
Customizable Contraction Hierarchies?

Julian Dibbelt, Ben Strasser, Dorothea Wagner
firstname.lastname@kit.edu

Karlsruhe Institute of Technology (KIT)

Abstract. We consider the problem of quickly computing shortest paths
in weighted graphs given auxiliary data derived in an expensive prepro-
cessing phase. By adding a fast weight-customization phase, we extend
Contraction Hierarchies [12] to support the three-phase workflow intro-
duced by Delling et al. [6]. Our Customizable Contraction Hierarchies
use nested dissection orders as suggested in [3]. We provide an in-depth
experimental analysis on large road and game maps that clearly shows
that Customizable Contraction Hierarchies are a very practicable solu-
tion in scenarios where edge weights often change.

1 Introduction

Computing optimal routes in road networks has many applications such as nav-
igation devices, logistics, traffic simulation or web-based route planning. For
practical performance on large road networks, preprocessing techniques that
augment the network with auxiliary data in an (expensive) offline phase have
proven useful. See [1] for an overview. Among the most successful techniques are
Contraction Hierarchies (CH) [12], which have been utilized in many scenarios.
However, their preprocessing is in general metric-dependent, e.g., edge weights
are needed a-priori. Substantial changes to the metric, e.g., due to user pref-
erences, may require expensive recomputation. For this reason a Customizable
Route Planning (CRP) approach was proposed in [6], extending the multi-level-
overlay MLD techniques of [20,15]. It works in three phases: In a first expensive
phase auxiliary data is computed that solely exploits the topological structure of
the network, disregarding its metric. In a second much less expensive phase this
auxiliary data is customized to the specific metric, enabling fast queries in the
third phase. In this work we extend CH to support such a three-phase approach.

Besides road networks, game maps are an interesting application where fast
shortest path computations are important (c.f. [21]). In real-time strategy games
the basic topology of the map often is fixed. However, since buildings are con-
structed or destroyed, fields are rendered impassable or freed up. Yet, because
the fog of war, every player has his own knowledge of the map: A unit must
not route around a building that the player has not yet seen. Furthermore, units
such as hovercrafts may traverse water and land, while other units are bound to
? Partial support by DFG grant WA654/16-2 and EU grant 288094 (eCOMPASS) and
Google Focused Research Award.

land. This results in vastly different, evolving metrics for different unit types per
player, making metric-dependent preprocessing difficult to apply. Game maps
tend to be symmetric, i.e., there are not one-way streets. Exploiting symmetry
is a useful feature.

One of the central building blocks of this paper is to use metric-independent
nested dissection orders (ND-orders) for CH precomputation instead of the
metric-dependent order of [12]. This approach was proposed by [3], and a prelimi-
nary case study can be found in [23]. A similar idea was followed by [9], where the
authors employ partial CHs to engineer subroutines of their customization phase
(they also had preliminary experiments on full CH). Worth mentioning are also
the works of [18]. They consider small graphs of low treewidth and leverage this
property to compute good orders and CHs (without explicitly using the term
CH). Interestingly, our experiments show that also large road networks have
relatively low treewidth. Furthermore, note that while customizable speedup
techniques for shortest path queries may be a very recent development, the idea
to use ND-orders to compute CH-like structures is far older and widely used in
the sparse matrix solving community. We refer the interested reader to [13,17].

Our Contribution. The main contribution of our work is to show that Customiz-
able Contraction Hierarchies (CCH) solely based on the ND-principle are feasible
and practical. Compared to CRP [6] we achieve a similar preprocessing–query
tradeoff, albeit with slightly better query performance at slightly slower cus-
tomization speed (and somewhat more space). Interestingly, for less well-behaved
metrics such as travel distance, we achieve query times below the original metric-
dependent CH of [12].

An extended version of this paper with more detailed experiments is avail-
able at http://arxiv.org/abs/1402.0402. It contains concepts that are not strictly
necessary for the considered workflow but might be useful for extensions of it.

2 Basics

We denote by G = (V,E) an undirected n-vertex graph where V is the set of
vertices and E the set of edges. Furthermore, G = (V,A) denotes a directed graph
where A is the set of arcs. We consider simple graphs that have no loops or multi-
edges. We denote by N(v) the set of adjacent vertices of v. A vertex separator
is a vertex subset S ⊆ V whose removal separates G into two disconnected
subgraphs induced by the vertex sets A and B. The separator S is balanced if
|A| , |B| ≤ 2n/3. A vertex order π : {1 . . . n} → V is a bijection. Its inverse π−1
assigns each vertex a rank. Undirected edge weights are denoted using w : E →
R+. With respect to a vertex order π we define an upward weight wu : E → R+

and a downward weight wd : E → R+. The vertex contraction of v in G consists
of removing v and all incident edges and inserting edges between all neighbors if
not already present. We iteratively contract all vertices according to their rank
resulting in a set Q of additional edges. We direct the edges in E and in Q
upward from lower ranks to higher ranks resulting in the upward directed search

graph G∧π . The search space SS(v) of a vertex v is the subgraph of G∧π reachable
from v. For every vertex pair s and t, it has been shown that a shortest up-down
path must exist. This up-down path can be found by running a bidirectional
search from from s restricted to SS(s) and from t restricted to SS(t) [12]. The
elimination tree TG,π is a tree directed towards its root π(n). The parent of
vertex π(i) is its upward neighbor v of minimal rank π−1(v). As shown in [3] the
set of vertices on the path from v to π(n) is the set of vertices in SS(v). Note
that the elimination tree is only defined for undirected unweighted CHs. A lower
triangle of an arc (x, y) in G∧π is a triple (x, y, z) such that arcs (z, x) and (z, y)
exist. Similarly, an intermediate triangle is a triple such that (x, z) and (z, y)
exist, and an upper triangle a triple such that (x, z) and (y, z) exist. Weights on
G∧π are called metrics. A weight on G is extended to an initial metric on G∧π by
assigning ∞ to all non-original arcs. A metric m is called customized if for all
lower triangles (x, y, z), it holds that m(x, y) ≤ m(z, x) +m(z, y).

Note that our CHs build on undirected graphs. To model one-way streets
we use two different up- and downward metrics, setting either mu or md to ∞.

3 Phase 1: Preprocessing the Graph Topology

Metric-Independent Order. To support metric-independence, we use nested dis-
section orders (ND-orders) as suggested in [3]. An order π for G is computed
recursively by determining a minimum balanced separator S that splits G into
parts induced by the vertex sets A and B. The lowest ranks are assigned to the
vertices in A, the next ranks to the vertices in B, and finally the highest ranks
are assigned to S. Computing ND-orders requires good graph partitioning, and
recent years have seen heuristics that solve the problem very well even for conti-
nental road graphs [19,8,7]. Note that these partitioners compute edge cuts. On
our instances, a good vertex separator can be derived by arbitrarily picking one
incident vertex for each edge.

Theorem 1. Let G be a graph with recursive balanced separators with O(nα)
vertices. If G has a minimum balanced separator with Θ(nα) vertices then a ND-
order gives an O(1)-approximation of the average and maximum search spaces
of an optimal metric-independent CH in terms of vertices and arcs.

Proof. (sketch, see extended version) In a lemma the authors of [17] show that a
clique exists in the CH of the size of the minimum balanced separator. We observe
that this is the top level separator and that it dominates all lower separators.

Constructing the Contraction Hierarchy. While the CH can be constructed given
the order and the input graph as described in [12], the construction can be im-
proved by exploiting that our graphs are undirected and unweighted. By de-
signing a specialized Contraction Graph datastructure, detailed in the extended
version, we significantly speedup the construction and limit the space used dur-
ing the construction. Denote by n the number of vertices, m the number of edges

in G, by m′ the number of edges in G∧π , and by α(n) the inverse A(n, n) Acker-
mann function. Our algorithm needs O(m′α(n)) time and O(m) space. The core
idea, introduced in [14], consists of reducing vertex contraction to edge contrac-
tion, maintaining an independent set of virtually contracted vertices. Also, we
build the elimination tree and derive for every vertex its level `(x) in G∧π .

Memory Order. After having obtained the nested dissection order we reorder
the in-memory vertex IDs of the input graph accordingly, i.e., the contraction
order of the reordered graph is the identity. This greatly improves cache locality.

4 Phase 2: Customizing the Metric

In this section, we describe how to customize a metric and parallelize the process.
Furthermore, we show how to update the weight of a single arc. A base operation
for our algorithms is efficiently enumerating all lower triangles of an arc. It can
be implemented using adjacency arrays or accelerated using extra preprocessing.

Basic Triangle Enumeration. Construct an upward and a downward adjacency
array for G∧π , where incident arcs are ordered by their head vertex ID. Unlike
common practice, we also assign and store arc IDs. (By lexicographically assign-
ing arc IDs we eliminate the need for arc IDs in the upward adjacency array.)
Denote by Nu(v) the upward neighborhood of v and by Nd(v) the downward
neighborhood. All lower triangles of an arc (x, y) are enumerated by simultane-
ously scanning Nd(x) and Nd(y) by increasing vertex ID to determine their inter-
section Nd(x) ∩Nd(y) = {z1 . . . zk}. The lower triangles are all triples (x, y, zi).
The corresponding arc IDs are stored in the adjacency arrays. This approach
requires space proportional to the number of arcs in G∧π . All upper and interme-
diate triangles are found by merging Nu(x) and Nu(y) (respectively Nd(y)).

Triangle Preprocessing. Instead of merging the neighborhoods, we propose to
create an adjacency-array-like structure that maps the arc ID of (x, y) onto the
pair of arc ids of (z, x) and (z, y) for every lower triangle (x, y, z). This requires
space proportional to the number of triangles in G∧π but allows for faster access.

Metric Customization. Our algorithm iterates over all levels from the bottom
to the top. On level i, it iterates (using multiple threads) over all arcs (x, y)
with level `(x) = i. For each such arc (x, y), the algorithm enumerates all lower
triangles (x, y, z) and performs m(x, y)← min{m(x, y),m(z, x) +m(z, y)}. The
operation maintains the shortest path structure. Furthermore, the resulting met-
ric is customized by definition. Note that we synchronize the threads between
levels. Then, since we only consider lower triangles, no read/write conflicts oc-
curs. Hence, no locks or atomic operations are needed.

Vectorization. A metric can be replaced by an interleaved set of k metrics by
replacing everym(x, y) by a vector of k elements. All k metrics are customized in
one go, amortizing triangle enumeration time. To customize directed graphs, re-
call that we first extract upward and downward weights wu and wd. These are in-
dependently transformed into initial upward and downward metrics mu and md.
However, they must not be customized independently: For every lower triangle
(x, y, z) we set mu(x, y) ← min{mu(x, y),md(z, x) +mu(z, y)} and md(x, y) ←
min{md(x, y),md(z, y)+mu(z, x)}. When using interleaved metrics it is straight-
forward to use SSE (avoid addition overflow by setting ∞ = intmax/2).

Partial Updates. Denote by U = {((xi, yi), ni)} the set of arcs whose weights
should be updated where (xi, yi) is the arc ID and ni the new weight. Observe
that modifying the weight of one arc can trigger new changes, but only to higher
arcs. We therefore organize U as a priority queue ordered by the level of xi. We
iteratively remove arcs from the queue and apply the change. If new changes
are triggered, we insert these into the queue. Let (x, y) be the arc removed from
the queue, n its new weight, and o its old weight. We first check if (x, y) can be
bypassed via a lower triangle, improving n: We iterate over all lower triangles
(x, y, z) and perform n← min{n,m(z, x)+m(z, y)}. Finally, if {x, y} is an edge
in the original graph G, we ensure that n is not larger than the original weight.
If after both checks n = m(x, y) holds, no change is necessary and no further
changes are triggered. Otherwise, we iterate over all upper triangles (x, y, z) and
test whether m(x, z) + o = m(y, z) holds. (Note that (y, z, x) is a lower triangle
of (y, z).) If so, we add the change ((y, z),m(x, z)+n) to the queue. Intermediate
triangles are handled analogously.

5 Phase 3: At Query Time

In this section we describe how to compute a shortest up-down path in G∧π , given
a source and target vertex s and t and a customized metric.

Basic and Stalling. The basic query alternates two instances of Dijkstra’s algo-
rithm on G∧π from s and t, maintaining a tentative distance of the shortest path
discovered so far (initially ∞). If G is undirected then both searches use the
same metric. Otherwise, the search from s uses the upward metric mu, and the
search from t the downward metric md. In either case, in contrast to [12], the
searches operate on the same upward search graph G∧π . Each search is stopped
once its radius is larger than the tentative distance. Additionally, we evaluate a
basic version of the stall-on-demand optimization presented in [12].

Elimination Tree. Inspired by [3], we us the precomputed elimination tree to
efficiently enumerate all vertices in SS(s) and SS(t) by increasing rank at query
time without using a priority queue. We store two tentative distance arrays df (v)
and db(v). Initially these are all set to∞. First, we compute the lowest common
ancestor (LCA) x of s and t in the elimination tree: We simultaneously enumerate

all ancestors of s and t by increasing rank until a common ancestor is found.
Second, we iterate over all vertices y on the branch from s to x, relaxing all
forward arcs of such y. Third, we do the same for all vertices y from t to x in the
backward search. Fourth, we iterate over all vertices y’ from x to the root (the
top-level vertex), simultaneously relaxing the respective outgoing arcs of each y′
for the forward and backward searches. We further determine the vertex z that
minimizes df (z) + db(z), deriving the path distance and preparing unpacking.
We finish by iterating over all vertices from s and t to the root, resetting all
distances df and db to ∞ (which proved cheaper than timestamping).

Path Unpacking. The original CH of [12] unpacks an up-down path by storing
for every arc (x, y) the vertex z of the lower triangle (x, y, z) that caused the
weight at m(x, y). This information depends on the metric and we want to
avoid storing additional metric-dependent information. We therefore resort to
a different strategy. Denote by p1 . . . pk the up-down path found by the query.
As long as a lower triangle (pi, pi+1, x) exists with m(pi, pi+1) = m(x, pi) +
m(x, pi+1) insert the vertex x between pi and pi+1.

6 Comparison with CRP

Both CRP and CCH are multi-level overlay techniques in spirit of [20], but
CRP typically utilizes less levels. Yet, regarding customization, both approaches
clearly converge, since CRP uses further guidance levels and contraction as a sub-
routine [9]. Note, however, that CRP does not contract the top-level separator.
Queries differ more, with CRP running plain Dijkstra on the lowest cells before
employing preprocessed data. Note that by exploiting partition information at
query time, CRP offers unidirectional queries.

Our triangle preprocessing has similarities with micro and macro code [9].
While their approach does not allow for a—in our context crucial—random ac-
cess, we can atleast compare space consumption: In that regard, micro code is
clearly the most expensive. Macro code, on the other hand, is compactest as
the dominating substructure only stores one ID per triangle (instead of our two
IDs). However, we enumerate undirected triangles and thus, depending on the
instance, may have only half as many triangles.

One major advantage of CRP over other techniques is that it works well
with turn costs. Since our benchmark instances lack realistic turn cost data
(while synthetic data tends to be very simplistic), we deemed it unproper to
experimentally evaluate CCH performance on turn costs. However, using a the-
oretical argument we predict that turn costs have no major impact: They can be
incorporated by adding turn cliques to the graph. Small edge cuts in the original
graph correspond to small cuts in the turn-aware graph. Analyzing the exact
growth of cuts (in the extended version), we conclude that the impact on search
space size is at most a factor of 2 to 4. Practical performance might be better.
Note, that the game scenario does not need turn costs.

#Vertices #Arcs #Edges symmetric?
TheFrozenSea 754 195 5 815 688 2 907 844 yes

Europe 18 010 173 42 188 664 22 211 721 no
Table 1: The number of vertices and of directed arcs of the benchmark graphs.
We further present the number of edges in the induced undirected graph.

7 Experiments

The experiments were run on a dual 8-core Intel Xeon E5-2670 processor clocked
at 2.6 GHz, with 64 GiB of DDR3-1600 RAM, 20 MiB of L3 and 256 KiB of L2
cache (internally called compute11). We use g++ 4.7.1 with -O3.

We consider two large instances of practical relevance (c.f. Table 1): First,
the road network of Europe (Eur in short) as made available by PTV AG for the
DIMACS challenge [10]. It is the defacto standard for benchmarking road route
planning research. Second, the game map TheFrozenSea (TFS in short), one of
the largest of Star Craft maps available at [22]. The map is composed of square
tiles, each having at most eight neighbors. Some tiles are non-walkable. Walkable
tiles form pockets of free space connected through choke points of very limited
space. The corresponding graph contains for every walkable tile a vertex and
for every pair of adjacent walkable tiles an edge. Diagonal edges are weighted
by
√
2, others by 1. The graph is symmetric and contains large grid subgraphs.

ND-Order. To compute a ND-order, we use KaHIP in its “strong” configuration,
with imbalance set to 20%. We recursively bisect the graph using edge cuts
from which vertex separators are derived. We repeat each cut ten times with
different random seeds and pick the smallest one. The resulting separator sizes
are illustrated in Figure 1 (in the extended version we also consider Metis [16]).
The top-level separators of Europe are curiously small due to the special topology
of the continent (Great Britain, Spain, and France are easily separated). Once all
such features are exploited, the cut sizes seem to follow a Θ(3

√
n)-law, making

the approximation result from Theorem 1 applicable. On TFS, the top-level
separators that cut through choke points also follow a Θ(3

√
n)-law. The residual

subgraphs are grids with Θ(
√
n) cuts. This explains the two peaks in the plot.

CH Construction. Switching from a dynamic adjacency array to our Contraction
Graph approach we decrease construction time on TFS from 490.6s to 3.8s and on
Europe from 305.8s to 15.5s. (Be aware that this approach cannot immediately
be extended to directed or weighted graphs, that is, without customization.)

CH Size. As a baseline, we were interested in computing a greedy-ordered CH
but without witness search. However, this turned out to be infeasible even us-
ing the Contraction Graph. We had to abort the calculation after discovering
at least one vertex with an upward degree of 1.4 × 106. It is safe to assume
that using this order it is impossible to achieve a speedup over Dijkstra’s algo-
rithm on the original graph. In Table 2 we report the total number of shortcuts

●

●

●

●

●

●
●

●

●

●

●
●●

●

●
●●

●

●
●
●

●

●
●

●

●●
●

●●

●
●

●
●
●

●

●
●

●●

●

●
●●

●

●

●

●●
●

●

●

●
●

●
●

●
●
●

●

●
●

●

●●
●

●
●

●

●

●

●

●
●

●

●●

●●
●

●
●

●●

●●●
●

●

●●

●●
●●

●
●

●
●

●

●
●
●●●
●
●

●●

●
●

●

●●

●●●
●

●●
●●
●
●

●

●

●

●
●
●
●

●
●

●●

●

●

●

●●
●

●
●

●
●●●●

●

●●

●
●

●●●
●
●

●

●

●●

●

●
●●

●
●●

●

●

●●

●

●

●

●

●

●

●●

●

●●●
●
●●
●●

●
●
●
●
●

●

●

●

●
●

●

●

●

●

●

●
●
●
●

●
●

●

●
●
●

●
●

●

●
●●
●

●

●

●

●
●

●
●●●●

●

●
●

●

●
●●
●

●

●

●

●

●

●
●

●

●

●
●●

●

●
●

●

●

●

●

●

●
●
●
●●

●

●

●

●

●●●

●●

●
●●●●

●
●
●
●
●

●●
●

●
●●●●●

●●●
●
●

●

●
●
●
●

●
●
●

●
●●

●
●

●

●

●
●●●
●●

●

●
●
●●

●

●

●

●
●

●●●

●
●●●
●
●●

●
●●

●
●●●●

●

●

●
●

●

●

●

●

●

●

●
●●
●●

●

●
●

●

●

●
●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●●●

●●

●●
●
●

●
●

●
●

●

●●
●

●

●

●●

●

●

●●

●
●●
●
●

●●●

●

●
●
●
●

●
●

●

●
●

●

●●●
●

●●

●
●

●

●
●

●

●
●
●

●

●
●●

●

●

●
●

●●●●
●

●

●

●●
●

●
●
●

●

●●
●

●
●

●

●●

●
●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●●
●
●●
●

●

●●●

●

●●●

●●

●

●

●
●

●

●

●●●
●
●
●●

●

●
●

●

●

●
●
●

●

●

●
●

●●

●

●●
●
●
●

●

●
●
●
●●●

●

●

●

●

●

●●●●

●

●●

●

●

●
●
●●

●

●
●

●●
●●

●

●

●

●

●
●
●●

●

●

●
●

●

●

●

●
●
●
●

●

●●
●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●●

●

●

●

●
●●
●

●

●●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●
●

●

●

●

●
●●
●●●

●

●

●
●●
●

●●

●

●●
●●

●

●

●

●
●
●

●

●

●
●
●●●
●

●

●

●

●

●●
●●

●

●

●
●●

●

●
●

●

●

●

●

●

●●

●
●●●
●
●●

●

●
●

●

●●

●
●

●●●●●
●

●

●
●
●
●
●●●
●

●
●

●
●
●●●
●●
●
●
●●
●

●
●

●
●
●●
●●
●

●
●

●

●

●●

●

●●

●

●●
●

●

●

●

●●
●

●

●

●

●
●
●

●

●

●●●
●
●●●
●●

●
●●

●●

●

●
●
●
●●

●
●●
●
●

●

●

●

●
●

●
●

●
●

●

●
●●

●●●

●

●●

●

●

●
●

●
●

●

●

●

●

●
●

●●

●●

●

●

●

●●
●
●
●
●
●●●

●

●●
●

●

●
●●

●

●●

●

●

●
●

●
●●●●

●●
●

●●●

●
●●●

●

●

●●
●

●●

●
●

●

●●
●●

●

●

●●●
●
●

●

●●

●

●
●●
●

●

●

●

●
●

●

●
●
●

●
●
●
●
●

●

●

●
●●●

●●
●

●

●

●

●

●

●●

●

●●●

●

●

●
●

●
●

●

●

●
●●

●

●
●
●

●
●●
●●
●
●

●

●●

●
●
●

●

●

●●
●
●

●

●

●

●

●
●
●●
●●●
●

●
●
●

●
●

●
●

●
●

●
●
●
●

●●
●
●
●

●

●

●

●

●●●

●

●●●
●

●
●●

●
●
●
●●

●
●●●

●
●
●

●

●●
●
●

●
●

●●

●
●
●●

●●

●
●●●
●●

●

●●

●

●

●●
●

●
●

●

●●

●

●●

●

●
●

●

●
●●

●

●
●
●●
●●●
●●
●
●●

●

●

●●

●

●●

●
●
●●
●
●
●
●

●

●
●

●
●

●

●
●

●

●●●
●●

●

●
●

●
●
●
●
●
●

●

●
●

●

●
●

●

●●

●●●

●

●
●

●

●●
●●
●

●
●

●
●

●

●●

●

●

●

●●●

●

●

●

●

●

●
●
●
●

●
●

●
●

●

●
●
●

●●

●

●

●
●
●
●
●

●●
●
●
●
●

●

●

●

●●
●●●●●●
●●

●

●

●
●●●

●

●
●

●

●
●
●●

●
●
●
●●

●●

●
●
●●●●
●●●

●
●

●●
●

●

●

●

●●●

●
●●
●

●
●

●
●●

●●
●●●
●

●

●

●●
●
●

●
●

●

●

●●

●

●●

●●

●●
●●

●●
●
●●
●●

●
●●

●●●●

●●●

●●
●●●

●

●
●

●●●

●

●

●
●
●

●

●

●●
●
●
●

●●●

●

●●
●●
●
●

●
●●

●
●
●
●

●●●●
●

●

●
●

●●
●
●

●

●

●

●

●●
●
●

●●●

●
●
●●●

●

●●●

●

●
●●
●

●

●

●
●

●
●
●
●
●

●

●

●

●

●●
●
●●

●
●●
●

●●
●●●

●
●
●●

●
●
●
●

●
●
●
●●●●

●
●

●

●
●●

●

●●

●●

●
●
●
●

●

●
●

●●

●

●
●

●

●

●●●
●

●

●●●

●

●
●●
●

●●●●
●●
●

●
●
●
●●
●
●
●●
●●
●
●

●

●
●●
●●

●
●

●

●●

●

●

●

●

●

●●
●
●●
●

●

●
●
●●

●

●

●
●
●
●

●
●

●
●

●

●●●●
●●●●●●●
●●●

●●●
●

●
●
●

●

●

●

●
●
●●●●●●
●

●●

●
●

●
●
●

●

●
●
●
●
●●

●

●

●

●●
●
●●●●●

●●
●●●

●●
●●
●

●

●

●
●
●●
●●

●
●
●
●●●●
●
●●●

●
●
●

●●
●
●●
●
●

●●
●●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●●
●●
●
●

●
●

●

●
●
●
●●

●

●
●●●
●●
●●●●

●

●

●
●

●●

●

●
●●●

●

●

●●●

●
●
●●●●
●

●
●
●

●

●
●
●
●
●

●●●
●

●

●
●

●
●
●

●
●
●●
●

●
●●
●
●
●
●
●
●
●
●

●

●

●
●●●
●●●
●
●

●●
●
●
●
●●
●

●●

●

●

●●●

●

●

●

●

●

●
●
●
●●
●●
●
●

●
●
●

●

●

●

●
●●
●

●
●

●

●
●

●

●
●●
●
●

●●●
●
●
●

●●●

●●

●
●
●
●

●

●●

●
●

●
●

●

●

●●
●

●
●●
●●
●
●●
●●

●
●

●

●

●

●

●
●
●

●

●●

●

●

●

●●
●
●

●

●
●

●
●
●●

●
●

●
●

●

●●●
●

●

●
●
●
●●

●

●●

●
●

●
●
●

●

●●
●

●

●

●

●●

●

●
●●

●

●●
●●●

●
●

●
●

●

●

●●●
●
●
●●●●
●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●●

●
●

●
●

●●●●●

●●●

●
●

●●
●●
●●

●

●

●●●●●●

●
●
●●
●●
●
●

●

●●●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●
●
●
●●
●●

●
●●●●
●●
●●●

●●
●
●●
●●●
●
●
●
●
●●●●

●

●

●
●●

●

●
●
●●
●●
●

●●
●

●●
●

●

●
●

●

●

●
●

●
●
●●●
●
●●

●

●●
●
●

●

●●

●

●

●
●

●

●

●●
●
●●
●
●

●

●
●●
●
●●
●
●
●●●

●

●●●

●
●
●●●●
●●
●

●

●●

●

●
●
●
●

●

●

●

●●●
●●●

●

●

●

●

●
●●●●

●
●
●●

●●

●●
●
●
●●
●●
●
●

●
●
●

●

●●●

●

●
●

●
●

●
●

●●
●●●

●

●

●

●

●●●●

●
●

●

●

●●

●
●
●

●

●
●●

●●

●
●

●●

●

●
●
●●

●

●●●
●

●●●
●

●●

●

●●

●
●
●
●
●

●
●

●●●●

●

●●

●
●

●
●●

●

●

●

●

●

●
●●

●

●
●●

●

●●●
●●

●
●
●
●●
●

●
●
●
●●
●

●

●

●

●●
●

●●
●

●

●

●

●●

●
●

●●
●

●

●
●

●
●

●

●●

●

●
●●
●

●

●

●
●

●
●
●
●
●●●●
●●

●●
●●●●●●
●●●●●

●●●●

●●●●

●●
●
●
●

●
●
●
●●
●●●

●●

●●
●

●
●
●●

●

●
●●●●●●
●

●
●
●●

●●
●
●●●
●●
●
●●
●●●●●●●●
●

●●
●

●

●

●

●
●
●●
●
●●

●●
●
●●

●

●
●
●
●
●

●

●●
●
●
●
●
●●

●●

●●
●
●
●
●

●

●

●

●

●●●
●●●

●

●●

●
●●
●
●
●●
●

●
●●
●
●●●
●●
●●
●

●

●

●
●
●●●●
●
●●
●
●

●

●●●
●
●●●

●●
●●

●
●
●●●
●
●●

●
●●●●●
●●
●
●
●
●●●

●
●●●●●
●
●●●●●●
●●●●●●●●
●●●●●●●●●
●
●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●

●●
●●●
●●
●●●●
●
●●
●●
●●●
●●●●
●●
●●●
●

●
●●

●
●
●
●
●
●
●●●●●
●●●
●●●●●

●
●
●●●
●●
●
●
●●●●●●
●●●
●
●●●●●
●●
●●●●●●●●
●
●●●
●
●
●●●0

50

100

150

200

0 5,000,000 10,000,000 15,000,000

(a) Eur

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

0

50

100

150

0 200,000 400,000 600,000

(b) TFS

Fig. 1: Vertices in the separator (vertical) vs vertices in the subgraph being par-
titioned (horizontal). The red function is a cubic root (y = 3

√
x for Eur and

y = 1.4 · 3
√
x for TFS) and the blue function is a square root (y =

√
x for TFS).

and the search space sizes averaged over 1000 random vertices. The downward-
DAG has in essence the same structure as the upward-DAG. Recall that for
metric independent CHs both DAGs are the same and therefore it only has to
be stored once in memory. For a CH with witness search two separate upward
and downward DAGs must be stored. For a ND-order we can perform a per-
fect witness search (i.e. we remove every arc not part of a shortest path). For
a greedy order we only know of the heuristic approach of [12], but on a smaller
road instance we were able to show that the difference between perfect and
heuristic is very small. The details are in the extended version. Interestingly,
the number of vertices in the ND search spaces are smaller than for the greedy

Witness #Arcs Avg. up SS size
Order search upward vertices arcs

T
F
S Greedy heuristic 6 399 080 1 281 13 330

ND none 25 099 646 674 89 567
perfect 10 161 889 645 24 782

E
ur
op

e Greedy heuristic 33 911 692 709 4 808

ND none 73 920 453 652 117 406
perfect 55 657 315 616 44 677

Table 2: Shortcut count and search space sizes.

order. However, the number
of arcs in the ND search
spaces is significantly higher,
dominating query running
time. The witness search de-
creases the number of arcs
for the ND order by a fac-
tor of 2 to 4. On game maps
the greedy order decreases the
number of arcs by another
factor of 2 and on Europe
even by another factor of 10.
Additionally, we counted the
number of triangles which is

a performance relevant figure for customization: TFS has 864M and Europe has
578M triangles. Precomputing all triangles as suggested requires 6.6GB space
on TFS and 4.6GB on Europe. (Using Metis reduces space on TFS to 4.6GB.)

Treewidth. As detailed in [4], the treewidth of a graph is a measure deeply
coupled with chordal super graphs. The authors show in their Theorem 6 that
the maximum upward degree over all vertices in a metric-independent CH of a
graph G is an upper bound to the treewidth of G. Using this, we are able to
upper bound the treewidth of TFS by 287 and of Europe by 479.

SS
E precompute thread TFS Eur

triangles? count time [s]
no×1 none 1 10.08 10.88
yes×1 none 1 9.34 9.55
yes×1 all 1 3.75 3.22
yes×1 all 16 0.61 0.74
yes×2 all 16 0.76 1.05
yes×4 all 16 1.50 1.66

Queue removals time [ms]
med. avg. max. med. avg. max.

TFS 8 382.4 12035 0.017 2.0 99.2
Eur 1 38.8 10666 0.003 0.2 87.2

Table 3: The running times needed to
compute or update a metric. The ×4 in-
dicates that 4 interleaved metric pairs
are customized in one go.

Customization. In Table 3 we report
the times needed to customize a met-
ric. Using all optimizations presented
we customize Europe in below one
second. When amortized1, we even
achieve 415ms which is only slightly
above the (non-amortized) 347ms re-
ported in [9]. (Note that their experi-
ments were run on a different machine
with a faster clock but 2 × 6 instead
of 2 × 8 cores. Also, their implemen-
tation is turn-aware, touching more
memory, making an exact comparison
difficult.) However, their overlays are
more space efficient than our metric-
independent CHs. The running time
of 415ms is fast but comes at a high
price as many cores are needed. We
thus evaluate the time needed for par-
tial updates on a single core. We aver-
aged over 10 000 runs in which we set
a random arc in the CH to a random
value. The median, average and maximum running times significantly differ. This
is because there are a few arcs on highways or choke points that trigger a lot of
subsequent changes whereas for most arcs a weight change has nearly no effect.

Distance Query. We evaluated the running times of the query algorithms and
compare them to the original CH of [12]. We manage to come very close to their
query times, but as we also support a fast customization even achieving the same
order of magnitude is a major result. We ran 106 shortest path distance queries
with the source and target vertices picked uniformly at random. The presented
times are averaged single core running times without any SSE. In Table 4 we
present our experimental results. The evaluated metric-dependent CH is in the

1 We refer to a server scenario of multiple active users that require simultaneous
customization, e.g., due to traffic updates.

Query Settled Relaxed Time
Metric Order Type Vertices Arcs [ms]

T
F
S

M
ap

-D
is
t. Greedy Basic 1 199 12 692 0.539

Greedy Stalling 319 3 459 0.286
ND Basic 603 82 824 0.644
ND Stalling 560 74 244 0.774
ND Tree 674 89 567 0.316

E
ur
op

e

T
ra
ve
l-T

im
e Greedy Basic 546 3 623 0.283

Greedy Stalling 113 668 0.107
ND Basic 581 107 297 0.810
ND Stalling 418 75 694 0.857
ND Tree 652 117 406 0.413

D
is
ta
nc
e

Greedy Basic 3 653 104 548 2.662
Greedy Stalling 286 7 124 0.540
ND Basic 581 107 080 0.867
ND Stalling 465 84 718 0.992
ND Tree 652 117 406 0.414

Table 4: Query running times and explored forward search space sizes.

spirit the same as the one of [12]. Their reported running times are all slightly
higher because of a slower machine. The only exception is the Europe graph
with the distance metric. Here, our measured running time of only 0.540ms is
disproportionally faster. We suppose that the reason is that our greedy order is
better as we do not use lazy update spending more preprocessing time. As already
observed by the original authors we confirm that the stall-on-demand heuristic
improves running times by a factor 2 to 5 compared to the basic algorithm.

Recall that in addition to the obvious modifications we also reordered the
vertices in memory according to the nested dissection order for the metric-
independent CH. Preliminary experiments have shown that this has a measurable
effect on cache performance and results in 2 to 3 times faster query times. We
do not reorder the vertices for the metric-dependent CHs to remain comparable
to [12] and because it is a lot less clear what a good cache-friendly order is.
For the basic CCH travel time query the number of vertices only increases by
a small factor compared to metric-dependent CHs. For TFS and the distance
metric this difference is even smaller. However, the number of arcs is significantly
larger. This significantly increases the costs of the stalling test and therefore the
stall-on-demand heuristic nearly never pays of compared to the basic query. We
observe that the basic query algorithm (despite the use of a stopping criterion)
still visits large portions of the search space. For this reason it pays off to use
the elimination tree based query algorithm. It is guaranteed to visit the whole
search space and visits therefore slightly more vertices. However it does not need
a priority queue and needs therefore less time per vertex. Another advantage of
the elimination tree based algorithm is that the code paths do not depend on the
metric. This means that query times are completely independent of the metric
as can be seen by comparing the running times of the travel time metric to the

distance metric. For the basic query algorithms the metric has a slight influence
on the performance. A downside of the elimination tree query as we describe it is
that local queries are not faster than global ones. However, it might be possible
to use the level of the LCA as a locality filter and switch to the basic query if
the query is local.

A stalling query on the metric-dependent CH with travel time is on Europe
about a factor of 5 faster than the elimination tree. However for the distance
metric the order is inversed and our CHs are even faster by a factor of about 20%.
We see three factors contributing here: 1) The distance metric is a comparatively
hard metric, 2) the in-memory ID reordering, 3) the lack of a priority queue.

[ms] Cust. Query
CRP 347 0.72
CCH 415 0.41

Table 5: Com-
parison with
CRP/MLD. CCH
hits a Pareto-point.

CRP without turn costs on Europe needs 0.72ms with
travel time and 0.79ms with distance [6]. However, they
parallelize by running the forward and the backward
searches in different threads. This parallelization can be
added to our query but even without it our query outper-
forms their query times. Table 5 summarizes the situation.

Finally we measured the time needed to fully unpack
the paths. For travel time on Europe the time is 0.25ms
(and 0.27ms for TFS), which is below a query time. For
Europe with distance the time is 0.52ms, which is slightly
higher than query time, as paths tend to contain more arcs
because the input graph is modeled a lot less fine grained
on the highways used by the travel metric. In [12] they report full path extraction
costs of 0.323ms for travel time on Europe but with precomputed middle nodes.
This is slightly faster when accounting for the processor differences. However, we
are positive that we could achieve similar performance exploiting preprocessed
triangle information for path unpacking.

8 Conclusions

We have extended CHs to a three phase customization approach and demon-
strated that the approach is practicable and efficient not only on real world road
graphs but also on game maps.

Future Work. While a graph topology with small cuts is one of the main driv-
ing force behind the running time performance of CHs it is clear from Table 2
that better metric-dependent orders can be constructed by exploiting additional
travel time specific properties. We would like to further investigate this gap.
Better ND-orders directly result in better CHs and thus further partitioning
research is useful. Further investigation into algorithms explicitly exploiting
treewidth [5,18] might be promising. Also, determining the precise treewidth
could prove useful. Revisiting all of the existing CH extensions to see which
can profit from an ND-order is worthwhile. An interesting candidate are Time-
Dependent CHs [2] where computing a good metric-dependent order has proven
relatively expensive.

Acknowledgements We would like to thank Ignaz Rutter and Tim Zeitz for very
inspiring conversations on the topic.

References

1. H. Bast, D. Delling, A. V. Goldberg, M. Müller–Hannemann, T. Pajor, P. Sanders,
D. Wagner, and R. F. Werneck. Route planning in transportation networks. Tech-
nical Report, MSR-TR-2014-4, Microsoft Research, 2014.

2. G. V. Batz, R. Geisberger, P. Sanders, and C. Vetter. Minimum time-dependent
travel times with contraction hierarchies. ACM JEA, 18(1.4):1–43, 2013.

3. R. Bauer, T. Columbus, I. Rutter, and D. Wagner. Search-space size in contraction
hierarchies. ICALP’13, LNCS 7965:93–104. Springer, 2013.

4. H. L. Bodlaender and A. M.C.A. Koster. Treewidth computations I. Upper bounds.
Information and Computation, 208(3):R259–275, 2010.

5. S. Chaudhuri and C. Zaroliagis. Shortest paths in digraphs of small treewidth.
Part I: Sequential algorithms. Algorithmica, 2000.

6. D. Delling, A. V. Goldberg, T. Pajor, and R. F. Werneck. Customizable route
planning. SEA’11, LNCS 6630:376–387. Springer, 2011.

7. D. Delling, A. V. Goldberg, I. Razenshteyn, and R. F. Werneck. Graph partitioning
with natural cuts. IPDPS’11, p1135–1146. IEEE CS, 2011.

8. D. Delling, A. V. Goldberg, I. Razenshteyn, and R. F. Werneck. Exact combina-
torial branch-and-bound for graph bisection. ALENEX’12, p30–44. SIAM, 2012.

9. D. Delling and R. F. Werneck. Faster customization of road networks. SEA’13,
LNCS 7933:30–42. Springer, 2013.

10. C. Demetrescu, A. V. Goldberg, and D. S. Johnson, editors. The Shortest Path
Problem: Ninth DIMACS Implementation Challenge. AMS, 2009.

11. D. R. Fulkerson and O. A. Gross. Incidence matrices and interval graphs. Pacific
Journal of Mathematics, 15(3):835–855, 1965.

12. R. Geisberger, P. Sanders, D. Schultes, and C. Vetter. Exact routing in large road
networks using contraction hierarchies. Transportation Science, 2012.

13. A. George. Nested dissection of a regular finite element mesh. SIAM Journal on
Numerical Analysis, 1973.

14. A. George and J. W. Liu. A quotient graph model for symmetric factorization. In
Sparse Matrix Proceedings. SIAM, 1978.

15. M. Holzer, F. Schulz, and D. Wagner. Engineering multilevel overlay graphs for
shortest-path queries. ACM JEA, 13(2.5):1–26, 2008.

16. G. Karypis and V. Kumar. A fast and high quality multilevel scheme for parti-
tioning irregular graphs. SIAM J. on Scientific Computing, 20(1):359–392, 1999.

17. R. J. Lipton, D. J. Rose, and R. Tarjan. Generalized nested dissection. SIAM
Journal on Numerical Analysis, 16(2):346–358, 1979.

18. L. Planken, M. de Weerdt, and R. van Krogt. Computing all-pairs shortest paths
by leveraging low treewidth. Journal of Artificial Intelligence Research, 2012.

19. P. Sanders and C. Schulz. Think locally, act globally: Highly balanced graph
partitioning. SEA’13, LNCS 7933:164–175. Springer, 2013.

20. F. Schulz, D. Wagner, and K. Weihe. Dijkstra’s algorithm on-line: An empirical
case study from public railroad transport. ACM JEA, 5(12):1–23, 2000.

21. S. Storandt. Contraction hierarchies on grid graphs. KI’36, LNCS. Springer, 2013.
22. N. Sturtevant. Benchmarks for grid-based pathfinding. Transactions on Compu-

tational Intelligence and AI in Games, 2012.
23. T. Zeitz. Weak contraction hierarchies work! Bachelor thesis, KIT, 2013.

