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Introduction. A pseudoline is formed from a line by stretching the plane without tear-
ing: it is the image of a line under a homeomorphism of the plane [13]. In arrangements
of pseudolines, pairs of pseudolines intersect at most once and cross at their intersec-
tions. Pseudoline arrangements can be used to model sorting networks [1], tilings of
convex polygons by rhombi [4], and graphs that have distance-preserving embeddings
into hypercubes [6]. They are also closely related to oriented matroids [11]. We consider
here the visualization of arrangements using well-shaped curves.

Primarily, we study weak outerplanar pseudoline arrangements. An arrangement is
weak if it does not necessarily have a crossing for every pair of pseudolines [12], and
outerplanar if every crossing is part of an unbounded face of the arrangement. We
show that these arrangements can be drawn with all curves convex, either as polygonal
chains with at most two bends per pseudoline or as semicircles above a line. Arbitrary
pseudolines can also be drawn as convex curves, but may require linearly many bends.

Related Work. Several results related to the visualization of pseudoline arrangements
are known. In wiring diagrams, pseudolines are drawn on parallel horizontal lines, with
crossings on short line segments that connect pairs of horizontal lines [10]. The graphs
of arrangements have drawings in small grids [8] and the dual graphs of weak arrange-
ments have drawings in which each bounded face is centrally symmetric [5]. The pseu-
doline arrangements in which each pseudoline is a translated quadrant can be used to
visualize learning spaces representing the states of a human learner [7]. Researchers
in graph drawing have also studied force-directed methods for schematizing systems of
curves representing metro maps by replacing each curve by a spline; these curves are
not necessarily pseudolines, but they typically have few crossings [9].

Results. Below we state our results for outerplanar and arbitrary arrangements.

Theorem 1. Every weak outerplanar pseudoline arrangement may be represented by
a set of chords of a circle.

Corollary 1. Every weak outerplanar pseudoline arrangement may be represented by
lines in the hyperbolic plane, or by semicircles with endpoints on a common line.
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This result complements the fact that a weak arrangement with no 3-clique can always
be represented by hyperbolic lines, regardless of outerplanarity [2].

Corollary 2. Every weak outerplanar pseudoline arrangement may be represented by
convex polygonal chains with only two bends.

Theorem 2. Every n-element pseudoline arrangement can be drawn with convex poly-
lines, each of complexity at most n.

For smooth curves composed of multiple circular arcs and straight line segments, Bekos
et al. [3] defined the curve complexity to be the maximum number of arcs and segments
in a single curve. By replacing each bend of the above result by a small circular arc,
one obtains a smooth convex representation of the arrangement with curve complexity
O(n). We can show that these bounds are optimal.

Theorem 3. There exist simple arrangements of n pseudolines that, when represented
by polygonal chains require some pseudolines to have Ω(n) bends.

Theorem 4. There exist simple arrangements of n pseudolines that, when represented
by smooth piecewise-circular curves require some curves to have Ω(n) arcs.
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