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Abstract. We introduce new lower bounds for the minimum graph bi-
section problem. Within a branch-and-bound framework, they enable the
solution of a wide variety of instances with tens of thousands of vertices
to optimality. Our algorithm compares favorably with the best previous
approaches, solving long-standing open instances in minutes.

1 Introduction

We study the minimum graph bisection problem: partition the vertices of a graph
into two cells of equal vertex weight so as to minimize the number of edges
between them. This classical NP-hard problem [10] has applications in areas
as diverse as VLSI design, load-balancing, and compiler optimization. Fast and
good heuristics exist [14, 19], but provide no quality guarantee. Our focus is on
exact algorithms, which normally rely on the branch-and-bound framework [16].
Traditional approaches apply sophisticated techniques to find lower bounds, such
as multicommodity flows [20, 21], or linear [3, 5, 9], semidefinite [1, 3, 13, 17], and
quadratic programming [11]. The bounds they obtain tend to be very good, but
quite expensive to compute. As a result, they can handle relatively small graphs,
typically with hundreds of vertices. (See Armbruster [1] for a survey.)

Delling et al. [8] have recently proposed a branch-and-bound algorithm using
only combinatorial bounds. Their packing bound involves building collections of
disjoint paths and arguing that any bisection must cut a significant fraction of
those. This approach offers a different trade-off: branch-and-bound trees tend to
be bigger (since the bounds are weaker), but each node can be processed much
faster. This pays off for very sparse graphs with small bisections, and allowed
them to solve (for the first time) instances with tens of thousands of vertices.

In this work, we propose a new combinatorial bound that follows the same
principle, but is much stronger. Section 3 explains our new edge-based packing
bound in detail: it finds a much larger collection of paths by allowing them to
overlap in nontrivial ways. Section 4 shows how to actually build this collection
efficiently, which requires sophisticated algorithms and significant engineering
effort. We then show, in Section 5, how to fix some vertices to one of the cells
without actually branching on them. After explaining additional details of the
branch-and-bound algorithm (Section 6), we present extensive experimental re-
sults in Section 7. It shows that our new algorithm outperforms any previous
technique on a wide range of inputs, and is almost never much worse. In fact, it
can solve several benchmark instances that have been open for decades, often in
minutes or even seconds.



2 Preliminaries

We take as input a graph G = (V,E), with |V | = n and |E| = m. Each vertex
v ∈ V has an integral weight w(v). By extension, for any set S ⊆ V , let w(S) =∑

v∈S w(v). Let W = w(V ) denote the total weight of all vertices. For a given
input parameter ε ≥ 0, we are interested in computing a minimum ε-balanced
bisection of G, i.e., a partition of V into exactly two sets (cells) such that (1)
the weight of each cell is at most W+ = b(1 + ε)dW/2ec and (2) the number
of edges between cells (cut size) is minimized. Conversely, W− = W −W+ is
the minimum allowed cell size. Our algorithms assume edges are unweighted; it
deals with small integral edge weights by creating parallel unweighted edges.

To find the optimum solution, we use the branch-and-bound technique [16]. It
implicitly enumerates all solutions by dividing the original problem into slightly
simpler subproblems, solving them recursively, and picking the best solution
found. Each node of the branch-and-bound tree corresponds to a distinct sub-
problem. At all times, we keep a global upper bound U on the solution of the
original problem, which is updated as better solutions are found. To process a
node in the tree, we compute a lower bound L on any solution to the corre-
sponding subproblem. If L ≥ U , we prune the node: it cannot lead to a better
solution. Otherwise, we branch, creating two or more simpler subproblems.

Concretely, for graph bisection each node of the branch-and-bound tree rep-
resents a partial assignment (A,B), where A,B ⊆ V and A∩B = ∅. The vertices
in A or B are said to be assigned, and all others are free (or unassigned). This
node implicitly represents all valid bisections (A+, B+) that are extensions of
(A,B), i.e., such that A ⊆ A+ and B ⊆ B+. In particular, the root node has
the form (A,B) = ({v0}, ∅) and represents all valid bisections. (Note that we fix
an arbitrary vertex v0 to one cell to break symmetry.) To process an arbitrary
node (A,B), we must compute a lower bound L(A,B) on the value of any exten-
sion (A+, B+) of (A,B). If L(A,B) ≥ U , we prune. Otherwise, we choose a free
vertex v and branch on it, generating subproblems (A∪{v}, B) and (A,B∪{v}).

The number of nodes in the branch-and-bound tree depends crucially on
the quality of the lower bound. As a starting point, we use the well-known [7]
flow bound : the minimum s–t cut between A and B. It is a valid lower bound
because any extension (A+, B+) must separate A from B. It also functions as a
primal heuristic: if the minimum cut happens to be balanced, we can update U .
Unfortunately, the flow bound can only work well when A and B have similar
sizes, and even in such cases the corresponding cuts are often far from balanced,
with one side containing almost all vertices. Because the flow bound does not
use the fact that the final solution must be balanced, it is rather weak by itself.

3 Edge-Based Packing Bound

To take the balance constraint into account, we propose the edge-based packing
bound, a novel lower bounding technique. Consider a partial assignment (A,B).
Let f be the value of the maximum A–B flow, and Gf be the graph obtained



by removing all flow edges from G. Without loss of generality, assume that A is
the main side, i.e., that the set of vertices reachable from A in Gf has higher
total weight than those reachable from B. We will compute our new bound on
Gf , since this allows us to simply add it to f to obtain a unified lower bound.

To compute the bound, we need a tree packing T . This is a collection of trees
(acyclic connected subgraphs of Gf ) such that: (1) the trees are edge-disjoint; (2)
each tree contains exactly one edge incident to A; and (3) the trees are maximal
(no edge can be added to T without violating the previous properties). Given
a set S ⊆ V , let T (S) be the subset of T consisting of all trees that contain a
vertex in S. By extension, let T (v) = T ({v}).

For now, assume a tree packing T is given (Section 4 shows how to build it).
With T , we can reason about any extension (A+, B+) of (A,B). By definition,
a tree Ti ∈ T contains a path from each of its vertices to A; if a vertex in B+

is in Ti, at least one edge from Ti must be cut in (A+, B+). Since each tree
Ti ∈ T (B+) contains a separate path from A to B+ in Gf , the following holds:

Lemma 1. If B+ is an extension of B, then f + |T (B+)| is a lower bound on
the cost of the corresponding bisection (V \B+, B+).

This applies to a fixed extension B+ of B; we need a lower bound that applies
to all (exponentially many) possible extensions. We must therefore reason about
a worst-case extension B∗, i.e., one that minimizes the bound given by Lemma 1.

First, note that w(B∗) ≥W−, since (V \B∗, B∗) must be a valid bisection.
Second, let Df ⊆ V be the set of all vertices that are unreachable from A in

Gf (in particular, B ⊆ Df ). Without loss of generality, we can assume that B∗

contains Df . After all, regarding Lemma 1, any vertex v ∈ Df is deadweight :
since there is no path from v to A, it does not contribute to the lower bound.

To reason about other vertices in B∗, we first establish a relationship between
T and vertex weights by predefining a vertex allocation, i.e., a mapping from
vertices to trees. We allocate each reachable free vertex v (i.e., v ∈ V \ (Df ∪A))
to one of the trees in T (v). (Section 4 will discuss how.) The weight w(Ti) of a
tree Ti ∈ T is the sum of the weights of all vertices allocated to Ti.

Given a fixed allocation, we can assume without loss of generality that, if
B∗ contains a single vertex allocated to a tree Ti, it will contain all vertices
allocated to Ti. To see why, note that, according to Lemma 1, the first vertex
increases the lower bound by one unit, but the other vertices in the tree are free.

Moreover, B∗ must contain a feasible set of trees T ′ ⊆ T , i.e., a set whose
total weight w(T ′) (defined as

∑
Ti∈T ′ w(Ti)) is at least as high as the target

weight Wf = W− − w(Df ). Since B∗ is the worst-case extension, it must pick
a feasible set T ′ of minimum cardinality. Formally, given a partial assignment
(A,B), a flow f , a tree packing T , and an associated vertex allocation, we define
the packing bound as p(T ) = minT ′⊆T ,w(T ′)≥Wf

|T ′|.
Note that this bound can be computed by a greedy algorithm, which picks

trees in decreasing order of weight until their accumulated weight is at least Wf .
We can strengthen this bound further by allowing fractional allocations. In-

stead of allocating v’s weight to a single tree, we can distribute w(v) arbitrarily



among all trees in T (v). For v’s allocation to be valid, each tree must receive
a nonnegative fraction of v’s weight, and these fractions must add up to one.
The weight of a tree T is defined in the natural way, as the sum of all fractional
weights allocated to T . Fractional allocations can improve the packing bound
by making trees more balanced. They are particularly useful when the average
number of vertices per tree is small, or when some vertices have high degree.
The fact that the packing bound is valid is our main theoretical result.

Theorem 1. Consider a partial assignment (A,B), a flow f , a tree packing T ,
and a valid fractional allocation of weights. Then f + p(T ) is a lower bound on
the cost of any valid extension of (A,B).

Proof. Let (A∗, B∗) be a minimum-cost extension of (A,B). Let T ∗ = T (B∗) be
the set of trees in T that contain vertices in B∗. The cut size of (A∗, B∗) must
be at least f + |T ∗|, since at least one edge in each tree must be cut. We must
prove that p(T ) ≤ |T ∗|. (Since we only consider Gf , the flow bound stays valid.)
It suffices to show that T ∗ is feasible, i.e., that w(T ∗) ≥ Wf (since the packing
bound minimizes over all feasible sets, it cannot be higher than any one of them).
Let R∗ = B∗ \Df be the set of vertices in B∗ that are reachable from A in Gf ;
clearly, w(R∗) = w(B∗ \ Df ) ≥ w(B∗) − w(Df ). Moreover, w(T ∗) ≥ w(R∗)
must hold because (1) every vertex v ∈ R∗ must hit some tree in T ∗ (the trees
are maximal); (2) although w(v) may be arbitrarily split among several trees in
T (v), all these must be in T ∗; and (3) vertices of T ∗ that are in A∗ (and therefore
not in R∗) can only contribute nonnegative weights to the trees. Finally, since
B∗ is a valid bisection, we must have w(B∗) ≥W−. Putting everything together,
we have w(T ∗) ≥ w(R∗) ≥ w(B∗)− w(Df ) ≥W− − w(Df ) = Wf . ut

Comparison. Our packing bound is a generalization of the bound proposed by
Delling et al. [8], which also creates a set of disjoint trees and uses a greedy
packing algorithm to compute a lower bound. The crucial difference is that, while
we only need the trees to be edge-disjoint, Delling et al. [8] also require them to
be vertex-disjoint. We therefore refer to their method as VBB (for vertex-based
bound). Dropping vertex-disjointness not only allows our method to balance the
trees more effectively (since it can allocate vertex weights more flexibly), but also
increases the number of available trees. This results in significantly better lower
bounds, leading to much smaller branch-and-bound trees. As Section 7 will show,
our method is particularly effective on instances with high-degree vertices, where
it can be several orders of magnitude faster than VBB. The only drawback of
our approach relative to VBB is that finding overlapping trees efficiently requires
significantly more engineering effort, as the next section will show.

4 Bound Computation

Theorem 1 applies to any valid tree packing T , but the quality of the bound it
provides varies. Intuitively, we should pick T (and an associated weight alloca-
tion) so as to avoid heavy trees: this improves p(T ) by increasing the number



of trees required to achieve the target weight Wf . Since |T | and w(T ) are both
fixed (for any T ), in the ideal tree packing all trees would have the same weight.
It is easy to show that finding the best such packing is NP-hard, so in prac-
tice we must resort to (fast) heuristics. Ideally, the trees and weight allocations
should be computed simultaneously (to account for the interplay between them),
but it is unclear how to do so efficiently. Instead, we use a two-stage approach:
first compute a valid tree packing, then allocate vertex weights to these trees
appropriately. We discuss each stage in turn.

Generating trees. The goal of the first stage is to generate maximal edge-disjoint
trees rooted at A that are as balanced and intertwined as possible. We do so by
growing these trees simultaneously, trying to balance their sizes.

More precisely, each tree starts with a single edge (the one adjacent to A)
and is marked active. In each step, we pick an active tree with minimum size
(number of edges) and try to expand it by one edge in DFS fashion. A tree that
cannot be expanded is marked as inactive. We stop when there are no active
trees left. We call this algorithm SDFS (for simultaneous depth-first search).

An efficient implementation of SDFS requires a careful choice of data struc-
tures. In particular, a standard DFS implementation associates information
(such as parent pointers and status within the search) with vertices, which are
the entities added and removed from the DFS stack. In our setting, however, the
same vertex may be in several trees (and stacks) simultaneously. We get around
this by associating information with edges instead. Since each edge belongs to at
most one tree, it has at most one parent and is inserted into at most one stack.
This takes O(m) total space regardless of the number of trees.

Given this representation, we now describe the basic step of SDFS in more
detail. First, pick an active tree Ti of minimum size (using buckets). Let (u, v) be
the edge on top of Si (the stack associated with Ti), and assume v is farther from
Ti’s root than u is. Scan vertex v, looking for an expansion edge. This is an edge
(v, w) such that (1) (v, w) is free (not assigned to any tree yet) and (2) no edge
incident to w belongs to Ti. The first condition ensures that the final trees are
disjoint, while the second makes sure they have no cycles. If no such expansion
edge exists, we pop (u, v) from Si; if Si becomes empty, Ti can no longer grow,
so we mark it as inactive. If expansion edges do exist, we pick one such edge
(v, w), push it onto Si, and add it to Ti by setting parent(v, w) ← (u, v). The
algorithm repeats the basic step until there are no more active trees.

We must still define which expansion edge (v, w) to select when processing
(u, v). We prefer an edge (v, w) such that w has several free incident edges
(to help keep the tree growing) and is as far as possible from A (to minimize
congestion around the roots, which is also why we do DFS). Note that we can
precompute the distances from A to all vertices with a single BFS.

To bound the running time of SDFS, note that a vertex v can be scanned
O(deg(v)) times (each scan either eliminates a free edge or backtracks). When
scanning v, we can process each outgoing edge (v, w) in O(1) time using a hash
table to determine whether w is already incident to v’s tree. The worst-case time
is therefore

∑
v∈V (deg(v))2 = O(m∆), where ∆ is the maximum degree.



Weight allocation. Once a tree packing T is built, we must allocate the weight
of each vertex v to the trees T (v) it is incident to. Our final goal is to have
the weights as evenly distributed among the trees as possible. We work in two
stages: initial allocation and local search. We discuss each in turn.

The first stage allocates each vertex to a single tree. We maintain, for each
tree Ti, its maximum potential weight Π(i), defined as the sum of the weights of
all vertices that are adjacent to Ti and have not yet been allocated to another
tree. To keep the trees balanced, we allocate weight to trees with smaller Π(·)
values first. More precisely, initially all vertices in T are available (not allocated),
all trees Ti are active, and Π(i) is the sum of the weights of all available vertices
incident to Ti. In each step, the algorithm picks an active tree Ti such that Π(i)
is minimum. If there is an available vertex v incident to Ti, we allocate it to Ti;
otherwise, we mark the tree as inactive. We stop when no active tree remains.

To implement this, we maintain the active trees in a priority queue (according
to Π(i)), and each tree Ti keeps a list of all available vertices it is incident to;
these lists have combined size O(m). When v is allocated to a tree Ti, we decrease
Π(j) for all trees Tj 6= Ti that are incident to v (Π(i) does not change), remove
v from the associated lists, and update the priority queue. The total time is
O(m logm) with a binary heap orO(m+W ) with buckets (with integral weights).

Given an initial allocation, we then run a local search to rebalance the trees.
Unlike the constructive algorithm, it allows fractional allocations. We process
one vertex at a time (in arbitrary order) by reallocating v’s weight among the
trees in T (v) in a locally optimal way. More precisely, v is processed in two steps.
First, we reset v’s existing allocation by removing v from all trees it is currently
allocated to, thus reducing their weights. We then distribute v’s weight among
the trees in T (v) (from lightest to heaviest), evening out their weights as much
as possible. In other words, we add weight to the lightest tree until it is as heavy
as the second lightest, then add weight to the first two trees (at the same rate)
until each is as heavy as the third, and so on. We stop as soon as v’s weight is
fully allocated. The entire local search runs in O(m logm) time, since it must
sort (by weight) the adjacency lists of each vertex in the graph once. In practice,
we run the local search three times to further refine the weight distribution.

5 Forced Assignments

Consider a partial assignment (A,B). As observed by Delling et al. [8], if the
current lower bound for (A,B) is close enough to the upper bound U , one can
often infer that certain free vertices v must be assigned to A (or B) with no need
to branch, reducing the size of the branch-and-bound tree. This section studies
how these forced assignments can be generalized to work with our stronger edge-
based bounds. As usual, assume A is the main side, let T be a tree packing with
weight allocations, and let f + p(A) be the current lower bound.

First, we consider flow-based forced assignments. Let v be a free vertex reach-
able from A in Gf , and consider what would happen if it were assigned to B. The
flow bound would immediately increase by |T (v)| units, since each tree in T (v)



contains a different path from v to A. We cannot, however, simply increase the
overall lower bound to f + p(T ) + |T (v)|, since the packing bound may already
be “using” some trees in T (v). Instead, we must compute a new packing bound
p(T ′), where T ′ = T \T (v) but the weights originally assigned to the trees T (v)
are treated as deadweight (unreachable). If the updated bound f+p(T ′)+|T (v)|
is U or higher, we have proven that no solution that extends (A,B ∪ {v}) can
improve the best known solution. Therefore, we can safely assign v to A.

Note that we can make a symmetric argument for vertices w that are reach-
able from B in Gf , as long as we also compute an edge packing T ′B on B’s side.
Assigning such a vertex w to A would increase the overall bound by |T ′B(w)|
(because the extra flow is on B’s side, it does not affect p(T )). If the new bound
f + p(T ) + |T ′B(w)| is U or higher, we can safely assign w to B.

Another strategy we use is subdivision-based forced assignments, which sub-
divides heavy trees in T . Let v be a free vertex reachable from A in Gf . If v
were assigned to A, we could obtain a new tree packing T ′ by splitting each tree
Ti ∈ T (v) into multiple trees, one for each edge of Ti that is incident to v. If
f + p(T ′) ≥ U , we can safely assign v to B.

Some care is required to implement this test efficiently. In particular, to
recompute the packing bound we need to compute the total weight allocated to
each of the newly-created trees. To do so efficiently, we use some precomputation.
For each edge e, let T (e) ∈ T be the tree to which e belongs. Define s(e) as the
weight of the subtree of T (e) rooted at e: this is the sum, over all vertices
descending from e in T (e), of the (fractional) weights allocated to T (e). (If e
belongs to no tree, s(e) is undefined.) The s(e) values can be computed with a
bottom-up traversal of all trees, which takes O(m) total time.

These precomputed values are useful when the forced assignment routine
processes a vertex v. Each edge e = (v, u) is either a parent or a child edge,
depending on whether u is on the path from v to T (e)’s root or not. If e is a
child edge, it will generate a tree of size s(e). If e is a parent edge, the new tree
will have size s(r(e))− s(e), where r(e) is the root edge of T (e).

Note that both forced-assignment techniques (flow-based and subdivision-
based) must compute a new packing bound p(T ′) for each vertex v they process.
Although they need only O(deg(v)) time to transform T into T ′, actually com-
puting the packing bound from scratch can be costly. Our implementation uses
an incremental algorithm instead. When computing the original p(T ) bound,
we remember the entire state of its computation (including the sorted list of
all original tree weights). To compute p(T ′), we can start from this initial state,
discarding trees that are no longer valid and considering new ones appropriately.

6 The Full Algorithm

We test our improved bounds by incorporating them into Delling et al.’s branch-
and-bound routine [8]. We process each node of the branch-and-bound tree as
follows. We first compute the flow bound, then add to it our new edge-based
packing bound (which fully replaces their vertex-based bound). If the result is not



smaller than the best known upper bound U , we prune. Otherwise, we try both
types of forced assignment, then branch. The remainder of this section discusses
branching rules, upper bounds, and an optional decomposition technique.

VBB branches on the free vertex v that maximizes a certain score based
on three parameters: the degree of v, the distance from v to A ∪ B, and the
average weight of the trees T (v) that v belongs to. Together, these criteria aim
to maximize the overall (flow and packing) bound. Besides these, we propose a
fourth criterion: whenever the current minimum cut A–B is almost balanced,
we prefer to branch on vertices that already carry some flow in order to increase
the number of reachable vertices in Gf .

Like VBB, we only update the best upper bound U when the minimum A–B
cut happens to be balanced. Moreover, we do not use any heuristics to try to find
a good initial bound U . Instead, we just call the branch-and-bound algorithm re-
peatedly, with increasing values of U , and stop when the bound it proves is better
than the input. We use U1 = 1 for the first call, and set Ui = d1.05Ui−1e for call
i > 1. (Delling et al. suggest using 1.5 instead of 1.05, but this is too aggressive
for nontrivial instances; we therefore run VBB with 1.05 in our experiments.)

Finally, we consider decomposition. As in VBB, the quality of our lower
bounds depend on the degrees of the vertices already assigned to A or B (which
limit both the A–B flow and the number of trees). If a graph with small degrees
has a large bisection, the branch-and-bound tree can get quite deep. Delling
et al. [8] propose a decomposition-based preprocessing technique to get around
this. Let U be an upper bound on the optimum bisection of the input graph
G = (V,E). Partition E into U + 1 sets E0, E1, . . . , EU , and for each i create a
new graph Gi by taking G and contracting all edges in Ei. To solve G, we sim-
ply solve each Gi to optimality (with our standard branch-and-bound algorithm)
and return the best solution found. At least one subproblem must preserve the
optimum solution, since none of the solution edges will be contracted. Delling et
al. propose partitioning the edges into clumps (paths with many neighbors) to
ensure that, after contraction, each graph Gi will have at least a few high-degree
vertices. We generate clumps similarly (see [8] for details), adjusting a few pa-
rameters to better suit our stronger lower bounds: we allow clumps to be twice
as long, and randomize the distribution of clumps among subproblems.

7 Experiments

We implemented our algorithm in C++ and compiled it with full optimization
on Visual Studio 2010. All experiments were run on a single core of an Intel Core
2 Duo E8500 with 4 GB of RAM running Windows 7 Enterprise at 3.16 GHz.

We test the effectiveness of our approach by comparing our branch-and-
bound algorithm with other exact approaches proposed in the literature. We
consider a set of benchmarks compiled by Armbruster [2] containing instances
used in VLSI design (alue, alut, diw, dmxa, gap, taq), meshes (mesh), random
graphs (G), random geometric graphs (U), and graphs deriving from sparse sym-
metric linear systems (KKT) and compiler design (cb). In each case, we use the



Table 1. Performance of our algorithm compared with the best available times ob-
tained by Armbruster [1], Hager et al. [11], and Delling et al.’s VBB [8]. Columns
indicate number of nodes (n), number of edges (m), allowed imbalance (ε), optimum
bisection value (opt), number of branch-and-bound nodes (bb), and running times in
seconds; “—” means “not tested” and DNF means “not finished in at least 5 hours”.

name n m ε opt bb time [Arm07] [HPZ11] VBB

G124.02 124 149 0.00 13 426 0.08 13.91 4.21 0.06
G124.04 124 318 0.00 63 204999 52.80 4387.67 953.63 768.20
G250.01 250 331 0.00 29 41754 10.58 1832.25 10106.14 16.34
KKT capt09 2063 10936 0.05 6 33 0.16 1164.88 4658.59 0.10
KKT skwz02 2117 14001 0.05 567 891 7.87 DNF — DNF
KKT plnt01 2817 24999 0.05 46 12607 72.29 DNF — DNF
KKT heat02 5150 19906 0.05 150 9089 120.13 DNF — 614.04
U1000.05 1000 2394 0.00 1 456 0.33 53.62 — 0.27
U1000.10 1000 4696 0.00 39 2961 8.83 1660.63 — 17.38
U1000.20 1000 9339 0.00 222 38074 276.05 DNF — 17469.18
U500.05 500 1282 0.00 2 138 0.12 19.81 — 0.30
U500.10 500 2355 0.00 26 967 1.32 495.91 — 2.42
U500.20 500 4549 0.00 178 66857 225.02 DNF — DNF
alut2292.6329 2292 13532 0.05 154 24018 251.05 391.76 — 3058.29
alue6112.16896 6112 36476 0.05 272 378320 13859.72 4774.15 — DNF
cb.47.99 47 3906 0.00 765 270 1.24 5.28 0.29 DNF
cb.61.187 61 33281 0.00 2826 793 91.81 81.35 0.80 DNF
diw681.1494 681 3081 0.05 142 5362 12.38 DNF — DNF
diw681.3103 681 18705 0.05 1011 6673 162.85 DNF — DNF
diw681.6402 681 7717 0.05 330 2047 9.22 4579.12 — DNF
dmxa1755.10867 1755 13502 0.05 150 2387 28.59 DNF — 57.10
dmxa1755.3686 1755 7501 0.05 94 10390 63.42 1972.22 — 371.99
gap2669.24859 2669 29037 0.05 55 74 1.31 348.95 — 0.52
gap2669.6182 2669 12280 0.05 74 3225 31.26 651.03 — 105.87
mesh.138.232 138 232 0.00 8 124 0.05 10.22 6.91 0.04
mesh.274.469 274 469 0.00 7 79 0.05 8.52 24.62 0.38
taq170.424 170 4317 0.05 55 193 0.53 28.68 — 8.14
taq334.3763 334 8099 0.05 341 1379 4.88 DNF — DNF
taq1021.2253 1021 4510 0.05 118 3373 11.93 169.65 — 283.04

same value of ε tested by Armbruster, which is either 0 or 0.05 (but note that
his definition of ε differs slightly).

Table 1 reports the results obtained by our algorithm (using decomposition
for U, alue, alut, and KKT heat02). For comparison, we also show the running
times obtained by recent state-of-the-art algorithms by Armbruster et al. [3, 1]
(using linear or semidefinite programming, depending on the instance), Hager
et al. [11] (quadratic programming), and Delling et al.’s VBB approach. Our
method and VBB were run on a 3.16 GHz Core 2 Duo, while Armbruster used
a 3.2 GHz Pentium 4 540 and Hager et al. used a 2.66 GHz Xeon X5355. Since
these machines are not identical, small differences in running times (a factor of
two or so) should be disregarded.



The table includes all instances that can be solved by at least one method in
less than 5 hours (the time limit set by Armbruster [1]), except those that can
be solved in less than 10 seconds by both our method and Armbruster’s. Note
that we can solve every instance in the table to optimality. Although slightly
slower than Armbruster’s in a few cases (notably alue6112.16896), our method
is usually much faster, often by orders of magnitude. We can solve in minutes
(or even seconds) several instances no other method can handle in 5 hours.

Our approach is significantly faster than Hager et al.’s for mesh, KKT, and
random graphs (G), but somewhat slower for the cb instances, which are small
but have heavy edges. Since we convert them to parallel (unweighted) edges, we
end up dealing with much denser graphs (as the m column indicates). On such
dense instances, fractional allocations help the most: without them, we would
need almost 1000 times as many branch-and-bound nodes to solve cb.47.99.

Compared to VBB, our method is not much better for graphs that are very
sparse or have small bisections—it can be even slower, since it often takes 50%
more time per branch-and-bound node due to its costlier packing computation.
As in VBB, however, flow computations still dominate. For denser instances,
however, our edge-based approach is vastly superior, easily handling several in-
stances that are beyond the reach of VBB.

With longer runs, both Armbruster and Hager et al. [11] can solve random
graphs G124.08 and G124.16 (not shown in the table) in a day or less. We would
take about 3 days on G124.08, and a month or more for G124.16. Here the ratio
between the solution value (449) and the average degree (22) is quite large, so
we can only start pruning very deep in the tree. Decomposition would contract
only about three edges per subproblem, which does not help. This shows that
there are classes of instances in which our method is clearly outperformed.

For real-world instances, however, we can actually solve much larger instances
than those shown on Table 1. In particular, we consider instances from the
10th DIMACS Implementation Challenge [4] representing social and communi-
cation networks (class clustering), road networks (streets), Delaunay triangula-
tions (delaunay), random geometric graphs (rgg), and assorted graphs (walshaw)
from the Walshaw benchmark [22] (mostly finite-element meshes). We also con-
sider triangulations representing three-dimensional objects in computer graphics
(mesh) [18] and grid graphs with holes (vlsi) representing VLSI circuits [15].

Table 2 compares our algorithm with VBB (results are not available for
other exact methods). Both use decomposition for all classes but clustering. Since
our focus is on lower bound quality, here we ran both algorithms directly with
U = opt + 1 as an initial upper bound. For each instance, we report the number
of branch-and-bound nodes and the running time of our algorithm, as well as
its speedup (spd) relative to VBB, i.e., the ratio between VBB’s running time
and ours. Note that VBB runs that would take more than a day were actually
executed on a cluster using DryadOpt [6], which roughly doubles the total CPU
time. The table includes most nontrivial instances tested by Delling et al. [8],
and additional instances that could not be solved before. On instances marked
DNF, VBB would be at least 200 times slower than our method.



Table 2. Performance on various large instances with ε = 0; bb is the number of
branch-and-bound nodes, time is the total CPU time, and spd is the speedup over
Delling et al.’s VBB algorithm [8]; DNF means the speedup would be at least 200.

class name n m opt bb time [s] spd

clustering lesmis 77 820 61 21 0.02 12975.4
as-22july06 22963 48436 3515 7677 417.27 DNF

delaunay delaunay n11 2048 6127 86 4540 18.87 9.3
delaunay n12 4096 12264 118 13972 140.64 19.3
delaunay n13 8192 24547 156 34549 759.67 49.5
delaunay n14 16384 49122 225 635308 30986.82 DNF

mesh cow 2903 8706 79 2652 13.04 5.1
fandisk 5051 14976 137 6812 81.81 63.4
blob 8036 24102 205 623992 12475.18 DNF
gargoyle 10002 30000 175 46623 1413.62 33.0
feline 20629 61893 148 43944 1474.22 3.1
dragon-043571 21890 65658 148 1223289 53352.66 109.7
horse 48485 145449 355 121720 21527.24 DNF

rgg rgg15 32768 160240 181 5863 1111.35 148.1
rgg16 65536 342127 314 43966 24661.47 32.2

streets luxembourg 114599 119666 17 844 101.21 0.9

vlsi alue7065 34046 54841 80 9650 350.05 1.4

walshaw data 2851 15093 189 29095 265.12 21689.9
crack 10240 30380 184 19645 605.12 479.2
fe 4elt2 11143 32818 130 1324 42.89 5.2
4elt 15606 45878 139 4121 187.51 4.1
fe pwt 36519 144794 340 2310 394.50 39.7
fe body 45087 163734 262 147424 17495.68 DNF
finan512 74752 261120 162 1108 339.70 2.2

Our new algorithm is almost always faster than VBB, which is only com-
petitive for very sparse inputs, such as road networks. For denser graphs, our
algorithm can be orders of magnitude faster, and can solve a much greater range
of instances. Note that several instances could not be solved with VBB even
after days of computation. In contrast, in a few hours (or minutes) we can solve
to optimality a wide variety of graphs with tens of thousands of vertices.

8 Conclusion

We have introduced new lower bounds that provide excellent results in practice.
They outperform previous methods on a wide variety of instances, and help find
provably optimum bisections for several long-standing open instances (such as
U500.20 [12]). While most previous approaches keep the branch-and-bound tree
small by computing very good (but costly) bounds at the root, our bounds are
only useful if some vertices have already been assigned. This causes us to branch
more, but we usually make up for it with a faster lower bound computation.
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