
Fast Exact Shortest Path and Distance Queries on
Road Networks with Parametrized Costs∗

Julian Dibbelt
Karlsruhe Institute of

Technology (KIT)
dibbelt@kit.edu

Ben Strasser
Karlsruhe Institute of

Technology (KIT)
strasser@kit.edu

Dorothea Wagner
Karlsruhe Institute of

Technology (KIT)
dorothea.wagner@kit.edu

ABSTRACT
We study a scenario for route planning in road networks,
where the objective to be optimized may change between
every shortest path query. Since this invalidates many of the
known speedup techniques for road networks that are based
on preprocessing of shortest path structures, we investigate
optimizations exploiting topological structures. We experi-
mentally evaluate our technique on a large set of real-world
road networks of various data sources. With lightweight
preprocessing our technique answers long-distance queries
across continental networks significantly faster than previous
approaches towards the same problem formulation.

Categories and Subject Descriptors
G.2.2 [Discrete Mathematics]: Graph Theory—graph al-
gorithms, network problems; G.2.3 [Discrete Mathemat-
ics]: Applications

General Terms
Algorithms, Experimentation, Measurement, Performance

Keywords
route planning, road networks, shortest paths

1. INTRODUCTION
Road networks of large geographic regions easily consist of

hundreds of millions of nodes, and collaborative spatial data
collection efforts, such as OpenStreetMap (OSM), have seen
growths by two orders of magnitude over the last years. On
such large networks, Dijkstra’s classical shortest path algo-
rithm [9] incurs substantial running times of several seconds
even on modern computer hardware. Since this is too slow
for many applications, the past decade has seen numerous
research (by both theoretical and applied communities) into
∗Partially supported by DFG grant WA654/16-2 and Google
Focused Research Award
Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
SIGSPATIAL’15, November 03 - 06, 2015, Bellevue, WA, USA
Copyright 2015 ACM 978-1-4503-3967-4/15/11 ...$15.00.
http://dx.doi.org/10.1145/2820783.2820856

techniques that accelerate shortest path queries by applying
offline preprocessing [1, 16]. If the graph metric is fixed or
changed rarely, these techniques offer very fast queries.
If instead costs change for every query, these techniques

cease to provide benefit over Dijkstra’s algorithm, due to their
relatively expensive preprocessing. Yet, in practice, even the
same user might prefer a quickest route in the morning but
a safe and fuel-efficient route back home. This scenario is
considered in Personalized Route Planning (PRP) [10]. Here,
every arc in the road graph is associated with a vector c of
several non-negative numeric costs, e. g., travel time, distance,
speed, emissions, and energy consumption. The input of a
query, besides source and target node, consists of a cost
vector w with non-negative entries. In the search, every
arc is associated with the scalar product of w and c. The
output consists of the shortest path with respect to this
weighted sum of costs. Moreover, the PRP problem can be
extended [8] to vehicle restrictions, such as height and weight
limits, or user preferences such as avoidance of highways.
In this work, we improve on the performance of [10] by

following a preprocessing approach that naturally exploits
the structure of road networks. See the full paper [8] for a
more complete exposition.

2. PRELIMINARIES
We denote by G = (V,A) a directed graph with node set V

and arc set A ⊆ V × V . An undirected graph is denoted by
G = (V,E) where E is the edge set. For road networks, a
node corresponds to a position on the earth’s surface and an
arc to a road segment between two positions. In particular,
not every node models a road intersection. For most arcs
(u, v) there is a back-arc (v, u). However, there are notable
exceptions such as one-way streets or highways, which are
modeled as two separate one-way streets. We consider multi-
cost graphs, where each arc is associated with several costs,
such as travel time or distance. Denote by k the number
of costs. Formally, we have a function c : A → Rk

≥0. An
st-path between a source node s and a target node t, is a
sequence su . . . vt of pairwise adjacent nodes. A graph is
called biconnected if, after removing any node v ∈ V , the
remaining graph G \ {v} is still connected. A biconnected
component (BCC) is a subgraph of G that is biconnected.
An independent set I is a subset of V such that no two nodes
u, v ∈ I are adjacent, i. e., no edge {u, v} ∈ E exists.

3. TOPOCORE
We propose a core-based speedup technique. In the pre-

processing phase, a core graph GC = (VC , AC) is computed.

Conceptually, this core graph is a coarsened subgraph con-
taining all major roads, to which the query is restricted
to after initial local searches. This decreases query times
because GC is smaller than G.
Formally, the nodes VC of GC are a subset of V and called

core nodes. The arcs of the core are defined as following: For
every loop-free path v1v2 . . . vk for which only the endpoints
v1 and vk are in VC and all intermediate nodes are in V \VC ,
there exists a shortcut arc (v1, vk) ∈ AC in the core graph.
This shortcut maintains shortest path distance in the core
and thus ensures correctness of the core-based query [15].
Note that it is possible that multi-arcs are created by this
construction. The cost vector c(v1, vk) of the shortcut is
defined as the combination of the cost vectors of the arcs
within the path, i.e., c(v1, vk) = c(v1, v2) ◦ . . . ◦ c(vk−1, vk).

3.1 Computing the Core Nodes
Initially, all nodes are core nodes. Then, for each node

removed from the core, we potentially have to add shortcuts
between all pairs of neighbors, in order to maintain shortest
path distances for the yet unknown objective function (to
be specified in the query). Note that, unlike [6, 7], we must
create multi-arcs if an original arc between two neighbors is
already present (since we cannot tie-break for an unknown
objective function). As the performance of Dijkstra’s algo-
rithm depends on both the number of nodes and arcs, we
would eventually experience diminishing returns if adding
too many new arcs while removing nodes from the core.
Hence, our goal is to select as few core nodes as possible

while restricting growth in the number of core arcs. In the
following, we describe three steps performed in succession
to remove nodes from the core, reducing its size and thus
accelerating shortest path queries.

Step 1: Removing Dead-Ends.
First, we compute the biconnected components of the in-

put graph, employing a linear-time algorithm by Tarjan [17].
(For this, we ignore arc directions.) Each dead-end like struc-
ture is its own tiny component. All that entails significant
routing decisions, forms a single large component. Hence,
we keep every node in the core that is contained in the
largest biconnected component. Note that we do not add
any shortcuts in this step.

Step 2: Removing Chains.
Consider the graph induced by all core nodes. Note that

removing a node with only two neighbors from the core, while
adding shortcuts between its neighbors, does not increase core
arc size. Better yet, in our inputs, such nodes are often not
isolated but form chains between two nodes of higher degree.
Moreover, these chains may grow by first applying Step 1, as
intersections exist, where all but two roads lead to dead-ends.
First removing dead-ends turns such intersections into degree
2 nodes. We identify such chains and add shortcut arcs to the
core that bypass them, removing bypassed nodes from the
core. Note that the resulting TopoCore may contain multi-
arcs. The name was chosen to reflect that we exploit only
topological graph features. See Figure 1 for an illustration.

Step 3: Removing Degree-3 Nodes.
Ideally, we would like to remove even more nodes from

the core. In case of undirected simple graphs, removing
a node of degree d (i. e., with d neighbors) from the core

(a) OSM Input (b) DIMACS Input

(c) OSM Biconn. Comp. (d) DIMACS Biconn. Comp.

(e) OSM TopoCore (f) DIMACS TopoCore

(g) OSM TopoCore-IS (h) DIMACS TopoCore-IS

Figure 1: OSM (left) and DIMACS (right) data
sources of the area with a longitude in [8.50103,
8.52117] and latitude in [48.9476,48.9596]. Nodes
are drawn at geographical position. Arcs are drawn
without direction for clarity. Non-core nodes are red.
Nodes not in the largest biconnected component are
grayed out. Nodes in the TopoCore are green. The
TopoCore-IS is drawn upon a grayed-out TopoCore,
with added shortcuts between green nodes.

removes d edges (to these neighbors) from the core, while
adding d(d− 1)/2 new edges to the core, i. e., a net increase
of d(d− 3)/2. Hence for d = 3, the number of edges in the
core remains unchanged but the number of nodes decreases.
It is therefore beneficial to remove degree-3 nodes from the
core for a reduction in queue operations during search. But
we cannot just remove all of them, as removing a node may
increase the degree of its neighbors, turning a degree-3 node
into a higher degree node. Therefore, we first compute an
independent set (IS) of degree-3 core nodes (iterating over
nodes in DFS pre-order, greedily adding degree-3 nodes to
the set, if they have no adjacent degree-3 node in the set).
We then remove only this independent set from the core. See
Figure 1 for an illustration of the resulting TopoCore-IS. One
could apply this procedure iteratively, but experiments show
that in the TopoCore-IS only few degree-3 nodes remain.

3.2 Query
Given a core graph we compute a forward and a backward

search graph as follows: The forward graph GF is the union
of G and GC without the arcs (u, v) that leave the core,
i.e., u ∈ VC and v ∈ V \VC . The backward graph GB is
constructed analogously: First compute the union of G and
GC , then reverse the direction of every arc and finally remove
the arcs leaving the core.
The query algorithm is a bidirectional variant of Dijkstra’s

algorithm [3]. The forward search is run on GF while the
backward search runs on GB . Let dF and dB be the min-keys
of the respective queue and µ be the tentative source–target
distance: We abort the search if dF + dB ≥ µ and no queue
contains a non-core node.
To further improve query speed, we increase memory local-

ity (and thus cache performance): During preprocessing, we
first reorder the input graph in DFS pre-order, then compute
the core and move core nodes to the front of the order.

4. RELATED WORK
Personalized Route Planning (PRP) was introduced by [10],

where it is approached based on k-path covers. A k-path
cover C is a small node subset of the original graph such that
any simple (loop-free) path contains at most k− 1 successive
nodes that are not in C. The core idea for accelerating
PRP queries consists of computing a coarsened path that
only contains nodes in C where possible. Unfortunately,
computing a minimum k-path cover is NP-hard [2]. For this
reason in [10] approximate solutions were used.
The PRP problem is essentially a high-dimensional, lin-

ear multi-criteria search problem, related to the parametric
shortest path problem. Extensions of known preprocessing
techniques to multi-criteria optimization have been proposed,
but were only evaluated experimentally for two criteria [12]
and three criteria [11]. Especially for the latter, diminishing
returns in query speed over preprocessing effort have been
reported [11]. Related approaches include Pareto-SHARC [5]
and Contraction Hierarchies with edge restrictions [13].
A different line of work [4, 6, 7] further subdivides the

preprocessing phase into topology preprocessing and metric-
dependent customization. The customization may consider a
combination of costs as input, however, its output is a single
fixed scalar metric, used by subsequent queries. If costs may
change for every query, this customization approach does
not pay off. More specifically, we show in [8] that it pays off
only after eight or more queries on the same costs.

Table 1: Comparison to related work. We report the
number of criteria (# cr.) considered, benchmark
size, preprocessing and query time. Differences in
OSM graph size of the same instance (marked by *)
are likely due to different extraction dates.

|V| |A| Prep. Query
Algorithm cr. Instance [106] [106] [s] [ms]
CH [14] 1 Dimacs-Eur 18.0 42.2 165 0.152
FlexCH [12] 2 Dimacs-Eur 18.0 42.2 18 720 0.98
MultiCH [11] 2 OSM-BW* 2.5 5.0 121 0.42
MultiCH [11] 3 OSM-BW* 2.5 5.0 68 3.16
k-Pathc. [10] 8 OSM-BW** 2.2 4.6 12 35
k-Pathc. [10] 8 OSM-Ger** 17.7 36.1 149 249
TopoCore-IS 8 OSM-BW 3.1 6.2 3 9
TopoCore-IS 8 OSM-Ger 20.7 41.8 35 86
TopoCore-IS 8 OSM-Eur 174.8 348.0 657 558
TopoCore-IS 8 Dimacs-Eur 18.0 42.2 36 279
TopoCore-IS 8 Dimacs-US 23.9 57.7 43 386

5. EXPERIMENTS
We implemented our algorithms in C++, compiling on

g++ 4.6.3 with optimization level -O3. Our experiments
were performed on a single core of an Intel Xeon E5-2670
processor clocked at 2.6GHz, with DDR3-1600 RAM clocked
at 1.6GHz, 20MiB of L3 and 256KiB of L2 cache. We
consider five different instances: The continental road net-
works of Europe (DIMACS-Eur) and the US (DIMACS-US)
from the 9th DIMACS Implementation Challenge on shortest
paths; The continental road network of Europe (OSM-Eur),
the national network of Germany (OSM-Ger) and the state
network of Baden-Württemberg (OSM-BW), extracted from
OpenStreetMap.1 On these, we evaluate preprocessing and
query performance of TopoCore-IS, the latter run with 1,000
pairs of source and target nodes picked uniformly at random.
Table 1 reports a performance comparison of TopoCore-IS

and related work. While plain CH (single fixed criterion, i. e.,
travel time) yields query times more than three orders of
magnitude faster than ours, performance quickly degrades
when considering multiple criteria: While exact comparisons
are difficult due to differences in benchmark instances, one
observes that each additional criterion considered roughly de-
creases query speed by about an order of magnitude (0.152ms
→ 0.98ms, 0.42ms → 3.16ms). For the three criteria dis-
tance, travel time, and fuel costs, which are not completely
uncorrelated, CH on OSM-BW [11] is already only factor
3–9 faster than our approach in terms of query times. This
degradation of performance for more than two criteria likely
means that the Contraction Hierarchies approach does not
extend well to the PRP scenario considered in this work, an
assessment also made by [10].
We also compare to the k-Path Cover approach of [10],

which introduced the PRP scenario. Both theirs and our
technique are core-based. However, by keeping every kth
node in the core, for a fixed parameter k, their approach
cannot flexibly handle dead-ends or chains of deg-2 nodes
of vastly different length. It therefore adds more shortcuts
than necessary, which slows down both preprocessing and
1For details on the instances, see http://i11www.iti.kit.
edu/resources/roadgraphs.php.

Table 2: Node degree distribution of instances.
#Nodes per degree

1 2 3 4 5+
OSM-BW 13.3% 72.6% 12.6% 1.2% 0.01%
OSM-Ger 14.2% 70.9% 13.5% 1.3% 0.01%
OSM-Eur 12.1% 76.7% 10.1% 1.1% 0.01%
DIMACS-Eur 26.5% 18.7% 49.1% 5.7% 0.1%
DIMACS-US 19.9% 30.3% 39.0% 10.7% 0.1%

queries. In contrast, our technique exploits such structures
of the road network much more directly. This is confirmed by
our experimental evaluation, which shows that on OSM-Ger
and OSM-BW, the TopoCore-IS query is faster by a factor
of 3 to 4, while having lower preprocessing overhead by about
factor 4, even without considering the respective increase in
OSM dataset size (OSM grows rapidly from month to month).
Unfortunately, for their query experiments the authors of [10]
focus exclusively on OSM graphs, hence we cannot compare
on DIMACS graphs.

OpenStreetMap Instances are Easier than Expected.
Besides solving Personalized Route Planning faster than

before, we also find the comparison of OSM and DIMACS
instances very interesting. Consider the three instances OSM-
Ger, DIMACS-Eur and DIMACS-US: They are very similar
in graph size. Moreover, the experimental results presented
in Table 1 show that preprocessing correlates quite well
with the size of the graph. However, query times achieved by
TopoCore-IS are significantly faster on the OSM-based graph.
A similar effect has been observed by [4]: The speedup of
their technique over Dijkstra’s algorithm is up to 14.2 times
higher on OSM than on non-OSM graphs of comparable size.
This is an important property, which we attribute to the

significantly higher number of degree-2 nodes in instances
obtained from OSM (where they are used to model path
geometry, which is not important for routing). Table 2 shows
the vastly skewed node degree distribution of OSM graphs.
These observations suggest that, for a fixed graph size,

OSM-based instances are easier for speedup techniques than
instances from other data sources—unless some kind of nor-
malization is applied (e. g., elimination of all degree-2 paths).
This should generally be taken into account when comparing
different route planning techniques that were experimentally
evaluated on road networks of different origin.

6. CONCLUSIONS
We proposed a new preprocessing-based speedup technique

for faster Personalized Route Planning. In this approach,
weighting of routing criteria can individually be adjusted for
every user and every query in a very flexible way, without per-
user storage overhead. Preprocessing needs only be repeated
when roads are build or cost vectors are adjusted, e. g., a
new speed limit is posted. We experimentally evaluated
our technique on datasets both from OpenStreetMap and
the 9th DIMACS Implementation Challenge, showing good
performance on a large range of instances, achieving query
speeds well below a second even on large continental road
networks.

7. REFERENCES
[1] H. Bast, D. Delling, A. V. Goldberg,

M. Müller–Hannemann, T. Pajor, P. Sanders,
D. Wagner, and R. F. Werneck. Route planning in
transportation networks. Technical Report
abs/1504.05140, ArXiv e-prints, 2015.

[2] B. Bresar, F. Kardos, J. Katrenic, and G. Semanisin.
Minimum k-path vertex cover. Discrete Applied
Mathematics, 159(12):1189–1195, 2011.

[3] G. B. Dantzig. Linear Programming and Extensions.
Princeton University Press, 1962.

[4] D. Delling, A. V. Goldberg, T. Pajor, and R. F.
Werneck. Customizable route planning in road
networks. Transportation Science, 2015.

[5] D. Delling and D. Wagner. Pareto paths with SHARC.
In Proceedings of the 8th International Symposium on
Experimental Algorithms (SEA’09), LNCS 5526, pages
125–136. Springer, 2009.

[6] J. Dibbelt, B. Strasser, and D. Wagner. Customizable
contraction hierarchies. In Proceedings of the 13th
International Symposium on Experimental Algorithms
(SEA’14), LNCS 8504, pages 271–282. Springer, 2014.

[7] J. Dibbelt, B. Strasser, and D. Wagner. Customizable
contraction hierarchies. Technical Report
abs/1402.0402, ArXiv e-prints, 2014.

[8] J. Dibbelt, B. Strasser, and D. Wagner. Fast exact
shortest path and distance queries on road networks
with parametrized costs. Technical Report
abs/1509.03165, ArXiv e-prints, 2015.

[9] E. W. Dijkstra. A note on two problems in connexion
with graphs. Numerische Mathematik, 1:269–271, 1959.

[10] S. Funke, A. Nusser, and S. Storandt. On k-path covers
and their applications. In Proceedings of the 40th
International Conference on Very Large Databases
(VLDB 2014), pages 893–902, 2014.

[11] S. Funke and S. Storandt. Polynomial-time
construction of contraction hierarchies for multi-criteria
objectives. In Proceedings of the 15th Meeting on
Algorithm Engineering and Experiments (ALENEX’13),
pages 31–54. SIAM, 2013.

[12] R. Geisberger, M. Kobitzsch, and P. Sanders. Route
planning with flexible objective functions. In
Proceedings of the 12th Workshop on Algorithm
Engineering and Experiments (ALENEX’10), pages
124–137. SIAM, 2010.

[13] R. Geisberger, M. N. Rice, P. Sanders, and V. J.
Tsotras. Route planning with flexible edge restrictions.
ACM Journal of Experimental Algorithmics, 17(1),
2012.

[14] R. Geisberger, P. Sanders, D. Schultes, and C. Vetter.
Exact routing in large road networks using contraction
hierarchies. Transportation Science, 46(3):388–404,
2012.

[15] F. Schulz, D. Wagner, and K. Weihe. Dijkstra’s
algorithm on-line: An empirical case study from public
railroad transport. ACM Journal of Experimental
Algorithmics, 5(12):1–23, 2000.

[16] C. Sommer. Shortest-path queries in static networks.
ACM Computing Surveys, 46(4), 2014.

[17] R. Tarjan. Depth-first search and linear graph
algorithms. SIAM Journal on Computing, 1972.

