Landmark-Based Routing in Dynamic Graphs*

Daniel Delling and Dorothea Wagner

Universitat Karlsruhe (TH), 76128 Karlsruhe, Germany
{delling,wagner}@ira.uka.de

Abstract. Many speed-up techniques for route planning in static graphs
exist, only few of them are proven to work in a dynamic scenario. Most of
them use preprocessed information, which has to be updated whenever
the graph is changed. However, goal directed search based on landmarks
(ALT) still performs correct queries as long as an edge weight does not
drop below its initial value. In this work, we evaluate the robustness
of ALT with respect to traffic jams. It turns out that—by increasing
the efficiency of ALT—we are able to perform fast (down to 20 ms on
the Western European network) random queries in a dynamic scenario
without updating the preprocessing as long as the changes in the network
are moderate. Furthermore, we present how to update the preprocessed
data without any additional space consumption and how to adapt the
ALT algorithm to a time-dependent scenario. A time-dependent scenario
models predictable changes in the network, e.g. traffic jams due to rush
hour.

1 Introduction

Computing shortest paths in graphs G = (V, E) is used in many real-world appli-
cations like route planning in road networks, timetable information for railways,
or scheduling for airplanes. In general, DIJKSTRA’s algorithm [T] finds the short-
est path between a given source s and target ¢t. Unfortunately, the algorithm
is far too slow to be used on huge datasets. Thus, several speed-up techniques
exist [2] yielding faster query times for typical instances, e.g., road or railway net-
works. Recent research [3l4] even made the calculation of the distance between
two points in road networks of the size of Europe a matter of microseconds.
Thus, at least for road networks, shortest path computation seems to be solved.

However, most of the existing techniques require a static graph, i.e. the graph
is known in advance and does not change between two shortest path compu-
tations. A more realistic scenario is a dynamic one: new roads are constructed
and closed or traffic jams occur. Furthermore, we often know in advance that
the motorways are crowded during rush hour. In this work, we adapt the known
technique of goal directed search based on landmarks—called ALT [5]—to these
dynamic scenarios.

* Partially supported by the Future and Emerging Technologies Unit of EC (IST
priority — 6th FP), under contract no. FP6-021235-2 (project ARRIVAL).

C. Demetrescu (Ed.): WEA 2007, LNCS 4525, pp. 52-[G5] 2007.
© Springer-Verlag Berlin Heidelberg 2007

Landmark-Based Routing in Dynamic Graphs 53

1.1 Related Work

We focus on related work on dynamic speed-up techniques. For static scenar-
ios, see [2] for an overview. An adaption of DIJKSTRA’s algorithm to a scenario
where travel times depend on the daytime, the time-dependent scenario, can be
found in [6]. Throughout the paper, we distinguish time-dependent and time-
independent scenarios. For the latter, edge weights are not dependent on the
daytime. A classical speed-up technique is bidirectional DIJKSTRA which also
starts a search from the target. As bidirectional DIJKSTRA uses no preprocess-
ing, it can be used in a time-independent dynamic scenario without any effort.
However, its adaption to a time-dependent scenario is more complicated as the
arrival time is unknown in such a scenario.

Goal directed search, also called A* [7], pushes the search towards a target by
adding a potential to the priority of each node. The usage of Euclidean potentials
requires no preprocessing. The ALT algorithm, introduced in [5], obtains the
potential from the distances to certain landmarks in the graph. Although this
approach requires a preprocessing step, it is superior with respect to search space
and query times. Goldberg and Harrelson state that ALT may work well in a
dynamic scenario. In this work, we persue and advance their ideas. In [§], A*
using Euclidean potentials is adapted to a time-dependent scenario.

Geometric containers [9] attach a label to each edge that represents all nodes
to which a shortest path starts with this particular edge. A dynamization has
been published in [9] yielding suboptimal containers if edge weights decrease.
In [I0], ideas from highway hierarchies [I1] and overlay graphs [2] are combined
yielding very good query times in dynamic road networks.

Closely related to dynamic shortest path computation are the Single-Source
and All-Pair-Shortest-Path problems. Both of them have been studied in a dy-

namic scenario [I2I3].

1.2 Overview

In Section 2 we review the ALT algorithm, introduced in [I4] and enhanced
in [I5]. We improve the original algorithm by storing landmark data more effi-
ciently. In Section [3] we briefly discuss how to model traffic in predictable and
unexpected cases. The adaption of ALT to our models from Section [is lo-
cated in Section @l First, we show how to update the preprocessing efficiently
without any additional requirements of data. The update is based on dynamic
shortest path trees that can be reconstructed from the graph with data provided
by ALT. However, as already mentioned in [I4], it turns out that for the most
common type of update, i.e., traffic jams, the update of the preprocessing needs
not be done in order to keep queries correct. Finally, we are able to adapt a
unidirectional variant of ALT to the time-dependent model. An extensive ex-
perimental evaluation can be found in Section Bl proving the feasibility of our
approach. There, we focus on the performance of ALT with no preprocessing
updates when traffic jams occur. Section [(] concludes this work by a summary
and possible future work.

54 D. Delling and D. Wagner
2 Goaldirected Search Based on Landmarks

In this section, we explain the known ALT algorithm [I4]. In general, the algo-
rithm is a variant of bidirectional A* search [7] in combination with landmarks.
We follow the implementation presented in [I5] enriched by implementation de-
tails that increase efficiency.

The search space of DIJKSTRA’s algorithm can be interpreted as a circle
around the source. By adding a ‘good’ potential # : V' — R to the priority
of each node, the order in which nodes are removed from the priority queue
is altered in such a way that nodes lying on a shortest path to the target
yield a low priority. In [7], it is shown that this technique—known as A*—is
equivalent to DIJKSTRA’s algorithm on a graph with reduced costs, formally
wr(u,v) = w(u,v) — m(u) + 7(v). Since DIJKSTRA’s algorithm works only on
nonnegative edge costs, not all potentials are allowed. We call a potential m
feasible if wy(u,v) > 0 for all (u,v) € E. The distance from each node v of
G to the target t is the distance from v to t in the graph with reduced edge
costs minus the potential of ¢ plus the potential of v. So, if the potential 7 ()
of the target t is zero, m(v) provides a lower bound for the distance from v
to the target t. There exist several techniques [I6] to obtain feasible poten-
tials using the layout of a graph. The ALT algorithm uses a small number
of nodes—so called landmarks—and the triangle inequality to compute feasi-
ble potentials. Given a set S C V of landmarks and distances d(L,v),d(v, L)
for all nodes v € V and landmarks L € S, the following triangle inequations
hold: d(u,v) + d(v,L) > d(u,L) and d(L,u) + d(u,v) > d(L,v). Therefore,
d(u,t) := maxres max{d(u, L)—d(t, L),d(L,t)—d(L,u)} provides a lower bound
for the distance d(u,t) and, thus, can be used as a potential for w.

The quality of the lower bounds highly depends on the quality of the selected
landmarks. Thus, several selection strategies exist. To this point, no technique
is known for picking landmarks that yield the smallest search space for random
queries. Thus, several heuristics exist; the best are avoid and mazCover [15].

As already mentioned, ALT is a bidirectional variant of A*. In general, the
combination of A* and bidirectional search is not that easy as it seems. Correct-
ness can only be guaranteed if myj—the potential for the forward search—and
7—the potential for the backward search-—are consistent. This means wy , (u, v)
in G is equal to wy, (v,u) in the reverse graph. We use the variant of an aver-
age potential function [7] defined as p¢(v) = (7f(v) — 7 (v))/2 for the forward
and p,(v) = (m(v) — 7p(v))/2 = —ps(v) for the backward search. Note, that
m¢ provides better potentials than py. Moreover, for a bidirectional variant, the
stopping criterion has to be altered: Stop the search if the sum of minimum keys
in the forward and the backward queue exceeds p + py(s), where p represents
the tentative shortest path length.

Improved Efficiency. One downside of ALT seemed to be its low efficiency.
In [I7], a reduction of factor 44 in search space only leads to a reduction in
query times of factor 21. By storing landmark data more efficiently, this gap
can be reduced. First, we sort the landmarks by ID in ascending order. The

Landmark-Based Routing in Dynamic Graphs 55

distances from and to a landmark are stored as one 64-bit integer for each node
and landmark: The upper 32 bits refer to the ‘to’ distance and the lower to the
‘from’ distance. Thus, we initialize a 64-bit vector of size |S|-|V|. Both distances
of node number i € [0, |V| — 1] and landmark number j € [0,|S| — 1] are stored
at position |S|-i+ j. As a consequence, when computing the potential for given
node n, we only have one access to the main memory in most times.

3 Modeling Traffic

In the following, we briefly discuss how to model several scenarios of updates
due to traffic in road networks. We cover unexpected and predictable updates.

Dynamic Updates. The most common updates of transit times in road net-
works are those of traffic jams. This can just be slight increases for many roads
due to rush hour. Nevertheless, increases of higher percentage can happen as
well. In the worst case, routes may be closed completely. Currently, traffic re-
ports concentrate on motorways. Nevertheless, with new technologies like car-
to-car communication [I8] information for all roads will be available. This will
lead to scenarios where updates happen quite frequently for all kinds of roads.
Analyzing the type of updates one may notice that transit times may increase
(high traffic) and may decrease afterwards but will not drop below the transit
times of an ‘empty’ road. Overall, a dynamic speed-up technique for shortest
path computation should handle this kind of updates very well and very fast. In
the ideal case, the technique should not need any update at all.

Like traffic jams, construction sites increase transit times when they are in-
stalled and decrease them when the work is done. In most cases, the transit
times do not fall below the original value. So, for this case, an updating routine
for handling traffic jams can also handle construction sites.

Another type of change in the structure of a network is the construction
or demolition of roads. This can be modeled by insertions or deletions of edges
and/or nodes. On the one hand, these type of updates are known in advance and
on the hand, they happen not very often. Thus, a dynamic algorithm should be
capable of handling these updates but the performance on these updates is not
that important like traffic jams.

Normally, transit times of roads are calculated by the average speed on these
roads. But profiles of clients differ: some want to be as fast as possible, others
want to save fuel. Furthermore, the type of vehicle has an impact on travel times
(a truck is slower than a sports car) and even worse, some roads are closed to
specific types of vehicles.

Time-Dependency. Most of the changes in transit times are predictable. We
know in advance that during rush hour, transit times are higher than at night.
And we know that the motorways are crowded at the beginning and end of a
holiday. This scenario can be modelled by a time-dependent graph []] which
assigns several weights to a specific edge. Each weight represents the travel time

56 D. Delling and D. Wagner

at a certain time. As a consequence, the result of an s-t query depends on the
time of departure from s. In [I9], it is shown that time-dependent routing gets
more complicated if the graph is not time consistent. Time consistency means
that for each edge (u,v) a delayed departure from u does not yield a earlier
arrival in v. Throughout this paper, we focus on time consistent graphs. Note
that our models from Section [can be used in a time-dependent scenario by
updating some or all of the weights assigned to an edge.

4 Dynamization

In this section, we discuss how the preprocessing of the ALT algorithm can be
updated efficiently. Furthermore, we discuss a variant where the preprocessing
has to be updated only very few times. However, this approach may lead to a
loss in performance. At the end of this section we introduce a time-dependent
variant of the unidirectional ALT algorithm.

4.1 TUpdating the Preprocessing

The preprocessing of ALT consists of two steps: the landmark selection and
calculating the distance labels. As the selection of landmarks are heuristics, we
settle for static landmarks, i.e., we do not reposition landmarks if the graph is
altered. The update of the distance labels can be realized by dynamic shortest
path trees. For each landmark, we store two trees: one for the forward edges, one
for the backward edges. Whenever an edge is altered we update the tree structure
including the distance labels of the nodes. In the following we discuss a memory
efficient implementation of dynamic shortest path trees. The construction of a
tree can be done by running a complete DIJKSTRA from the root of the tree.

Updating Shortest Path Trees. In [12] the update of a shortest path tree is dis-
cussed. The approach is based on a modified DIJKSTRA, trying to identify the
regions that have to be updated after a change in edge weight. Therefore, a tree
data structure is used in order to retrieve all successors and the parent of a node
quickly. As road graphs are sparse we do not need to store any additional infor-
mation to implement these operations. The successors of n can be determined
by checking for each target ¢ of all outgoing edges e whether d(n) + w(e) = d(t)
holds. If it holds, t can be interpreted as successor of n. Analogously, we are able
to determine the parent of a node n: Iterate all sources s of the incoming edges e
of n. If d(s)+w(e) = d(n) holds, s is the parent of n. This implementation allows
to iterate all successors of n in O(8) where ¢ is the degree of n. The parent of n
can be found in O(8) as well. Note that we may obtain a different tree structure
than rerunning a complete DIJKSTRA, but as we are only interested in distance
labels, this approach is sufficient for the correctness of ALT.

The advantage of this approach is memory consumption. Keeping all distance
labels for 16 landmarks on the road network of Western Europe in memory
already requires about 2.2 GB of RAM (32 trees with 18 million nodes, 32 bit

Landmark-Based Routing in Dynamic Graphs 57

per node). Every additional pointer would need an additional amount of 2.2 GB.
Thus, more advanced tree structures (1, 2, or 4 pointers) lead to an overhead
that does not seem worth the effort.

4.2 Two Variants of the Dynamic ALT Algorithm

Eager Dynamic ALT. In the previous section we explained how to update
the preprocessed data of ALT. Thus, we could use the update routine whenever
the graph is altered. In the following, we call this variant of the dynamic ALT
the eager dynamic version.

Lazy Dynamic ALT. However, analyzing our dynamic scenarios from Sec-
tion [l and the ALT algorithm from Section 2] we observe two important facts.
On the one hand, ALT-queries only lose correctness if the potential of an edge
results in a negative edge cost in the reduced graph. This can only happen if the
cost of the edge drops below the value during preprocessing. On the other hand,
for the most common update type—traffic jams—edge weights may increase and
decrease but do not drop below the initial value of empty roads. Thus, a poten-
tial computed on the graph without any traffic stays feasible for those kinds of
updates even when not updating the distances from and to all landmarks. Due
to this observation, we may do the preprocessing for empty roads and use the ob-
tained potentials even though an edge is perturbed. In [14], this idea was stated
to be semi-dynamic, allowing only increases in edge weights. Nevertheless, as our
update routine does not need any additional information, we are able to handle
all kinds of updates. Our lazy dynamic variant of ALT leaves the preprocessing
untouched unless the cost of an edge drops below its initial value.

This approach may lead to an increase in search space. If an edge e on the
shortest path is increased without updating the preprocessing, the weight of e
is also increased in G’, the graph with reduced costs. Thus, the length of the
shortest path increases in G’. So, the search stops later because more nodes are
inserted in the priority queue (cf. the stopping criterion in Section [2). However,
as long as the edges are not on the shortest path of a requested query the search
space does not increase. More precisely, the search space may even decrease
because nodes ‘behind’ the updated edge are inserted later into the priority
queue.

4.3 The Time-Dependent ALT Algorithm

In time-independent scenarios, ALT is implemented as bidirectional search. But
in time-dependent scenarios, a backward search is prohibited. Thus, we have
to use an unidirectional variant of ALT that only performs a forward search.
As a consequence, we may use the known stopping criterion of DIJKSTRA’s
algorithm: Stop the search when the target node is taken from the priority queue.
Furthermore, we may use the potential 7 instead of the average potential py
yielding better lower bounds (Section [2).

58 D. Delling and D. Wagner

Based on the ideas from 2] we can adapt the unidirectional ALT algorithm
to the time-dependent scenario. When doing the preprocessing, we use the min-
imum weight of each edge to compute the distance labels. It is obvious that we
obtain a feasible potential. The time-dependent ALT algorithm works analo-
gously to an unidirectional ALT but calculates the estimated departure time
from a node in order to obtain the correct edge weight. We alter the priority of
each node by adding the potential computed during preprocessing.

Note that the time-dependent ALT algorithm also works in a dynamic time-
dependent scenario. Using the same arguments from Section 2] the algorithm
still performs accurate queries as long as an edge weight does not drop below
the value used during the preprocessing. If this happens, the distance labels can
be updated using the routine from Section E1l

5 Experiments

Our experimental evaluation was done on one CPU of a dual AMD Opteron
252 running SUSE Linux 10.1. The machine is clocked at 2.6 GHz, has 16 GB
of RAM and 2 x 1 MB of L2 cache. The program was compiled with GCC 4.1,
using optimization level 3.

As inputs, we use the road map of Western Europe, provided by PTV AG
for scientific use, and the US network taken from the TIGER/Line Files. The
former graph has approximately 18 million nodes and 42.6 million edges, where
edge lengths correspond to travel times. The corresponding figures for the USA
are 23.9 million and 58.3 million, respectively. Each edge belongs to one of four
main categories representing motorways, national roads, local streets, and urban
streets. The European network has a fifth category representing rural roads. For
updates, we do not consider these rural roads. In general, we measure a low
perturbation of an edge by an increase of its weight by factor 2. For a high
perturbation we use an increase by factor 10. In the following, we identify the
unidirectional, bidirectional and time-dependent ALT algorithm by wni-ALT,
ALT and time-ALT, respectively. The number of landmarks is indicated by a
number after the algorithm, e.g. ALT-16 for 16 landmarks.

The Static ALT Algorithm. In order to compare our ALT implementations
in a dynamic scenario, we report the performance of the bi- and unidirectional
ALT algorithm in a static scenario. We evaluate different numbers of landmarks
with respect to preprocessing, search space and query times performing 10000
uniformly distributed random s-t queries. Due to memory requirements we used
avoid for selecting 32 and 64 landmarks. For less landmarks, we used the superior
maxCover heuristic. Table [l gives an overview.

We see for bidirectional ALT that doubling the number of landmarks re-
duces search space and query times by factor 2, which does not hold for the
unidirectional variant. This is due to the fact that goal direction works best on
motorways as these roads mostly have reduced costs of 0 in the reduced graph.
In the unidirectional search, one has to leave to motorway in order to reach the
target. This drawback cannot be compensated by more landmarks.

Landmark-Based Routing in Dynamic Graphs 59

Table 1. Preprocessing, search space, and query times of uni- and bidirectional ALT
and DIJKSTRA based on 10000 random s-t queries. The column dist. refers to the time
needed to recompute all distance labels from scratch.

PREPROCESSING QUERY UNIDIR. QUERY BIDIR.
time space dist. # settled time # settled time

graph algorithm [min] [MB] [min] nodes [ms] nodes [ms]
DuksTrA 0.0 0 0.0 9114385 5591.6 4764110 2713.2
ALT-8 26.1 1100 2.8 1019843 391.6 163776 127.8
Furope ALT-16 85.2 2200 5.5 815639 327.6 74669 53.6
ALT-32 27.1 4400 11.1 683566 301.4 40945 29.4
ALT-64 68.2 8800 22.1 604968 288.5 25324 19.6
DuksTrA 0.0 0 0.0 11847523 6780.7 7345846 3751.4
ALT-8 44.5 1460 3.4 922897 329.8 328140 219.6
USA ALT-16 103.2 2920 6.8 762390 308.6 180804 129.3
ALT-32 35.8 5840 13.6 628841 291.6 109727 79.5
ALT-64 92.9 11680 27.2 520710 268.8 68861 48.9

Comparing uni- and bidirectional ALT, one may notice that the time spent
per node is significantly smaller than for uni-ALT. The reason is the compu-
tational overhead for performing a bidirectional search. A reduction in search
space of factor 44 (USA, ALT-16) yields a reduction in query time of factor 29.
This is an overhead of factor 1.5 instead of 2.1, suggested by the figures in [I5],
deriving from our more efficient storage of landmark data (cf. Section).

Client profiles. As we do not consider repositioning landmarks, we only have to
recompute all distance labels by rerunning a forward and backward DIJKSTRA
from each landmark whenever the client profile changes. With this strategy, we
are able to change a profile in 5.5 minutes when using 16 landmarks on the
European network.

Updating the Preprocessing. Before testing the lazy variant of dynamic
ALT, we evaluate the time needed for updating all distance labels. Note, that
even the lazy variant has to update the preprocessing sometimes. With the ob-
tained figures we want to measure the trade-off for which types of perturbations
the update of the preprocessing is worth the effort. Figure [l shows the time
needed for updating all 32 trees needed for 16 landmarks if an edge is increased
or decreased by factor 2 and 10. We distinguish the different types of edges.
We observe that updating the preprocessing if an important edge is altered
is more expensive than the perturbation of other road types. This is due to the
fact that motorway edges have many descendants within the shortest path trees.
Thus, more nodes are affected by such an update. But the type of update has
nearly no impact on the time spent for an update: neither how much an edge
is increased nor whether an edge is increased or decreased. For almost all kind
of updates we observe high fluctuations in update time. Very low update times
are due to the fact that the routine is done if an increased edge is not a tree

60 D. Delling and D. Wagner

o 4 2 m low pert. s l m low pert.

N ° o l i g g o | O high pert. - o & l [} 8 O high pert.
4 > o o ©

5 = g 8 5 = g8 8

£ o o o £ o o o °

o 2 o o o o o o 2 o o o o o

£ g £ g

F 24 F 24 8 E

ol E i : CER T

5] _— © _—

S S

g l ‘ . E 5 l l o E i l
s == S . .
g] L == s =28 o T o=E
s 4= DL o 3 o R s

T T T T T T T T T
random motorway national road local road urban street random motorway national road local road urban street
Edge Category Edge Category

Fig. 1. Required time for updating the 32 shortest path trees needed for 16 landmarks
on the European instance. The figure on the left shows the average runtime of increasing
one edge by factor 2 (grey) and by 10 (white) while the right reports the corresponding
values for decrementing edges. For each category, the figures are based on 10000 edges.

edge or a decreased edge does not yield a lower distance label. Outliers of high
update times are due to the fact that not only the type of the edge has an impact
on the importance for updates: altering a urban street being a tree edge near
a landmark may lead to a dramatic change in the structure of the tree of this
landmark.

Lazy Dynamic ALT. In the following, we evaluate the robustness of the lazy
variant of ALT with respect to network changes. Therefore, we alter different
types and number of edges by factor 2 and factor 10.

Edge Categories. First, we concentrate on different types of edge categories.
Table 2 gives an overview of the performance for both dynamic ALT variants if
1000 edges are perturbed before running random queries.

We see that altering low-category edges has nearly no impact on the perfor-
mance of lazy ALT. This is independent of the level of increase. As expected,
altering motorway edges yields a loss in performance. We observe a loss of 30—
45% for Europe and 15-19% for the US if the level of increase is moderate (factor
2). The situation changes for high perturbation. For Europe, queries are 3.5-5.5
times slower than in the static case (cf. Table[), depending on the number of
landmarks. The corresponding figures for the US are 1.8-2.3. Thus, lazy ALT is
more robust on the US network than on the European. The loss in performance
is originated from the fact that for most queries, unperturbed motorways on the
shortest path have costs of 0 in the reduced graph. Thus, the search stops later
if these motorways are perturbed yielding a higher search space (cf. Section [4.2).
Nevertheless, comparing the query times to a bidirectional DIJKSTRA, we still
gain a speed-up of above 10. Combining the results from Figure [l with the ones
from Table 2, we conclude that updating the preprocessing has no advantage.
For motorways, updating the preprocessing is expensive and altering other types
of edges has no impact on the performace of lazy ALT.

Number of Updates. In Table[2l we observed that the perturbation of motorways
has the highest impact on the lazy dynamic variant of ALT. Next, we change

Landmark-Based Routing in Dynamic Graphs 61

Table 2. Search space and query times of lazy dynamic ALT algorithm performing
10000 random s-t queries after 1000 edges of a specific category have been perturbed
by factor 2. The figures in parentheses refer to increases by factor 10. The percentage
of affected queries (the shortest path contains an updated edge) is given in column
number 3.

lazy ALT-16 lazy ALT-32
graph road type aff.[%] # settled nodes increase [%] +# settled nodes increase [%]

Allroads 7.5 74700 (77759) 0.0 (4.1) 41044 (43919) 0.2 (7.3)
urban 0.8 74796 (74859) 0.2 (0.3) 40996 (41120) 0.1 (0.4)
EUR local 1.5 74659 (74669) 0.0 (0.0) 40949 (40995) 0.0 (0.1)
national ~ 28.1 74920 (75777) 0.3 (1.5) 41251 (42279) 0.7 (3.3)
motorway 95.3 97249 (265472) 30.2 (255.5) 59550 (224 268) 45.4 (447.7)
Allroads 3.3 181335 (181768) 0.3 (0.5) 110161 (110254) 0.4 (0.5)
urban 0.1 180900 (180776) 0.1 (0.0) 109695 (110108) 0.0 (0.3)
USA local 2.6 180962 (181068) 0.1 (0.1) 109873 (109902) 0.1 (0.2)
national ~ 25.5 181490 (184375) 0.4 (2.0) 110553 (112881) 0.8 (2.9)
motorway 94.3 207908 (332009) 15.0 (83.6) 130466 (247 454) 18.9 (125.5)

the number of perturbed motorways. Table [3] reports the performance of lazy
dynamic ALT when different numbers of motorways are increased by factor 2
and factor 10, respectively, before running random queries on Europe.

For perturbations by factor 2, we observe almost no loss in performance for
less than 500 updates, although up to 87% of the queries are affected by the
perturbation. Nevertheless, 2000 or more perturbed edges lead to significant
decreases in performance, resulting in query times of about 0.5 seconds for 10 000
updates. Note that the European network contains only about 175000 motorway
edges. As expected, the loss in performance is higher when motorway edges are
increased by factor 10. For this case, up to 500 perturbations can be compensated
well. Comparing slight and high increases we observe that the lazy variant can

Table 3. Search space and query times of the dynamic ALT algorithm performing
10000 random s-t queries after a variable number of motorway edges have been in-
creased by factor 2. The figures in parentheses refer to increases by factor 10. The
percentage of affected queries (the shortest path contains an updated edge) is given in
column 2.

lazy ALT-16 lazy ALT-32

#edges aff.[%] # settled nodes increase [%] # settled nodes increase [%]
100 39.9 75691 (91610) 1.4 (22.7) 41725 (56349) 1.9 (37.6)
200 64.7 78533 (107084) 5.2 (43.4) 44220 (69906) 8.0 (70.7)
500 87.1 86284 (165022) 15.6 (121.0) 50007 (124712) 22.1 (204.6)
1000 95.3 97249 (265472) 30.2 (255.5) 59550 (224268) 45.4 (447.7)
2000 97.8 154112 (572961) 106.4 (667.3) 115111 (531801) 181.1 (1198.8)
5000 99.1 320624 (1286317) 329.4 (1622.7) 279758 (1247628) 583.3 (2947.1)
10000 99.5 595740 (2048 455) 697.8 (2643.4) 553590 (1991 297) 1252.0 (4763.3)

62 D. Delling and D. Wagner

compensate four times more updates, e.g. 500 increases by factor 10 yield almost
the same loss as 2000 updates by factor 2.

The number of landmarks has almost no impact on the performance if more
than 5000 edges are perturbed. This is due to the fact that for almost all mo-
torways the landmarks do not yield good reduced costs. We conclude that the
lazy variant cannot compensate such a high degree of perturbation.

Comparing Lazy and Eager Dynamic ALT. Table[2shows that lazy ALT-
32 yields an increase of 40% in search space for random queries on the European
network with 1000 low perturbed motorway edges. In order to obtain a more
detailed insight for which types of queries these differences are originated from,
Figure 2 reports the query times of eager and lazy ALT-32 with respect to the
Dijkstra rank] (of the target node) in this scenario.

Local Queries dynamic ALT-32 (Europe)

@ lazy variant g i
O eager variant i Ii
]
]
)

1000
o

Query Time [ms]
10 100
! !
-0
=0
- e
- Q=
{1010 - e
13-

[
-1 - «e=w
i
C11-
1 1-

[
1 -
r-- -

F-- -

0.1

211 212 213 214 215 216 217 218 219 220 221 222 223 224
Dijkstra Rank

Fig. 2. Comparison of query times of the lazy and eager dynamic variant of ALT
using the Dijkstra rank methodology. The queries were run after 1000 motorways were
increased by factor 2. The results are represented as box-and-whisker plot. Outliers are
plotted individually.

Query performance varies so heavily that we use a logarithmic scale. For each
rank, we observe queries performing 20 times worse than the median. This is
originated from the fact that for some queries no landmark provides very good
lower bounds resulting in significantly higher search spaces. Comparing the eager
and lazy dynamic version, we observe that query times differ only by a small
factor for Dijkstra ranks below 22°. However, for 224, the eager version is about
factor 5 faster than the lazy one. This is due to the fact that those types of
queries contain a lot of motorways and most of the jammed edges are used.
The eager version yields a good potential for these edge while the lazy does

! For an s-t query, the Dijkstra rank of node v is the number of nodes inserted in the
priority queue before v is reached. Thus, it is a kind of distance measure.

Landmark-Based Routing in Dynamic Graphs 63

not. We conclude that lazy ALT is more robust for small range queries than
for long distance requests. Note that in a real-world scenario, you probably do
not want to use traffic information that is more than one hour away from your
current position. As the ALT algorithm provides lower bounds to all positions
within the network, it is possible to ignore traffic jams sufficiently without any
additional information.

Time-Dependent ALT. Our final experiments cover the time-dependent sce-
nario, in which bidirectional search is prohibited. Thus, we compare time-ALT
with a time-dependent variant of DIJKSTRA’s algorithm [6]. This variant of DI-
JKSTRA works like the normal one but calculates the departure time from a
node in order to use the correct edge weight. Our current implementation of
time-dependency assigns 24 different transit times to each edge, representing
the travel time at each hour of a day. Again, we interpret the initial values as
empty roads and add transit times according to rush hours. Table Ml gives an
overview of the performance on the European network for different scenarios of
traffic during the day. We study three models differing in how much transit time
is added to all edges during the rush hours. The first (high traffic) increases the
transit time on all roads by factor 3 during peak hours. The low traffic scenario
uses increases of factor 1.5. For comparison, the no traffic scenario uses the same
(initial) edge weight for all times of the day. Our models are inspired by []].

Table 4. Search space and query times of time-dependent ALT and DIJKSTRA perform-
ing 10 000 random s-t queries for different types of expected traffic in a time-dependent
scenario. As input, the European network is used.

no traffic low traffic high traffic
algorithm # settled time [ms] # settled time [ms] # settled time[ms]
Dijkstra 9029972 8383.2 9034915 8390.6 9033100 8396.1

time-ALT-16 794622 443.7 1969194 1543.3 3130688 2928.3

We observe a speed-up of approximately factor 3 — 5 towards DIJKSTRA’s
algorithm, depending on the scenario. This relatively low speed-up in contrast
to a speed-up of factor 50 for time-independent bidirectional ALT-16 towards
bidirectional DIJKSTRA is due to two facts. On the one hand, the unidirectional
ALT algorithm performs much worse than the bidirectional variant (see Table[I).
On the other hand, lower bounds are much worse than in a time-independent
scenario because an edge increased by factor 2 during rush hour counts like a
perturbed edge in the time-independent scenario. As lazy ALT cannot compen-
sate a very high degree of perturbation and we apply our traffic model to all
edges including motorways, these figures are not counterintuitive.

Comparing Table [[] and @, our time-dependent variant is 30% slower than the
time-independent unidirectional ALT. This is due to overhead in computing the
estimated departure time from each node.

64 D. Delling and D. Wagner

Table 5. Comparison of lazy ALT and DynHNR [10]. Space’ indicates the additional
overhead per node. We report the performance of static and dynamic random queries.
For the latter the average search space is reported after 10 and 1000 edges have been
increased by factor 2 and—in parentheses—factor 10. Note that the tests for DynHNR
were performed on a slightly different maschine.

preprocessing static queries dynamic queries
time space time #settled #settled nodes
method [min] [B/node] [ms| nodes 10 updates 1000 updates
lazy ALT-16 85 128 53.6 74441 74971 (75501) 97123 (255 754)
lazy ALT-32 27 256 29.4 40945 41060 (43865) 59550 (224 268)
lazy ALT-64 62 512 19.6 25324 26247 (26901) 42930 (201 797)
DynHNR 18 32 1.2 1414 2385 (8294) 204103 (200 465)

Comparison to Dynamic Highway-Node Routing. Analyzing the figures
from Table [it turns out that an approach based solely on landmarks cannot
compete with Dynamic Highway-Node Routing [I0] as long as the number of
perturbed edges stay little. However, the situation changes if more than 1000
edges are updated. For factor-2 perturbations, ALT yields lower search spaces
than DynHNR and for factor-10 perturbations both techniques are very close to
each other. Nevertheless, with respect to space requirements, DynHNR is supe-
rior to ALT, and the preprocessing of DynHNR can be updated more efficiently
than the preprocessing of ALT.

6 Discussion

We evaluated adaptions of ALT to dynamic scenarios covering predictable and
unexpected changes. In a time-independent scenario, a variant not updating the
preprocessing loses almost no performance as long as the number of perturbed
roads stays moderate. When using 64 landmarks, random queries are done in
20 ms on the European network and in 50 ms on the US network. However,
for some types of updates the preprocessing can be updated in moderate time
without storing any additional data.

Analyzing the dynamic scenarios, the time-dependent model seems to be supe-
rior to the time-independent model. Especially for long range queries, updates
may occur during the traversal of the shortest path. While this can be com-
pensated by rerunning a query from the current position, one cannot take into
account jams that are on the route but probably will have disappeared as soon
as you reach the critical section.

Summarizing, landmark based routing yields good query times in dynamic
scenarios. Furthermore, landmarks harmonize well with other techniques like
reach [I5], highway hierarchies [I1]], or even transit nodes [4]. As the dynamiza-
tion of ALT comes for free, adding landmarks to other techniques in dynamic
scenarios may be worth focusing on.

Landmark-Based Routing in Dynamic Graphs 65

Acknowledgments. We would like to thank Marco Gaertler, Robert Gorke,
Martin Holzer, and Bastian Katz for valueable input and proof-reading.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Dijkstra, E.-W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1, 269-271 (1959)

Wagner, D., Willhalm, T.: Speed-Up Techniques for Shortest-Path Computations.
In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 23-36. Springer,
Heidelberg (2007)

. Delling, D., Holzer, M., Miiller, K., Schulz, F., Wagner, D.: High-Performance

Multi-Level Graphs. In: 9th DIMACS Challenge on Shortest Paths (2006)

. Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In Transit to Constant

Time Shortest-Path Queries in Road Networks. In: Algorithm Engineering and
Experiments (ALENEX). pp. 46-59 (2007)

. Goldberg, A.V., Harrelson, C.: Computing the shortest path: A* meets graph the-

ory. In: 16th ACM-SIAM Symposium on Discrete Algorithms. pp. 156-165 (2005)

. Cooke, K., Halsey, E.: The shortest route through a network with time-dependent

intemodal transit times. Journal of Mathematical Analysis and Applications 14,
493-498 (1966)

. Ikeda, T., Hsu, M., Imai, H., Nishimura, S., Shimoura, H., Hashimoto, T., Ten-

moku, K., Mitoh, K.: A fast algorithm for finding better routes by Al search tech-
niques. In: Vehicle Navigation and Information Systems Conference (1994)

. Flinsenberg, I.C.M.: Route planning algorithms for car navigation. PhD thesis,

Technische Universiteit Eindhoven (2004)

. Wagner, D., Willhalm, T., Zaroliagis, C.: Geometric containers for efficient shortest-

path computation. ACM Journal of Experimental Algorithmics 10, 1-30 (2005)
Sanders, P., Schultes, D.: Dynamic Highway-Node Routing. In: 6th Workshop on
Experimental Algorithms (WEA) to appear (2007)

Delling, D., Sanders, P., Schultes, D., Wagner, D.: Highway Hierarchies Star. In:
9th DIMACS Challenge on Shortest Paths (2006)

Narvaez, P., Siu, K.Y., Tzeng, H.Y.: New dynamic algorithms for shortest path
tree computation. IEEE/ACM Trans. Netw. 8, 734-746 (2000)

Demetrescu, C., [taliano, G.F.: A new approach to dynamic all pairs shortest paths.
J. ACM 51, 968-992 (2004)

Goldberg, A.V., Harrelson, C.: Computing the shortest path: A™ meets graph the-
ory. Technical Report MSR-TR-2004-24, Microsoft Research (2004)

Goldberg, A.V., Werneck, R.F.: An efficient external memory shortest path algo-
rithm. In: Algorithm Engineering and Experimentation (ALENEX). pp. 26-40 (2005)
Sedgewick, R., Vitter, J.S.: Shortest paths in Euclidean space. Algorithmica 1,
31-48 (1986)

Goldberg, A., Kaplan, H., Werneck, R.: Reach for A*: Efficient Point-to-
Point Shortest Path Algorithms. In: Algorithm Engineering and Experiments
(ALENEX). pp. 129-143 (2006)

Dashtinezhad, S., Nadeem, T., Dorohonceanu, B., Borcea, C., Kang, P., Iftode,
L.: TrafficView: a driver assistant device for traffic monitoring based on car-to-car
communication. In: Vehicular Technology Conference, pp. 2946-2950. IEEE, New
York (2004)

Kaufman, D.E., Smith, R.L.: Fastest paths in time-dependent networks for
intelligent-vehicle-highway systems application. IVHS Journal 1, 1-11 (1993)

	Introduction
	Related Work
	Overview

	Goaldirected Search Based on Landmarks
	Modeling Traffic
	Dynamization
	Updating the Preprocessing
	Two Variants of the Dynamic ALT Algorithm
	The Time-Dependent ALT Algorithm

	Experiments
	Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

