices have
degrees ≥ 3 in G, then G has a strict confluent drawing if and only if G is planar.

Proof. Since every planar drawing is also a strict confluent drawing, that implication is
obvious. So let D be a strict confluent drawing for a graph G without a K2,2 subgraph,
whose vertices have degrees ≥ 3 in G. Since larger junctions, where more than three
arcs meet, can easily be transformed into an equivalent sequence of binary junctions, we
can assume that every junction in D is binary, i.e., two arcs merge into one (or, from a



different perspective, one arc splits into two). By Lemma 1 we can further transform
D so that all edges incident to degree-2 vertices are direct. Now for any vertex u in D
none of its outgoing paths to some neighbor v can visit a merge junction before visiting
a split junction as this would imply either a non-strict drawing or a K2,2 subgraph with
vertex degrees ≥ 3. So the sequence of junctions on any u-v path consists of a number
of split junctions followed by a number of merge junctions. But any such path can be
unbundled from its junctions to the left and right and turned into a direct edge without
creating arc intersections as illustrated in Fig. 4. This shows that D can be transformed
into a standard planar drawing of G. �
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Fig. 4. Any strict confluent drawing of a graph without a K2,2 subgraph can be transformed into a
standard planar drawing.

Lemma 3 characterizes the combinatorial complexity of strict confluent drawings.
Its proof is found in the full paper [8] and uses Euler’s formula and double counting.

Lemma 3. The combinatorial complexity of any strict confluent drawing D of a graph G,
i.e., the number of arcs, junctions, and faces in D, is linear in the number of vertices
of G.

Lemma 3 is in contrast to previous methods for confluently drawing interval graphs [4]
and for drawing confluent Hasse diagrams [9], both of which may produce (non-strict)
drawings with quadratically many features.

3 Computational Complexity

We will show by a reduction from planar 3-SAT [15] that it is NP-complete to decide
whether a graph G has a strict confluent drawing in which all edges incident to degree-2
vertices are direct. By Lemma 1, this is enough to show that it is also NP-complete to
decide if G has any strict confluent drawing.

Consider the subdivided grid graph (a grid with one extra vertex on each edge). In
this graph, all edges are adjacent to a degree 2 vertex. Since a grid graph more than one
square wide has only one fixed planar embedding (up to choice of the outer face), the
subdivided grid graph has only one confluent embedding in which all edges are direct.
We will base our construction on a number of such grids.

Let S be a planar 3-SAT formula. Globally speaking, we will create a grid graph for
each variable of S, of size depending on the number of clauses that the variable appears
in. The external edges of this grid graph are alternatingly colored green and red. We
connect the variable graphs by identifying certain vertices: for each of the three variables
that appear in a clause, we select one subdivided edge (that is, three vertices connected



¬x3 ∨ x4 ∨ x5

x2 ∨ x3 ∨ x4

¬x1 ∨ ¬x4 ∨ ¬x5

x1 ∨ x3 ∨ ¬x5

¬x1 ∨ ¬x2 ∨ x4

x1 ∨ x2 ∨ ¬x3

x1 x2 x3 x4 x5

(a)

x1 x2 x3 x4 x5

(b)

Fig. 5. (a) A planar 3-SAT formula. (b) The corresponding global frame of the construction:
one grid graph per variable, with some vertices identified at each clause. Green boundary edges
correspond to positive literals, red edges to negated literals. For easier readability the grids in this
figure are larger than strictly necessary.

Fig. 6. K4 and its two strict confluent drawings, without moving the vertices and keeping all arcs
inside the convex hull of the vertices.

by two edges) on the outer face, and identify the endpoints of these edges into a triangle
of subdivided edges (that is, a 6-cycle). We choose a green edge for a positive occurrence
of the variable and a red edge for a negated occurrence. This will become clear below.
We call the resulting graph F the frame of the construction; all edges of F are adjacent
to a degree-2 vertex and F has only one planar embedding (up to choice of the outer
face). Figure 5 shows an example.

(a) (b) (c)

Fig. 7. (a) A variable gadget consists of a grid of K4’s. Green (light) edges of the frame highlight
normal literals, red (dark) edges negated ones. (b) One of the two possible strict confluent drawings,
corresponding to the value true. (c) The other strict confluent drawing, corresponding to false.



(a) (b) (c) (d)

Fig. 9. (a) The input graph of the clause. (b, c, d) Three different strict confluent drawings.

Fig. 8. Three variables attached to a
clause gadget. The top left variable
occurs in the clause as a positive lit-
eral, the others as negative literals. The
clause can be satisfied because the top
right variable is set to false.

The main idea of the construction is based on
the fact that K4, when drawn with all four vertices
on the outer face, has exactly two strict confluent
drawings: we need to create a junction that merges
the diagonal edges with one pair of opposite edges,
and we can choose the pair. Figure 6 illustrates
this. We will add a copy of K4 to every cell of the
frame graph F . Recall that every cell, except for
the triangular clause faces, is a subdivided square
(that is, an 8-cycle). We add K4 on the four grid
vertices (not the subdivision vertices). The edges
that connect external grid vertices are called lit-
eral edges. Figure 7(a) shows this for a small grid.
Since neighboring grid cells share a (subdivided)
edge, the K4’s are not edge-independent. This im-
plies that in a strict confluent drawing, we cannot
“use” such a common edge in both cells. Therefore,
we need to orient the K4-junctions alternatingly,
as illustrated in Figures 7(b) and 7(c). If the grid is sufficiently large (every cell is part of
a larger at least size-(2× 2) grid) these choices are completely propagated through the
entire grid, so there are two structurally different possible embeddings, which we use to
represent the values true and false of the corresponding variable. For every green edge
of the frame in the true state and every red edge in the false state there is one remaining
literal edge in the outer face, which can still be drawn either inside or outside their grid
cells. In the opposite states these literal edges are needed inside the grid cells to create
the K4 junctions. The availability of at least one literal edge (corresponding to a true
literal) is important for satisfying the clause gadgets, which we describe next.

Inside each triangular clause face, we add the graph depicted in Figure 9(a). This
graph has several strict confluent drawings; however, in every drawing at least one of the
three outer edges needs to be drawn inside the subdivided triangle.

Lemma 4. There is no strict confluent drawing of the clause graph in which all three
long edges are drawn outside. Moreover, there is a strict confluent drawing of the clause
graph with two of these edges outside, for every pair.



Proof. Recall that by Lemma 1 the subdivided triangle must be embedded as a 6-cycle
of direct arcs. To prove the first part of the lemma, assume that the triangle edges are all
drawn outside this cycle. The remainder of the graph has no 4-cycles without subdivision
vertices (that is, no K2,2 with higher-degree vertices), so by Lemma 2 it can only have
a strict confluent drawing if it is planar. However, it is a subdivided K5, which is not
planar. To prove the second part of the lemma, we refer to Figures 9(b), 9(c) and 9(d). �

This describes the reduction from a planar 3-SAT instance to a graph consisting of
variable and clause gadgets. Next we show that this graph has a strict confluent drawing
if and only if the planar 3-SAT formula is satisfiable. For a given satisfying assignment
we choose the corresponding embeddings of all variable gadgets. The assignment has at
least one true literal per clause, and correspondingly in each clause gadget one of the
three literal edges can be drawn inside the clause triangle, allowing a strict confluent
drawing by Lemma 4. Conversely, in any strict confluent drawing, each clause must be
drawn with at least one literal edge inside the clause triangle by Lemma 4, so translating
the state of each variable gadget into its truth value yields a satisfying assignment.

To show that testing strict confluence is in NP, recall that by Lemma 3 the combina-
torial complexity of the drawing is linear in the number of vertices. Thus the existence
of a drawing can be verified by guessing its combinatorial structure and verifying that it
is planar and a drawing of the correct graph.

Theorem 1. Deciding whether a graph has a strict confluent drawing is NP-complete.

4 Outerplanar Strict Confluent Drawings

For a graph G with a fixed cyclic ordering of its vertices, we can test in polynomial time
whether an outerplanar strict confluent drawing with this vertex ordering exists, and, if
so, construct one. This algorithm uses the closely related notion of a canonical diagram
of G, which is unique and exists if and only if an outerplanar strict confluent drawing
exists. From the canonical diagram a confluent drawing can be constructed. We further
show that the drawing can be constructed such that every arc consists of at most two
circular arcs.

4.1 Canonical Diagrams

We define a canonical diagram to be a collection of junctions and arcs connecting the
vertices in the given order on the outer face (as in a confluent drawing), but with some
of the faces of the diagram marked, satisfying additional constraints enumerated below.
Figure 10 shows a canonical diagram and an outerplanar strict confluent drawing of the
same graph. In such a diagram, a trail is a smooth curve from one vertex to another that
follows the arcs (as in a confluent drawing) but is allowed to cross the interior of marked
faces from one of its sharp corners to another. The constraints are:

– Every arc is part of at least one trail.
– No two trails between the same two vertices can follow different sequences of arcs

and faces.



* *

Fig. 10. Three views of the same graph as a node-link diagram (left), canonical diagram (center),
and outerplanar strict confluent drawing (right).

– Each marked face must have at least four angles, all of which are sharp.
– Each arc must have either sharp angles or vertices at both of its ends.
– For each junction j with exactly two arcs in each direction, let f and f ′ be the two

faces with sharp angles at j. Then it is not allowed for f and f ′ to both be either
marked or to be a triangle (a face with three angles, all sharp).

Let j be a junction of a canonical diagram D. Then define the funnel of j to be the
4-tuple of vertices a, b, c, d where a is the vertex reached by a path that leaves j in one
direction and continues as far clockwise as possible, b is the most counterclockwise
vertex reachable in the same direction from j, c is the most clockwise vertex reachable
in the other direction, and d is the most counterclockwise vertex reachable in the other
direction. Note that none of the paths from j to a, b, c, and d can intersect each other
without contradicting the uniqueness of trails. We call the circular intervals of vertices
[a, b] and [c, d] (in the counterclockwise direction) the funnel intervals of the respective
funnel. We say a circular interval [a, b] is separated if either a and b are not adjacent in
G, or there exists a junction in the canonical diagram with funnel intervals [a, e] and
[f, b], where e, f ∈ [a, b].

A canonical diagram represents a graph G in which the edges in G correspond to
trails in the diagram. As we show in the full paper [8], a graph G has a canonical diagram
if and only if it has an outerplanar strict confluent drawing, and if a canonical diagram
exists then it is unique.

4.2 Algorithm

By using the properties of canonical diagrams (see the full paper [8]), we may obtain an
algorithm that constructs a canonical diagram and strict confluent drawing of a given
cyclically-ordered graph G, or reports that no drawing exists, in time and space O(n2).
This bound is optimal in the worst case, as it matches the input size of a graph that may
have quadratically many edges.

Steps 1–3 of the algorithm, detailed below, build some simple data structures that
speed up the subsequent computations. Step 4 discovers all of the funnels in the input,
from which it constructs a list of all of the junctions of the canonical diagram. Step 5
connects these junctions into a planar drawing, a subset of the canonical diagram. Step 6



builds a graph for each face of this drawing that will be used to complete it into the
entire canonical diagram, and step 7 uses these graphs to find the remaining arcs of the
diagram and to determine which faces of the diagram are marked. Step 8 checks that
the diagram constructed by the previous steps correctly represents the input graph, and
step 9 splits the marked faces, converting the diagram into a strict confluent drawing.

1. Number the vertices clockwise around the boundary cycle from 0 to n− 1.
2. Build a table, containing for each pair i, j, the number of ordered pairs (i′, j′) with

i′ ≤ i, j′ ≤ j, and vertices i′ and j′ adjacent in G. By performing a constant number
of lookups in this table we may determine in constant time how many edges exist
between any two disjoint intervals of the boundary cycle.

3. Build a table that lists, for each ordered pair u, v of vertices, the neighbor w of u
that is closest in clockwise order to v. That is, w is adjacent to u, and the interval
from v clockwise to w contains no other neighbors of u. The table entries for u
can be found in linear time by a single counterclockwise scan. Repeat the same
construction in the opposite orientation.

4. For each separated interval [a, b], let c be the next neighbor of a that is counter-
clockwise of b, and let d be the next neighbor of b that is clockwise of a. If (i) c
is a neighbor of b, (ii) d is a neighbor of a, (iii) a is the next neighbor of c that is
counterclockwise of d, and (iv) b is the next neighbor of d that is clockwise of c,
then (if a confluent diagram exists) a, b, c, d must form the funnel of a junction, and
all funnels have this form. We check all circular intervals in increasing order of their
cardinalities. For each discovered funnel, we mark the intervals that are separated by
the corresponding junction. This way we can check in O(1) time whether a circular
interval is separated. If the number of funnels exceeds the linear bound of Lemma 3
on the number of junctions in a confluent drawing, abort the algorithm.

5. Create a junction for each of the funnels found in step 4. For each vertex v, make
a set Jv of the junctions whose funnel includes that vertex; if they are to be drawn
as part of a canonical diagram, the junctions of Jv need to be connected to v by a
confluent tree. For any two junctions in Jv, it is possible to determine in constant
time whether one is an ancestor of another in this tree, or if not whether one is
clockwise of the other, by examining the cyclic ordering of vertices in their funnels.
Construct the trees of junctions and their planar embedding in this way. The result
of this stage of the algorithm should be a planar embedding of part of the canonical
diagram consisting of all vertices and junctions, and the subset of the arcs that are
part of a path from a junction to one of its funnel vertices. Check that the embedding
is planar by computing its Euler characteristic, and abort the algorithm if it is not.

6. For each face f of the drawing created in step 5, and each pair j, j′ of junctions
belonging to f , use the data structure from step 2 to test whether there is an edge
whose trail passes through both j and j′. This results in a graph Hf in which the
vertices represent the vertices or junctions on the boundary of f and the edges
represent pairs of vertices or junctions that must be connected, either by an arc or by
shared membership in a marked face. The remaining arcs to be drawn in f will be
exactly the edges of Hf that are not crossed by other edges of Hf ; the marked faces
in f will be exactly the faces that contain pairs of crossing edges of Hf .

7. Within each face f of the drawing so far, build a table using the same construction as
in step 2 that can be used to determine the existence of a crossing edge for an edge in



Hf in constant time. Use this data structure to identify the crossed edges, and draw
an arc in f for each uncrossed edge. For each face g of the resulting subdivision of
f , if g has four or more vertices or junctions, find two pairs that would cross and
test whether both pairs correspond to edges in Hf ; if so, mark g.

8. Construct a directed graph that has a vertex for each vertex of G, two vertices for
each junction of the diagram (one in each direction), two directed edges for each arc,
and a directed edge for each ordered pair of sharp angles that are non-consecutive in
a marked face. By performing a depth-first search in this graph, determine whether
there exist multiple smooth paths in the resulting drawing from any vertex of G to
any other point in the drawing, and abort the algorithm if any such pair of paths is
found. Determine the set of vertices of G reachable from v and verify that it is the
same set of vertices that are reachable in the original graph. Additionally, verify
that the diagram satisfies the requirements in the definition of a canonical diagram.
Abort the algorithm if any inconsistency is found in this step.

9. Convert the canonical diagram into a confluent drawing and return it.

Theorem 2. For a given n-vertex graph G, and a given circular ordering of its vertices,
it is possible to determine whether G has an outerplanar strict confluent drawing with
the given vertex ordering, and if so to construct one, in time O(n2).

4.3 Drawings with low curve complexity

Suppose that we are given a topological description of an outerplanar strict confluent
drawing D of a connected graph G, describing the tangency pattern and ordering of
the arcs at each junction. It still remains to draw D (or possibly an equivalent but
combinatorially different outerplanar strict confluent drawing) in the plane using concrete
curves for its arcs. If we ignore the tangency requirements at its junctions, the arcs and
junctions of D form a planar graph, but applying standard planar graph drawing methods
will generate arcs that may not be smooth and that are not tangent to each other at the
junctions. So how are we to draw D? Here we use a circle packing method to draw D
with a small number of circular arcs for each arc of D. Thus, these drawings have low
curve complexity in the sense of Bekos et al. [1], but with this complexity measured
along arcs of the confluent diagram rather than edges of another type of graph drawing.

Given such a drawing D, let D′ be a modified version of D in which every junction
is incident to exactly three arcs, formed from D by suppressing two-arc junctions
and splitting junctions with more than three arcs. Assume also (again by adding more
junctions if necessary) that each vertex in D′ has only a single arc incident to it.

Given the topological diagram D′, we form a planar graph H that has a vertex for
each vertex or junction of D′, and an edge for each arc of D′. Additionally, we create an
edge in H for each two vertices that are consecutive in the cyclic ordering of the vertices
around the disk containing the drawing.

Lemma 5. H is planar, 3-regular, and 3-vertex-connected.

Proof. Planarity and 3-regularity follow immediately from the construction of H . Every
two vertices of G are connected by three vertex-disjoint paths in H: at least one (not



necessarily a smooth path) through D, using the assumption that G is connected, and two
more around the boundary of the disk. Therefore, if H were not 3-vertex-connected, only
one of its 3-connected components could contain vertices of G. The other components
would either contain components of D that are not part of any smooth path between
vertices of G (forbidden in a strict confluent drawing) or would contain more than one
smooth path between the same sets of vertices (also forbidden). �

Theorem 3. Let D be an outerplanar strict confluent drawing of a graph G, given
topologically but not geometrically. Then we can construct an outerplanar strict confluent
drawing of G in which each arc of the drawing is represented by a smooth curve that is
either a circular arc or the union of two circular arcs.

Proof. By the Koebe–Thurston–Andreev circle packing theorem, there exists a system
C of circles representing the faces of H , such that two circles are adjacent exactly
when the corresponding faces share an edge. We may assume (by performing a Möbius
transformation if necessary) that the outer circle of this circle packing corresponds to the
outer face of H . C may be found efficiently (although not in strongly polynomial time)
by a numerical iteration that quickly converges to the system of radii of the circles, from
which their centers can also be computed easily [2,16].

Fig. 11. Constructing an outerplanar strict
confluent drawing from a circle packing. The
vertices of the drawing correspond to triangu-
lar gaps adjacent to the outer circle, and the
junctions to the remaining triangular gaps.

Each vertex of G corresponds in C to one
of the triangular gaps between the outer circle
and two other circles, and may be placed at
the point of tangency of the two non-outer cir-
cles (one of the vertices of this triangle); see
Fig. 11. The junctions in D′ lie at the meeting
point of three faces of H , and correspond in
C to the remaining triangular gaps between
three circles. A confluent drawing of G may
be formed by removing the outer circle, re-
moving all circular arcs bounding the trian-
gular gaps incident to the outer circle, and in
each remaining triangular gap removing the
arc that is on the other side of the sharp angle.
The resulting drawing contracts some edges
of D′ to form junctions with four incident
arcs, but this does not affect the correctness
of the drawing. In the resulting drawing, arcs
of the diagram that have merge points or ver-
tices at both of their endpoints are drawn as two circular arcs (possibly both from the
same circle); other arcs of the diagram are drawn as a single circular arc. ut

5 Conclusions

We have shown that, in confluent drawing, restricting attention to the strict drawings
allows us to completely characterize their complexity, and we have also shown that
outerplanar strict confluent drawings with a fixed vertex ordering may be constructed in



polynomial time. The most pressing problem left open by this research is to recognize
the graphs that have outerplanar strict confluent drawings, without imposing a fixed
vertex order. Can we recognize these graphs in polynomial time?
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