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Abstract. We study two speedup techniques for route planning in road net-
works: highway hierarchies (HH) and goal directed search using landmarks
(ALT). It turns out that there are several interesting synergies. Highway hi-
erarchies yield a way to implement landmark selection more efficiently and
to store landmark information more space efficiently than before. ALT gives
queries in highway hierarchies an excellent sense of direction and allows some
pruning of the search space. For computing shortest distances and approxi-
mately shortest travel times, this combination yields significant speedups (be-
tween a factor of 2.5 and 5) over HH alone, while for exact queries using the
travel time metric only minor improvements are achieved. We also explain
how to compute actual shortest paths very efficiently.

1. Introduction

Computing fastest routes in a road networks G = (V, E) from a source s to
a target t is one of the showpieces of real-world applications of algorithmics. In
principle, we could use Dijkstra’s algorithm [3]. But for large road networks
this would be far too slow. Therefore, there is considerable interest in speedup
techniques for route planning.

A classical technique that gives a speedup of around two for road networks is
bidirectional search which simultaneously searches forward from s and backwards
from t until the search frontiers meet. Most speedup techniques use bidirectional
search as an (optional) ingredient.

Another classical approach is goal direction via A∗ search [9]: lower bounds
define a vertex potential that directs the search towards the target. This approach
was recently shown to be very effective if lower bounds are computed using pre-
computed shortest path distances to a carefully selected set of about 20 Landmark
nodes [5, 7] using the Triangle inequality (ALT ). Speedups up to a factor 30 over
bidirectional Dijkstra can be observed.

A property of road networks worth exploiting is their inherent hierarchy. Com-
mercial systems use information on road categories to speed up search. ‘Sufficiently
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far away’ from source and target, only ‘important’ roads are used. This requires
manual tuning of the data and a delicate tradeoff between computation speed and
suboptimality of the computed routes. In a previous paper [16] we introduced
the idea to automatically compute highway hierarchies that yield optimal routes
uncompromisingly quickly. This was the first speedup technique that was able
to preprocess the road network of a continent in realistic time and obtain large
speedups (several thousands) over Dijkstra’s algorithm. In [17] the basic method
was considerably accelerated using many small measures and using distance tables :
shortest path distances in the highest level of the hierarchy are precomputed. This
way, it suffices to search locally around source and target node until the shortest
path distance can be found by accessing the distance table.

A different hierarchy-based method—reach-based routing [8]—profits consid-
erably from a combination with ALT [4]. The present state of affairs is that the
combined method from [4] shows performance somewhat inferior to highway hier-
archies with distance tables but without goal direction. Both methods turn out to
be closely related. In particular, [4] uses methods originally developed for highway
hierarchies to achieve fast preprocessing. Here, we explore the natural question
how highway hierarchies can be combined with goal directed search in general and
with ALT in particular.

1.1. Overview and Contributions. In the following sections we first review
highway hierarchies in Section 2 (Algorithm HH) [17]. A new result presented there
is a very fast algorithm for explicitly computing the shortest paths by precomputing
unpacked versions of shortcut edges. Section 3 reviews Algorithm ALT [5, 7] and
introduces refined algorithms for selecting landmarks. The main innovation there
is restricting landmark selection to nodes on higher levels of the highway hierarchy.

The actual integration of highway hierarchies with ALT (Algorithm HH∗) is in-
troduced in Section 4. This is nontrivial in several respects. For example, we need
incremental access to the distance tables for finding upper bounds and a different
way to control the progress of forward and backward search. We also have to over-
come the problem that search cannot be stopped when search frontiers meet. On
the other hand, there are several simplifications compared to ALT. Abandoning the
reliance on a stopping criterion allows us to use simpler, faster, and stronger lower
bounds. Using distance tables obviates the need for dynamic landmark selection.
Another interesting approach is to stop the search when a certain guaranteed solu-
tion quality has been obtained. There are several interesting further optimisations.
In particular, we can be more space efficient than ALT by storing no landmark
information on the lowest level of the hierarchy. We describe how the missing infor-
mation can be reconstructed efficiently at query time. As a side effect, we introduce
a way to limit the length of shortcuts. This measure turns out to be of independent
interest since it also improves the basic HH algorithm. Note that Goldberg et al.
[6] use similar techniques as we do in order to reduce the memory consumption
of landmarks when combined with reach-based routing. They have already briefly
mentioned this idea in [4].

Section 5 reports extensive experiments performed using road networks of West-
ern Europe and the USA. Section 6 summarises the results and outlines possible
future work.
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1.2. More Related Work. There are several other approaches to goal di-
rected search. Our first candidate for combination with highway hierarchies were
Precomputed Cluster Distances [12]. PCDs allow the computation of upper and
lower bounds based on precomputed distances between partitions of the road net-
works. These lower bounds cannot be used for A∗ search since they can produce
negative reduced edge weights so that Dijkstra’s algorithm is no longer applica-
ble. The search space can still be pruned by discontinuing search at node v if the
lower bound from v to t indicates that the best upper bound seen so far cannot
possibly be improved when passing through v. An advantage of PCDs over land-
marks is that they need less space. We did not implement this however since PCDs
are rather ineffective for search in the lower levels of the hierarchy and since our
distance table optimisation from [17] is already very effective for pruning search at
the higher levels of the hierarchy. In contrast, landmarks can be used together with
A∗ search and thus can direct the search towards the target already in the lower
levels of the hierarchy.

An important family of speedup techniques [20, 13, 11] associates information
with each edge e. This information specifies a superset of the nodes reached via
e on some shortest path. Geometric containers [20] require node coordinates and
store a simple geometrical object containing all the nodes reached via a shortest
path. Edge flags partition the graph into regions. For each edge e and each region
R one bit specifies whether there is a shortest path via e into region R [13, 11].
Both techniques alone already contain both direction information and hierarchy
information so that very big speedups, comparable to highway hierarchies, can be
achieved. However, so far these methods would have forbiddingly large prepro-
cessing times for the largest available road networks. Therefore these approaches
looked not so interesting for a first attempt to combine goal directed search with
highway hierarchies.

2. Highway Hierarchies

The basic idea of the highway hierarchies approach is that outside some local
areas around the source and the target node, only a subset of ‘important’ edges
has to be considered in order to be able to find the shortest path. The concept of
a local area is formalised by the definition of a neighbourhood node set1 N(v) for
each node v. Then, the definition of a highway network of a graph G = (V, E) that
has the property that all shortest paths are preserved is straightforward: an edge
(u, v) ∈ E belongs to the highway network iff there are nodes s, t ∈ V such that
the edge (u, v) appears in the canonical shortest path2 〈s, . . . , u, v, . . . , t〉 from s to
t in G with the property that v 6∈ N(s) and u 6∈ N(t).

The size of a highway network (in terms of the number of nodes) can be consid-
erably reduced by a contraction procedure: for each node v, we check a bypassability
criterion that decides whether v should be bypassed—a operation that removes the
node and creates shortcut edges (u, w) representing paths of the form 〈u, v, w〉. The

1In [17], we give more details on the definition of neighbourhoods. In particular, we distin-
guish between a forward and a backward neighbourhood. However, in this context, we would like
to slightly simplify the notation and concentrate on the concepts that are important to understand
the subsequent sections. The implementation, however, is based on [17] and not simplified.

2For each connected node pair (s, t), we select a unique canonical shortest path in such a way
that each subpath of a canonical shortest path is canonical as well. For details, we refer to [16].
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graph that is induced by the remaining nodes and enriched by the shortcut edges
forms the core of the highway network. The bypassability criterion takes into ac-
count the degree of the node v and the number of shortcuts that would be created if
v was bypassed: the net increase of the number of edges due to a bypass operation
should be small. For details, we refer to [17].

A highway hierarchy of a graph G consists of several levels G0, G1, G2, . . . , GL.
Level 0 corresponds to the original graph G. Level 1 is obtained by computing the
highway network of level 0, level 2 by computing the highway network of the core
of level 1 and so on.

2.1. Highway Query. In [16], we show how the highway hierarchy of a given
road network can be constructed efficiently. After that, we can use the highway
query algorithm [17] to perform s-t queries. It is an adaptation of the bidirectional
version of Dijkstra’s algorithm. The search starts at s and t in level 0. When
the neighbourhood of s or t is left, we switch to level 1 and continue the search.
Similarly, we switch to the next level if the neighbourhood of the entrance point to
the current level is left (Figure 1). When the core of some level has been entered,
we never leave it again: in particular, we do not follow edges that lead to a bypassed
node; instead, we use the shortcuts that have been created during the construction.

N→

1 (u)

level 1

level 0
N→

0 (s)

entrance point to level 1
u

entrance point to level 2

entrance point to level 0

s

Figure 1. A schematic diagram of a highway query. Only the
forward search started from the source node s is depicted.

At this point, we can observe two interesting properties of the highway query
algorithm. First, it is not goal-directed. In fact, the forward search ‘knows’ nothing
about the target and the backward search ‘knows’ nothing about the source, so that
both search processes work completely independently and spread into all directions.
Second, when both search scopes meet at some point, we cannot easily abort the
search—in contrast to the bidirectional version of Dijkstra’s algorithm, where
we can abort immediately after a common node has been settled from both sides.
The reason for this is illustrated in Figure 2. In the upper part of the figure, the
bidirectional query from a node s to a node t along a path P is represented by
a profile that shows the level transitions within the highway hierarchy. To get a
sequential algorithm, at each iteration we have to decide whether a node from the
forward or the backward queue is settled. We assume that a strategy is used that
favours the smaller element. Thus, both search processes meet in the middle, at
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Figure 2. Schematic profile of a bidirectional highway query.

node a. When this happens, a path from s to t has been found. However, we
have no guarantee that it is the shortest one. In fact, the lower part of the figure
contains the profile of a shorter path Q from s to t, which is less symmetric than the
profile of P . Note that the very flexible definition of the neighbourhoods allows such
asymmetric profiles. When a on P is settled from both sides, b has been reached
on Q by the backwards search, but not by the forward search since a search process
never goes downwards in the hierarchy: therefore, at node c, the forward search is
not continued on the path Q. We find the shorter path Q not until the backward
search has reached c—which happens after P has been found. Hence, it would be
wrong to abort the search when a has been settled.

In [16], we introduced some rather complicated abort criteria, which we dropped
in [17] since they did reduce the search space, but the evaluation of the criteria
was too expensive. Instead, we use a very simple criterion: the forward (backward)
search is not continued if the key of the minimum element of the forward (back-
ward) queue is larger then the current upper bound (i.e., the length of the tentative
shortest path).

2.2. Using a Distance Table. The construction of fewer levels of the high-
way hierarchy and the usage of a complete distance table for the core of the top-
most level can considerably accelerate the query: whenever the forward (backward)
search enters the core of the topmost level at some node u, u is added to a node

set
−→
I (
←−
I ) and the search is not continued from u. Since all distances between

the nodes in the sets
−→
I and

←−
I have been precomputed and stored in a table,

we can easily determine the shortest path length by considering all node pairs

(u, v), u ∈
−→
I , v ∈

←−
I , and summing up d(s, u) + d(u, v) + d(v, t). For details, we

refer to [17].
Using the distance table can be seen as extreme case of goal-directed search:

from the nodes in the set
−→
I , we directly ‘jump’ to the nodes in the set

←−
I , which

are close to the target. Thus, we can say that the highway query with the distance
table optimisation works in two phases: a strictly non-goal-directed phase till the

sets
−→
I and

←−
I have been determined, followed by a ‘goal-directed jump’ using the

distance table.

2.3. Complete Description of the Shortest Path. So far, we have dealt
only with the computation of shortest path distances. In order to determine a
complete description of the shortest path, we have to a) bridge the gap between
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the forward and backward topmost-core entrance points and b) expand the used
shortcuts to obtain the corresponding subpaths in the original graph.

Problem a) can be solved using a simple algorithm: We start with the forward
core entrance point u. As long as the backward entrance point v has not been
reached, we consider all outgoing edges (u, w) in the topmost core and check whether
d(u, w) + d(w, v) = d(u, v); we pick an edge (u, w) that fulfils the equation, and we
set u := w. The check can be performed using the distance table. It allows us to
greedily determine the next hop that leads to the the backward entrance point.

Problem b) can be solved without using any extra data (Variant 1): for each
shortcut (u, v), we perform a search from u to v in order to determine the path in
the original graph; this search can be accelerated by using the knowledge that the
first edge of the path enters a component C of bypassed nodes, the last edge leads
to v, and all other edges are situated within the component C.

However, if a fast output routine is required, it is necessary to spend some
additional space to accelerate the unpacking process. We use a rather sophisticated
data structure to represent unpacking information for the shortcuts in a space-
efficient way (Variant 2). In particular, we do not store a sequence of node IDs that
describe a path that corresponds to a shortcut, but we store only hop indices : for
each edge (u, v) on the path that should be represented, we store its rank within
the ordered group of edges that leave u. Since in most cases the degree of a node
is very small, these hop indices can be stored using only a few bits (in a fixed-
length encoding). The unpacked shortcuts are stored in a recursive way, e.g., the
description of a level-2 shortcut may contain several level-1 shortcuts. Accordingly,
the unpacking procedure works recursively.

To obtain a further speed-up, we have a variant of the unpacking data struc-
tures (Variant 3) that caches the complete descriptions—without recursions—of all
shortcuts that belong to the topmost level, i.e., for these important shortcuts that
are frequently used, we do not have to use a recursive unpacking procedure, but we
can just append the corresponding subpath to the resulting path.

3. A∗ Search Using Landmarks

In this section we explain the known technique of A∗ search [9] in combination
with landmarks. We follow the implementation presented in [7]. In Section 3.2
we introduce a new landmark selection technique called advancedAvoid. Further-
more, we present how the selection of landmarks can be accelerated using highway
hierarchies.

The search space of Dijkstra’s algorithm can be visualised as a circle around
the source. The idea of goal-directed or A∗ search is to push the search towards
the target. By adding a potential π : V → R to the priority of each node, the order
in which nodes are removed from the priority queue is altered. A ‘good’ potential
lowers the priority of nodes that lie on a shortest path to the target. It is easy to
see that A∗ is equivalent to Dijkstra’s algorithm on a graph with reduced costs,
formally wπ(u, v) = w(u, v)− π(u) + π(v). Since Dijkstra’s algorithm works only
on nonnegative edge costs, not all potentials are allowed. We call a potential π
feasible if wπ(u, v) ≥ 0 for all (u, v) ∈ E. The distance from each node v of G to
the target t is the distance from v to t in the graph with reduced edge costs minus
the potential of t plus the potential of v. So, if the potential π(t) of the target t is
zero, π(v) provides a lower bound for the distance from v to the target t.
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Bidirectional A∗. At first glance, combining A∗ and bidirectional search seems
easy. Simply use a feasible potential πf for the forward and a feasible potential πr

for the backward search. However, such an approach does not work due to the fact
that the searches might work on different reduced costs, so that the shortest path
might not have been found when both searches meet. This can only be guaranteed if
πf and πr are consistent, meaning wπf

(u, v) in G is equal to wπr
(v, u) in the reverse

graph. We use the variant of an average potential function [10] defined as pf (v) =
(πf (v) − πr(v))/2 for the forward and pr(v) = (πr(v) − πf (v))/2 = −pf(v) for the
backward search. By adding πr(t)/2 to the forward and πf (s)/2 to the backward
search, pf and pr provide lower bounds to the target and source, respectively. Note
that these potentials are feasible and consistent but provide worse lower bounds
than the original ones.

ALT.. There exist several techniques [18, 21] to obtain feasible potentials
using the layout of a graph. The ALT algorithm uses a small number of nodes—so
called landmarks—and the triangle inequality to compute feasible potentials. Given
a set S ⊆ V of landmarks and distances d(L, v), d(v, L) for all nodes v ∈ V and
landmarks L ∈ S, the following triangle inequalities hold:

d(u, v) + d(v, L) ≥ d(u, L) and d(L, u) + d(u, v) ≥ d(L, v)

Therefore, d(u, v) := maxL∈S max{d(u, L) − d(v, L), d(L, v) − d(L, u)} provides a
feasible lower bound for the distance d(u, v). The quality of the lower bounds highly
depends on the quality of the selected landmarks.

Our implementation uses the tuning techniques of active landmarks, pruning
and the enhanced stopping criterion. We stop the search if the sum of minimum
keys in the forward and the backward queue exceed µ + pf(s), where µ represents
the tentative shortest path length and is therefore an upper bound for the shortest
path length from s to t. For each s-t query only two landmarks—one ‘before’ the
source and one ‘behind’ the target—are initially used. At certain checkpoints we
decide whether to add an additional landmark to the active set, with a maximal
amount of six landmarks. Pruning means that before relaxing an arc (u, v) during
the forward search we also check whether d(s, u) + w(u, v) + πf (v) < µ holds. This
technique may be applied to the backward search easily. Note that for pruning, the
potential function need not be consistent.

3.1. Landmark Selection. A crucial point in the success of a high speedup
when using ALT is the quality of landmarks. Since finding good landmarks is hard,
several heuristics [5, 7] exist. We focus on the best known techniques; avoid and
maxCover.

Avoid. This heuristic tries to identify regions of the graph that are not well
covered by the current landmark set S. Therefore, a shortest-path tree Tr is grown
from a random node r. The weight of each node v is the difference between d(v, r)
and the lower bound d(v, r) obtained by the given landmarks. The size of a node v
is defined by the sum of its weight and the size of its children in Tr. If the subtree
of Tr rooted at v contains a landmark, the size of v is set to zero. Starting from
the node with maximum size, Tr is traversed following the child with highest size.
The leaf obtained by this traversal is added to S. In this strategy, the first root
is picked uniformly at random. The following roots are picked with a probability
proportional to the square of the distance to its nearest landmark.



8 D. DELLING, P. SANDERS, D. SCHULTES, AND D. WAGNER

MaxCover [7]. The main disadvantage of avoid is the starting phase of the
heuristic. The first root is picked at random and the following landmarks are
highly dependent on the starting landmark. MaxCover improves on this by first
choosing a candidate set of landmarks (using avoid) that is about four times larger
than needed. The landmarks actually used are selected from the candidates using
several attempts with a local search routine. Each attempt starts with a random
initial selection.

3.2. New Selection Techniques. In the following we introduce a new heuris-
tic called advancedAvoid to select landmarks. Furthermore, we use the highway
hierarchies to speed up the selection of landmarks.

AdvancedAvoid. Another approach to remedy for the disadvantages of avoid is
to exchange the first landmarks generated by the avoid heuristic. More precisely,
we generate k avoid landmarks, then take the first k′ landmarks from the set S and
generate k′ new landmarks using avoid again. The advantage of advancedAvoid
compared to maxCover is the computation time. While maxCover takes about five
times longer than avoid, the selection of 16 advancedAvoid (k′ = 6) landmarks on
the road network of Western Europe takes about 45% more time than pure avoid.

Core Landmarks. The computation of landmarks is expensive. Calculating
maxCover landmarks on the European network takes about 75 minutes, while con-
structing the whole highway hierarchy can be done in about 15 minutes. A promis-
ing approach is to use the highway hierarchy to reduce the number of possible
landmarks: The level-1 core of the European road network has six times fewer

Figure 3. 16 advancedAvoid core 1 landmarks on the Western
European road network
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nodes than the original network and its construction takes only about three min-
utes. Using this level-1 core as possible positions for landmarks, the computation
time for calculating landmarks (all heuristics) can be decreased. Note that using
the nodes of higher level cores reduces the time for selecting landmarks even more.
However, the core of a highway hierarchy shrinks towards the centre of the map
and in [5], it has already been observed that good landmarks lie on the edge of a
map (see Figure 3 for an example). Hence, using cores of a too high level would
probably yield worse landmarks.

4. Combining Highway Hierarchies and A∗ Search

Previously (see Section 2), we strictly separated the search phase to the topmost

core from the access to the distance table: first, the sets of entrance points
−→
I and

←−
I into the core of the topmost level were determined, and afterwards the table
look-ups were performed. Now we interweave both phases: whenever a forward

topmost-core entrance point u is discovered, it is added to
−→
I and we immediately

consider all pairs (u, v), v ∈
←−
I , in order to check whether the tentative shortest path

length µ can be improved. (An analogous procedure applies to the discovery of a
backward core entrance point.) This new approach is advantageous since we can use
the tentative shortest path length µ as an upper bound on the actual shortest path
length. In [16, 17], the highway query algorithm used a strategy that compares the
minimum elements of both priority queues and prefers the smaller one in order to
serialise forward and backward search. If we want to obtain good upper bounds very
fast, this might not be the best choice. For example, if the source node belongs to
a densely populated area and the target to a sparsely populated area, the distances
from the source and target to the entrance points into the core of the topmost level

will be very different. Therefore, we now choose a strategy that balances |
−→
I | and

|
←−
I |, preferring the direction that has encountered fewer entrance points. In case

of equality (in particular, in the beginning when |
−→
I | = |

←−
I | = 0), we use a simple

alternating strategy.
We enhance the highway query algorithm with goal-directed capabilities—

obtaining an algorithm that we call HH∗ search—by replacing edge weights by
reduced costs using potential functions πf and πr for forward and backward search.
By this means, the search is directed towards the respective target, i.e., we are
likely to find some s-t path very soon. However, just using the reduced costs only
changes the order in which the nodes are settled, it does not reduce the search
space. The ideal way to benefit from the early encounter of the forward and back-
ward search would be to abort the search as soon as an s-t path has been found.
And, as a matter of fact, in the case of the ALT algorithm [5]—even in combi-
nation with reach-based routing [4]—it can be shown that an immediate abort is
possible without losing correctness if consistent potential functions are used (see
Section 3). In contrast, this does not apply to the highway query algorithm since
even in the non-goal-directed variant of the algorithm, we cannot abort when both
search scopes have met (see Section 2).

Fortunately, there is another aspect of goal-directed search that can be ex-
ploited, namely pruning: finding any s-t path also means finding an upper bound µ
on the length of the shortest s-t path. Comparing the lower bounds with the upper
bound can be used to prune the search. In Section 3, the pruning of edges has
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already been mentioned. Alternatively, we can prune nodes : if the key of a settled
node u is greater than the upper bound, we do not have to relax u’s edges. Note
that, using reduced costs, the key of u is the distance from the corresponding source
to u plus the lower bound on the distance from u to the corresponding target.

Since we do not abort when both search scopes have met and because we have
the distance table, a very simple implementation of the ALT algorithm is possible.
First, we do not have to use consistent potential functions. Instead, we directly use
the lower bound to the target as potential for the forward search and, analogously,
the lower bound from the source as potential for the backward search. These
potential functions make the searches approach their respective target faster than
using consistent potential functions so that we get good upper bounds very early.
In addition, the node pruning gets very effective: if one node is pruned, we can
conclude that all nodes left in the same priority queue will be pruned as well since
we use the same lower bound for pruning and for the potential that is part of the
key in the priority queue. Hence, in this case, we can immediately stop the search
in the corresponding direction.

Second, it is sufficient to select at the beginning of the query for each search
direction only one landmark that yields the best lower bound. Since the search
space is limited to a relatively small local area around source and target (due
to the distance table optimisation), we do not have to pick more landmarks, in
particular, we do not have to add additional landmarks in the course of the query,
which would require flushing and rebuilding the priority queues. Thus, adding A∗

search to the highway query algorithm (including the distance table optimisation)
causes only little overhead per node.

However, there is a considerable drawback. While the goal-directed search
(which gives good upper bounds) works very well, the pruning is not very successful
when we want to compute fastest paths, i.e., when we use a travel time metric,
because then the lower bounds are usually too weak. Figure 4 gives an example
for this observation, which occurs quite frequently in practice. The first part of the
shortest path from s to t is equal to the first part of the shortest path from s to the
landmark u. Thus, the reduced costs of these edges are zero so that the forward
search starts with traversing this common subpath. The backward search behaves in
a similar way. Hence, we obtain a perfect upper bound very early; see Figure 4 (a).
Still, the lower bound on d(s, t) is quite bad: we have d(s, u) − d(t, u) ≤ d(s, t).
Since staying on the motorway and going directly from s to u is much faster than
leaving the motorway, driving through the countryside to t and continuing to u,
the distance d(s, t) is clearly underestimated.3 The same applies to lower bounds
on d(v, t) for nodes v close to s. Hence, pruning the forward search does not work
properly so that the search space still spreads into all directions before the process
terminates; see Figure 4 (b). In contrast, the node s lies on the shortest path (in
the reverse graph) from t to the landmark that is used by the backward search.
(Since this landmark is very far away to the south, it has not been included in the
figure.) Therefore, the lower bound is perfect so that the backward search stops
immediately. However, this is a fortunate case that occurs rather rarely.

4.1. Approximate Queries. We pointed out above that in most cases we
find a (near) shortest path very quickly, but it takes much longer until we know

3This negative effect is considerably weakened when a distance metric is used since the speed
difference between the motorway and slower roads is not taken into account.
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(a) (b)

Figure 4. Two snapshots of the search space of an HH∗ search
using a travel time metric. The landmark u of the forward search
from s to t is explicitly marked. The landmark used by the back-
ward search is somewhere below s and not included in the chosen
clipping area. The search space is black, parts of the shortest path
are represented by thick lines. In addition, motorways are repre-
sented by thick lines (dark grey). It is important to note that the
shortest path from x to t is not a motorway, but a comparatively
slow road.

that the shortest path has been found. We can adapt to this situation by defining
an abort condition that leads to an approximate query algorithm: when a node u is
removed from the forward priority queue and we have (1+ε) · (d(s, u)+d(u, t)) > µ
(where ε ≥ 0 is a given parameter), then the search is not continued in the forward
direction. In this case, we may miss some s-t-paths whose length is≥ d(s, u)+d(u, t)
since the key of any remaining element v in the priority queue is ≥ d(s, u) + d(u, t)
and it is a lower bound on the length of the shortest path from s via v to t. Thus, if
the shortest path is among these paths, we have d(s, t) ≥ d(s, u)+d(u, t) > µ/(1+ε),
i.e., we have the guarantee that the best path that we have already found (whose
length corresponds to the upper bound µ) is at most (1 + ε) times as long as the
shortest path. An analogous stopping rule applies to the backward search.

4.2. Optimisations.

Better Upper Bounds. We can use the distance table to get good upper bounds
even earlier. So far, the distance table has only been applied to entrance points
into the core V ′

L of the topmost level. However, in many cases we encounter nodes
that belong to V ′

L earlier during the search process. Even the source and the target
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node could belong to the core of the topmost level. Still, we have to be careful since
the distance table only contains the shortest path lengths within the topmost core
and a path between two nodes in V ′

L might be longer if it is restricted to the core of
the topmost level than using all edges of the original graph. This is the reason why
we have not used such a premature jump to the highest level before. But now, in
order to just determine upper bounds, we could use these additional table look-ups.
The effect is limited though because finding good upper bounds works very well
anyway—the lower bounds are the crucial part. Therefore, the exact algorithm does
without the additional look-ups. The approximate algorithm applies this technique
to the nodes that remain in the priority queues after the search has been terminated
since this might improve the result4. For example, we would get an improvement
if the goal-directed search led us to the wrong motorway entrance ramp, but the
right entrance ramp has at least been inserted into the priority queue.

Reducing Space Consumption. We can save preprocessing time and memory
space if we compute and store only the distances between the landmarks and the
nodes in the core of some fixed level k. Obviously, this has the drawback that we
cannot begin with the goal-directed search immediately since we might start with
nodes that do not belong to the level-k core so that the distances to and from
the landmarks are not known. Therefore, we introduce an additional initial query
phase, which works as a normal highway query and is stopped when all entrance
points into the core of level k have been encountered. Then, we can determine the
distances from s to all landmarks since the distances from s via the level-k core
entrance points to the landmarks are known. Analogously, the distances from the
landmarks to t can be computed. The same process is repeated for interchanged
source and target nodes—i.e., we search forward from t and backward from s—in
order to determine the distances from t to the landmarks and from the landmarks
to s. Note that this second subphase can be skipped when the first subphase has
encountered only bidirected edges.

The priority queues of the main query phase are filled with the entrance points
that have been found during (the first subphase of) the initial query phase. We use
the distances from the source or target node plus the lower bound to the target or
source as keys for these initial elements. Since we never leave the level-k core during
the main query phase, all required distances to and from the landmarks are known
and the goal-directed search works as usual. The final result of the algorithm is the
shortest path that has been found during the initial or the main query phase.

Limiting Component Sizes. Since the search processes from the source and
target to the level-k core entrance points are often executed twice (once for each
direction), it is important to bound this overhead. Therefore, we implemented a
limit on the number of hops a shortcut may represent. By this means, the sizes of
the components of bypassed nodes are reduced—in particular, the first contraction
step tended to create quite large components of bypassed nodes so that it took a
long time to leave such a component when the search was started from within it.
Interestingly, this measure has also a very positive effect on the worst case analysis
in [17]: it turned out that the worst case was caused by very large components
of bypassed nodes in some sparsely populated areas, whose sizes now have been
considerably reduced by the shortcut hops limit.

4In a preliminary experiment, the total error observed in a random sample was reduced from
0.096% to 0.053%.



HIGHWAY HIERARCHIES STAR 13

Rearranging Nodes. Similar to [6], after the construction has been completed,
we rearrange the nodes by core level, which improves locality for the search in higher
levels and, thus, reduces the number of cache misses. By this means, speedups of
up to 20% can be obtained.

5. Experiments

5.1. Environment, Instances, and Parameters. The experiments were
done on one core of a single AMD Opteron Processor 270 clocked at 2.0 GHz with
4 GB main memory and 2 × 1 MB L2 cache, running SuSE Linux 10.0 (kernel
2.6.13). The program was compiled by the GNU C++ compiler 4.0.2 using opti-
misation level 3. We use 32 bit integers to store edge weights and path lengths.
Results for the DIMACS Challenge benchmark can be found in Table 1.

Table 1. DIMACS Challenge [1] benchmarks for US (sub)graphs
(query time [ms]).

metric
graph time dist

NY 29.6 28.5
BAY 34.7 33.3
COL 51.5 49.0
FLA 134.8 120.5
NW 161.1 146.1
NE 225.4 197.2

CAL 291.1 235.4
LKS 461.3 366.1
E 681.8 536.4
W 1211.2 988.2

CTR 4485.7 3 708.1
USA 5 355.6 4 509.1

We deal with the road network of Western Europe5, which has been made
available for scientific use by the company PTV AG. Only the largest strongly
connected component is considered. The original graph contains for each edge a
length and a road category, e.g., motorway, national road, regional road, urban
street. We assign average speeds to the road categories, compute for each edge the
average travel time, and use it as weight. In addition to this travel time metric, we
perform experiments on variants of the European graph with a distance metric and
the unit metric. We also perform experiments on the US road network (without
Alaska and Hawaii), which has been obtained from the TIGER/Line Files [19].
Again, we consider only the largest strongly connected component. In contrast
to the PTV data, the TIGER graph is undirected, planarised and distinguishes

514 countries: Austria, Belgium, Denmark, France, Germany, Italy, Luxembourg, the Nether-
lands, Norway, Portugal, Spain, Sweden, Switzerland, and the UK
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Table 2. Properties of the used road networks.

Europe USA (Tiger)
#nodes 18 010 173 23 947 347
#directed edges 42 560 279 58 333 344
#road categories 13 4
average speeds [km/h] 10–130 40–100
neighbourhood size H (time) 60 70
neighbourhood size H (dist) 100, 200, 300, . . .
neighbourhood size H (unit) 80, 100, 120, . . .

only between four road categories. All graphs6 have been taken from the DIMACS
Challenge website [1]. Table 2 summarises the properties of the used networks.

At first, we report only the times needed to compute the shortest path distance
between two nodes without outputting the actual route. These times are averages
based on 10 000 randomly chosen (s, t)-pairs. In addition to providing average
values, we use the methodology from [16] in order to plot query times (and error
rates) against the ‘distance’ of the target from the source. In this context, the
Dijkstra rank is used as a measure of distance: for a fixed source s, the Dijkstra
rank of a node t is the rank w.r.t. the order which Dijkstra’s algorithm settles
the nodes in. Such plots are based on 1 000 random source nodes. In the last
paragraph of Section 5.3, we also give the times needed to traverse the computed
shortest paths.

Since it has turned out that a better performance is obtained when the prepro-
cessing starts with a contraction phase, we practically skip the first construction
step (by choosing neighbourhood sets that contain only the node itself) so that the
first highway network virtually corresponds to the original graph. Then, the first
real step is the contraction of level 1 to get its core. Note that in this case, distances
within the core of level 1 are equal to the distances between level-1 core nodes in
the original graph.

The shortcut hops limit (introduced in Section 4) is set to 10. The neighbour-
hood size H (i.e., the number of nearby nodes that belong to the neighbourhood of
a node; introduced in [16, 17]) for the travel time metrics is set to 60 and 70 for
the European and the US network, respectively. For the distance metric versions
of both graphs, preliminary experiments indicate that using the linearly increasing
sequence 100, 200, 300, . . . as neighbourhood sizes to compute levels 2, 3, 4, . . . of
the hierarchy is a good choice. For the unit metric, we use H = 80, 100, 120, . . .

5.2. Landmarks. We begin our experimental evaluation by analysing the
quality of landmarks. Therefore, we evaluate the performance of pure ALT (with-
out highway hierarchies) for different sets of landmarks. The evaluation of HH∗ is
located in Section 5.3.

Preprocessing. First, we analyse the preprocessing of the ALT algorithm with
different selection strategies on different cores of the highway hierarchy. We use 16
avoid, advancedAvoid and maxCover landmarks selected from the whole graph and

6Note that the experiments on the full TIGER graphs had been performed before the fi-
nal versions of the DIMACS Challenge test instances, which use a finer edge costs resolution,
were available. We did not repeat the experiments since we expect hardly any change in our
measurement results.
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Table 3. Overview of the preprocessing time for different selection
strategies on the European and US network. All figures are given
in minutes of computation time. For core-landmarks (indicated by
cx where x depicts the level of the hierarchy used for selection),
we report the time to construct the necessary highway informa-
tion (hh), the time for selecting the landmarks (sel), and the time
for computing the distances between all landmarks and all nodes
(dist). Generating 16 maxCover landmarks on the whole graph
requires more than 4 GB RAM. Therefore, these landmarks were
generated on an AMD Opteron Processor 252 clocked at 2.6 GHz
with 16 GB main memory.

travel times distances
input strategy hh sel dist total hh sel dist total

EUR

avoid – 15.8 – 15.8 – 13.5 – 13.5
adv.av. – 23.2 – 23.2 – 19.2 – 19.2
maxCov – 88.3 – 88.3 – 75.3 – 75.3
avoid-c1 2.7 2.5 6.3 11.5 2.7 2.1 4.2 9.0
adv.av.-c1 2.7 3.6 6.3 12.6 2.7 3.0 4.2 9.9
maxCov-c1 2.7 21.2 6.3 30.2 2.7 19.5 4.2 26.4
avoid-c2 11.5 0.4 6.3 18.2 13.6 0.4 4.2 18.2
adv.av.-c2 11.5 0.5 6.3 18.3 13.6 0.5 4.2 18.3
maxCov-c2 11.5 3.3 6.3 21.1 13.6 2.4 4.2 20.2
avoid-c3 13.7 0.1 6.3 20.1 20.1 0.1 4.2 24.4
adv.av.-c3 13.7 0.1 6.3 20.1 20.1 0.1 4.2 24.4
maxCov-c3 13.7 0.8 6.3 20.8 20.1 1.2 4.2 25.5

USA

avoid – 20.5 – 20.5 – 18.3 – 18.3
adv.av. – 30.5 – 30.5 – 26.4 – 26.4
maxCov – 105.2 – 105.2 – 97.2 – 97.2
avoid-c1 3.4 3.1 7.1 13.6 3.1 2.9 5.8 11.8
adv.av.-c1 3.4 4.5 7.1 15.0 3.1 4.2 5.8 13.1
maxCov-c1 3.4 28.4 7.1 38.9 3.1 28.2 5.8 37.1
avoid-c2 14.9 0.5 7.1 22.5 17.4 0.6 5.8 23.8
adv.av.-c2 14.9 0.7 7.1 22.7 17.4 0.9 5.8 24.1
maxCov-c2 14.9 5.6 7.1 27.6 17.4 5.8 5.8 29.0
avoid-c3 18.5 0.1 7.1 25.7 26.3 0.2 5.8 32.3
adv.av.-c3 18.5 0.2 7.1 25.8 26.3 0.2 5.8 32.3
maxCov-c3 18.5 1.2 7.1 26.8 26.3 1.5 5.8 33.6

from the core of levels 1–3. For advancedAvoid, we set k′ = 6 (see Section 3.2). Ta-
ble 3 gives an overview of the preprocessing of the ALT algorithm on the European
and US network.

We observe that the time spent for selecting landmarks decreases significantly
when switching to higher cores. Unfortunately, we have to compute the distances
from and to all nodes in the original graph if we use core landmarks for the ALT al-
gorithm (on the full graph these distances are computed during selection). In addi-
tion, we have to compute the highway information. Nevertheless, the computation
of core 1 only takes about three minutes yielding a decrease of total preprocessing
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with regard to all selection techniques. With regard to preprocessing time, using
avoid and advancedAvoid on the cores of level 2 or 3 does not seem reasonable
while maxCover benefits from switching to higher cores.

Another advantage when switching to higher cores is memory consumption.
While about 2.3 GB of RAM are needed for the distances from and to all nodes
when selecting 16 avoid landmarks on the full graph, 384 MB are sufficient when
using the core of level 1. Using the core-2 (core-3) even further reduces the memory
consumption to 64 (17) MB. Note, that we use 32 bit integers for keeping the
distances in the main memory.

Quality of Landmarks. Figure 5 gives an overview of the quality of landmarks.
Therefor, we generate 10 different sets of 16 landmarks for each selection strategy,
generated on the full graph, and on the cores up to a level of 3. In order to evaluate
the quality of the generated landmarks, we logged the average search space for 1 000
random s-t ALT-queries on the road network of Western Europe and the US. The
results are presented as box-and-whisker plot [15].

We see that for distances the quality of landmarks is almost independent of the
chosen level of the hierarchy. Only when switching from level 2 to 3 we observe a
mild increase of the search space when using advancedAvoid landmarks. However,
for travel times on the European network an interesting phenomenon is that avoid
gets better when switching from the whole graph to core 1 but gets worse and
worse with higher levels on which landmarks are selected. On the US network, the
search space reduces when switching to core 2 in combination with avoid landmarks.
MaxCover is nearly independent of the chosen level on the European network while
on the US network a slight loss of quality can be observed with higher levels.

There seem to be two counteracting effects here: On higher levels of the hier-
archy, we lose information. For example, peripheral nodes that are candidates for
good landmarks are dropped. On the other hand, concentrating on higher level
edges in landmark selection heuristics could be beneficial since these are edges
needed by many shortest paths.

In general, maxCover outperforms avoid and advancedAvoid regarding the av-
erage quality of the obtained landmarks. Nevertheless, in most cases the minimum
average search space is nearly the same for all selection strategies within a core,
while some sets of avoid and advancedAvoid landmarks lead to search spaces 25%
higher than the worst maxCover landmarks. So, the maxCover routine seems to be
more robust than avoid or advancedAvoid. Comparing avoid and advancedAvoid
we observe just a mild improvement in quality. Thus, the additional computation
time of advancedAvoid is not worth the effort.

Combining the results from Table 3 and Figure 5, another strategy seems
promising: maxCover landmarks from the core of level 2 or 3 outperform avoid
landmarks from the full graph and their computation, including the highway in-
formation, needs only additional 5 minutes compared to avoid landmarks from the
full graph. For this reason, we use such landmarks for our further experiments.

Efficiency and Approximation. Table 4 indicates the efficiency of our imple-
mentation by reporting query times in comparison to the bidirectional variant of
Dijkstra’s algorithm. For comparison with approximate HH queries we also pro-
vide the results for an approximate ALT algorithm: Stop the query if the sum of
the minimum keys in the forward and the backward queue exceed µ/(1+ ε)+pf(s)
with ε = 0.1. This stopping criterion keeps the error rate below 10%.
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Figure 5. Overview of the quality of landmarks. For each type of
selection strategy, 10 different sets are generated. The quality of a
landmark set is evaluated by the average number of nodes settled
by the ALT algorithm for 1 000 random queries on the road net-
works of Western Europe and the US. The results are represented
as box-and-whisker plot [15]: each box spreads from the lower to
the upper quartile and contains the median, the whiskers extend
to the minimum and maximum value omitting outliers, which are
plotted individually.

Analysing the speedups compared to the bidirectional variant of Dijkstra’s
algorithm, we observe a search space reduction for Europe (travel times) by a factor
of about 63.6. This reduction leads to a speedup factor of 49.0 concerning query
times. For the USA (travel times), speedup concerning search space and query
times is smaller than for Europe. We observe a factor of 38.5 for search space and
29.5 for query times. The reason for this discrepancy is the overhead for computing
the potential and is also reported in [5, 7, 4].
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Table 4. Comparison of the bidirectional variant of Dijkstra’s
algorithm, the ALT algorithm, and the approximate ALT algo-
rithm concerning search space, query times and error rate. The
landmarks are 16 maxCover core-3 landmarks. The figures are
based on 1 000 random queries.

input metric bi.Dij. ALT approx.ALT

EUR

#settled nodes 4.68 · 106 73 563 61 939
time query time [ms] 2 707 55.2 45.8

inaccurate queries – – 12.1%
#settled nodes 5.27 · 106 241 476 219 124

dist query time [ms] 2 013 169.2 150.9
inaccurate queries – – 33.7%

USA

#settled nodes 7.42 · 106 192 938 182 426
time query time [ms] 3 808 129.2 116.9

inaccurate queries – – 8.9%
#settled nodes 8.11 · 106 281 335 263 375

dist query time [ms] 3 437 177.1 163.5
inaccurate queries – – 24.8%

For the distance metric on the European network we observe a reduction in
search space of factor 21.8, leading to a speedup factor of 11.8. The corresponding
figures for the US are 28.8 and 19.4. Thus, the situation is opposite to travel times.
Here, speedups are better on the US network than on the European network. The
higher speedups for travel times are due to the fact that for distances the advantage
of taking fast highways instead of slow streets is smaller than for travel times. Since
the difference between the slowest and fastest road category (see Table 2) is bigger
for Europe, the ALT algorithm performs better on this network than on the US
network when using travel times.

Comparing our results with the ones from [4] we have about 10% higher search
spaces on the US network (travel times). This derives from the fact that on the
US network with travel times the quality of maxCover landmarks slightly decreases
when switching to higher cores (see Figure 5). Nevertheless, our average query
times in this instance are 2.49 (129 ms to 322 ms) times faster, although we are
using a slower computer. A reason for this is a different overhead factor, i.e., the
time spent per settled node. While our implementation has an overhead of factor
1.3, the figures from [4] suggest an overhead of 2.

For the travel time metric, approximate queries perform only 20% better on
Europe and 10% better on the US than exact ones. The percentage of inaccurate
queries is 12% and 8%, respectively. For the distance metric, the speedup for
approximate queries is even less and the percentage of inaccurate queries is much
higher, namely 33.7% and 24.8% for the European and US network, respectively.
These high numbers of wrong queries are due to the fact that for the distance metric
there are more possibilities of short paths with similar lengths since the difference
between taking fast highways and driving on slow streets fades. So, approximation
for ALT adds only a small speedup not justifying the loss of correctness. For a
detailed analysis of the approximation error see Table 10 and Figures 12–15 in
Appendix A.
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Figure 6. Comparison of the query times using the Dijkstra rank
methodology on the road networks of Europe and the US. The
landmarks are chosen from the level-3 core using maxCover. The
results are represented as box-and-whisker plot [15]: each box
spreads from the lower to the upper quartile and contains the me-
dian, the whiskers extend to the minimum and maximum value
omitting outliers, which are plotted individually.

Local Queries. Figure 6 gives an overview of the query times in relation to
the Dijkstra rank. The results for the distance metric are located in Appendix A
(Figure 9).

The fluctuations in query time both between different Dijkstra ranks and with
fixed Dijkstra rank are so big that we had to use a logarithmic scale. Even typical
query times vary by an order of magnitude for large Dijkstra ranks. The slowest
queries for most Dijkstra ranks are two orders of magnitude slower than the median
query times.

An interesting observation is also that for small ranks ALT is faster on the
network of the US whereas for ranks higher than 221, queries are faster on the
European network. A plausible explanation seems to be the different geometry of
the two continents. Queries within the (pen)insulae of Iberia, Britain, Italy, or
Scandinavia lack landmarks in many directions. For example, a user in Scotland
might have the queer experience, that queries in north-south direction are consis-
tently faster than queries in east-west direction (see Figure 3). In contrast, long
distance routes often have to go through bottlenecks which simplify search, as those
bottlenecks are part of many long distance routes. In the US, such effects are rare.

5.3. Highway Hierarchies and A∗ Search.

Default Settings. Unless otherwise stated, we use the following default settings.
After the level-5 core has been determined, the construction of the hierarchy is
stopped. A complete distance table is computed on the level-5 core. For the distance
metric, we stop at the level-6 core instead. We use 16 maxCover landmarks that
have been computed in the level-3 core. Landmark distances are stored only in the



20 D. DELLING, P. SANDERS, D. SCHULTES, AND D. WAGNER

level-1 core. The approximate query algorithm uses a maximum error rate of 10%,
i.e., ε = 0.1.

Using a Distance Table and/or Landmarks. As described in Section 2, using a
distance table can be seen as adding a very strong sense of goal direction after the
core of the topmost level has been reached. If the highway query algorithm (without
distance table) is enhanced by the ALT algorithm, the goal direction comes into
effect much earlier. Still, the most considerable pruning effect occurs in the middle
of rather long paths: close to the source and the target, the lower bounds are too
weak to prune the search. Thus, both optimisations, distance tables and ALT, have
a quite similar effect on the search space: using either of both techniques, in the
case of the European network with the travel time metric, the search space size is
reduced from 1 662 to 916 (see Table 5). (Note that it is a coincidence that exactly
the same number of settled nodes is achieved. Furthermore, we note that a slightly
more effective reduction of the search space is obtained when all landmarks are used

Table 5. Comparison of all variants of the highway query al-
gorithm using no optimisation (∅), a distance table (DT), ALT,
or both techniques. Values in parentheses refer to approximate
queries. Note that the disk space includes the memory that is
needed to store the original graph.

∅ DT ALT both

metric Europe

time

preproc. time [min] 17 19 20 22
total disk space [MB] 886 1 273 1 326 1 714
#settled nodes 1 662 916 916 686 (176)
query time [ms] 1.16 0.65 0.80 0.55 (0.18)

dist

preproc. time [min] 47 47 50 49
total disk space [MB] 894 1 506 1 337 1 948
#settled nodes 10 284 5 067 3 347 2 138 (177)
query time [ms] 8.21 4.89 3.16 1.95 (0.25)

unit

preproc. time [min] 24 27
total disk space [MB] 925 1 368
#settled nodes 1 714 1 249 (709)
query time [ms] 1.18 0.99 (0.60)

USA

time

preproc. time [min] 23 26 27 28
total disk space [MB] 1 129 1 574 1 743 2 188
#settled nodes 1 966 1 098 1 027 787 (162)
query time [ms] 1.18 0.73 0.80 0.60 (0.17)

dist

preproc. time [min] 55 57 59 59
total disk space [MB] 1 140 1 721 1 754 2 335
#settled nodes 9 706 5 477 2 784 2 021 (169)
query time [ms] 7.10 4.95 2.52 1.74 (0.27)

unit

preproc. time [min] 29 32
total disk space [MB] 1 981 2 542
#settled nodes 1 665 1 072 (187)
query time [ms] 1.29 0.89 (0.22)
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to compute lower bounds instead of selecting only one landmark for each direction,
namely to 903 instead of 916.) When we consider other aspects like preprocessing
time, memory usage, and query time, we can conclude that the distance table is
somewhat superior to the landmarks optimisation. Since both techniques have a
similar point of application, a combination of the highway query algorithm with
both optimisations gives only a comparatively small improvement compared to
using only one optimisation. In contrast to the exact algorithm, the approximate
variant reduces the search space size and the query time considerably—e.g., to 19%
and 27% in case of Europe (relative to using only the distance table optimisation)—
, while guaranteeing a maximum error of 10% and achieving a total error of 0.056%
in our random sample of 1 000 000 (s, t)-pairs (refer to Table 7). Some results for
US subgraphs can be found in Table 9 in Appendix A.

Using a distance metric, ALT gets more effective and beats the distance table
optimisation since much better lower bounds are produced: the negative effect de-
scribed in Figure 4 is weakened. Furthermore, in this case, a combination with both
optimisations is worthwhile: the query time is reduced to 40% in case of Europe
(relative to using only the distance table optimisation). While the highway query
algorithm enhanced with a distance table has 7.5 times slower query times when
applied to the European graph with the distance metric instead of using the travel
time metric, the combination with both optimisations reduces this performance
difference to a factor of 3.5—or even 1.4 when the approximate variant is used.

The performance for the unit metric ranks somewhere in between. Although
computing shortest paths in road networks based on the unit metric seems kind of
artificial, we observe a hierarchy in this scenario as well, which explains the sur-
prisingly good preprocessing and query times: when we drive on urban streets, we
encounter much more junctions than driving on a national road or even a motor-
way; thus, the number of road segments on a path is somewhat correlated to the
road type.

Different Landmark Sets. In Table 6, we compare different sets of landmarks.
Obviously, an increase of the number of landmarks improves the query performance.
However, the rate of improvement is rather moderate so that using only 16 land-
marks and thus, saving some memory and preprocessing time seems to be a good

Table 6. Comparison of the search spaces (in terms of number of
settled nodes) of the highway query algorithm using different land-
mark sets. For each road network (with the travel time metric),
the first column contains the search space size if the A∗ search is
not used. Values in parentheses refer to the search space sizes of
approximate queries.

#landmarks 0 16 24 32

Europe
core-1 avoid

916
687 (179) 665 (161) 651 (147)

core-3 maxCover 686 (176) 697 (177) 649 (140)

USA
core-1 avoid

1 098
808 (189) 762 (144) 736 (127)

core-3 maxCover 787 (162) 758 (134) 736 (121)
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option. The quality of the selected landmarks is very similar for the two land-
mark selection methods that we have considered. Since the preprocessing times
are similar as well, we prefer using the maxCover landmarks since they are slightly
better.

Local Queries. In Figure 7, we compare the exact and the approximate HH∗

search in case of the European network with the travel time metric. (For the US
network the results are similar. We refer to Figure 16 in Appendix A.) In the
exact case, we observe a continuous increase of the query times: since the distance
between source and target grows, it takes longer till both search scopes meet. For
large Dijkstra ranks, the slope decreases. This can be explained by the distance
table that bridges the gap between the forward and backward search for long-
distance queries very efficiently, no matter whether we deal with a long or a very
long path.
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Figure 7. Comparison of the query times of the exact and the
approximate HH∗ search using the Dijkstra rank methodology.

Up to a Dijkstra rank of 218, the approximate variant shows a very similar
behaviour—even though at a somewhat lower level. Then, the query times decrease,
reaching very small values for very long paths (Dijkstra ranks 222–224). This is due
to the fact that the relative inaccuracy of the lower bounds, which is crucial for the
stop condition of the approximate algorithm, is less distinct for very long paths:
hence, most of the time, the lower bounds are sufficiently strong to stop very early.
However, the large number and high amplitude of outliers indicates that sometimes
goal direction does not work well even for approximate queries.

Approximation Error. Figure 8 shows the actual distribution of the approxi-
mation error for a random sample in the European network with the travel time
metric, grouped by Dijkstra rank. (For the European network with the distance
metric and the US network with both metrics, see Figures 17–19 in Appendix A.)
For paths up to a moderate length (Dijkstra rank 216), at least 99% of all queries
in the random sample returned an accurate result. Only very few queries approach
the guaranteed maximum error rate of 10%. For longer paths, still more than 94%



HIGHWAY HIERARCHIES STAR 23

of the queries give the correct result, and almost 99% of the queries find paths that
are at most 2% longer than the shortest path. The fact that we get more errors
for longer paths corresponds to the running times depicted in Figure 7: in the case
of large Dijkstra ranks, we usually stop the search quite early, which increases the
likelihood of an inaccuracy.
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Figure 8. Actual distribution of the approximation error for a
random sample, grouped by Dijkstra rank. Note that, in order to
increase readability, the y-axis starts at 94%, i.e., at least 94% of
all queries returned an accurate result.

While the approximate variant of the ALT algorithm gives only a small speedup
(compare Figure 6 with Figure 10 in Appendix A) and produces a considerable
amount of inaccurate results (in particular for short paths, see Figures 12 and 14),
the approximate HH∗ algorithm is much faster than the exact version (in particular
for long paths) and produces a comparatively small amount of inaccurate results.
This difference is mainly due to the distance table, which allows a fast determination
of upper bounds—and thus, in many cases early aborts—and provides accurate
long-distance subpaths, i.e., the only thing that can go wrong is that the search
processes in the local area around source and target do not find the right core
entrance points.

In Table 7, we compared the effect of different maximum error rates ε. We
obtained the expected result that a larger maximum error rate reduces the search
space size considerably. Furthermore, we had a look at the actual error that occurs
in our random sample: we divided the sum of all path lengths that were obtained by
the approximate algorithm by the sum of the shortest path lengths. We find that the
resulting total error is very small, e.g., only 0.056% in case of the European network
with the travel time metric when we allow a maximum error rate of 10%. Similar
to the results in Section 5.2, we observe that the total error and the percentage of
inaccurate queries (see Figures 17 and 19) are much higher when using the distance
metric instead of the travel time metric.
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Table 7. Comparison of different maximum error rates ε. By the
total error, we give the sum of the path lengths obtained by the
approximate algorithm divided by the sum of the shortest path
lengths. Note that these values are given in percent. This table is
based on 1 000 000 random (s, t)-pairs (instead of the usual 10 000
pairs).

ε [%] 0 1 2 5 10 20

metric Europe

time
#settled nodes 685 612 523 319 177 103
total error [%] 0 0.0002 0.0015 0.018 0.056 0.112

dist
#settled nodes 2131 1302 843 333 184 143
total error [%] 0 0.0112 0.0383 0.172 0.329 0.526

USA

time
#settled nodes 784 632 516 307 162 86
total error [%] 0 0.0013 0.0073 0.034 0.082 0.144

dist
#settled nodes 2021 1101 672 277 169 134
total error [%] 0 0.0108 0.0441 0.132 0.193 0.240

Complete Description of the Shortest Path. So far, we have reported only the
times needed to compute the shortest path distance between two nodes. Now, we
determine a complete description of the shortest path using the three algorithmic
variants presented in Section 2.3. In Table 8 we give the additional preprocessing
time and the additional disk space for the unpacking data structures. Furthermore,
we report the additional time that is needed to determine a complete description

Table 8. Additional preprocessing time, additional disk space and
query time that is needed to determine a complete description of
the shortest path and to traverse it summing up the weights of
all edges—assuming that the query to determine its lengths has
already been performed. Moreover, the average number of hops—
i.e., the average path length in terms of number of nodes—is given.
These figures refer to experiments on the graphs with the travel
time metric. Note that the experiments for Variant 1 have been
performed without using a distance table for the topmost level.

preproc. space query #hops
[s] [MB] [ms] (avg.)

Europe
Variant 1 0 0 16.70 1 370
Variant 2 71 112 0.45 1 370
Variant 3 75 180 0.17 1 370

USA
Variant 1 0 0 40.64 4 537
Variant 2 71 134 1.32 4 537
Variant 3 75 200 0.27 4 537
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of the shortest path and to traverse7 it summing up the weights of all edges as a
sanity check—assuming that the distance query has already been performed. That
means that the total average time to determine a shortest path is the time given in
Table 8 plus the query time given in previous tables. We can conclude that even
Variant 3 uses comparatively little preprocessing time and space. With Variant 3,
the time for outputting the path remains considerably smaller than the query time
itself and a factor 3–5 smaller than using Variant 2. The USA graph profits more
than the European graph since it has paths with considerably larger hop counts,
perhaps due to a larger number of degree-two nodes in the input. Note that due
to cache effects, the time for outputting the path using preprocessed shortcuts is
likely to be considerably smaller than the time for traversing the shortest path in
the original graph.

6. Discussion

We have learned a few things about landmark A∗ (ALT) that are interesting
independently of highway hierarchies. We have explained why the lower bounds
provided by ALT are often quite weak and why there are very high fluctuations in
query performance. There are also considerable differences between Western Europe
and the US. In Europe, we have larger execution times for local queries than in
the US whereas for long range (average case) queries, times are smaller. Executing
landmark selection on a graph where sparse subgraphs have been contracted is
profitable in terms of preprocessing time even if we do not want highway hierarchies.
Similarly, storing distances to landmarks only on this contracted graph considerably
reduces the space overhead of ALT.

For highway hierarchies we have learned that they can also handle the case of
travel distances. Compared to the case of travel times, space consumption is roughly
the same whereas preprocessing time and query time increase by a factor of about
2–3.5 (when the combination with A∗ search is applied). It is to be expected that
any other cost metric that represents some compromise of travel time, distance,
fuel consumption and tolls will have performance somewhere within this range.
Highway hierarchies can be augmented to output shortest paths in a time below
the time needed for computing the distances.

There is a complex interplay between highway hierarchies and the optimisations
of distance tables and ALT. For exact queries using the travel time metric, distance
tables are a better investment into preprocessing time and space than ALT. One
incompatibility between highway hierarchies and ALT is that the search cannot be
stopped when search frontiers meet. For approximate queries or for the distance
metric, all three techniques work together very well yielding a speedup around
four over highway hierarchies alone: Highway hierarchies save space and time for
landmark preprocessing; distance tables obviate search in higher levels and allow
simpler and faster ALT search with very effective goal direction. ALT provides
good pruning opportunities for the distance metric and an excellent sense of goal
direction for approximate queries yielding high quality routes most of the time while
never computing very bad routes.

7Note that we do not traverse the path in the original graph, but we directly scan the
assembled description of the path.
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An interesting route of future research is to consider a combination of highway
hierarchies with geometric containers or edge flags [20, 13, 11]. Highway hierar-
chies might harmonise better with these methods than with ALT because similar
to highway hierarchies they are based on truncating search at certain edges. There
is also hope that their high preprocessing costs might be reduced by exploiting the
highway hierarchy.

Very recently, transit node routing (TNR) and related approaches [14, 2] have
accelerated shortest path queries by another two orders of magnitude. Roughly,
TNR precomputes shortest path distances to access points in a transit node set
T (e.g., the nodes at the highest level of the highway hierarchy). During a query
between “sufficiently distant” nodes, a distance table for T can be used to bridge
the gap between the access points of source and target. However, TNR needs
considerably more preprocessing time than the approach described in this paper.
Furthermore, the currently best implementation of TNR uses highway hierarchies
for preprocessing and local queries. It is likely that also landmarks might turn out
to be useful in future versions of TNR. On the one hand, landmarks yield lower
bounds that can be used for locality filters needed in TNR. On the other hand, the
precomputed distances to access points could be used as landmark information for
speeding up local search.
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Appendix A. Further Experiments

Table 9. Performance of HH∗ (using a distance table and land-
marks) for US subgraphs with travel time metric. For small graphs,
we deviate from the default settings: the landmark selection takes
place in the core of the level given in column 2, the construction
of the highway hierarchy is stopped at the core of the level given
in column 3.

landm. sel. dist. table preproc. total disk #settled query
graph core level core level time [min] space [MB] nodes time [ms]
NY 2 3 0:55 140 334 0.22
BAY 2 3 0:24 40 329 0.20
COL 2 3 0:29 49 327 0.19
FLA 3 3 1:08 115 354 0.22
NW 3 4 1:06 87 509 0.33
NE 3 4 2:14 169 526 0.36

CAL 3 4 2:23 176 519 0.35
LKS 3 4 4:25 398 543 0.39
E 3 5 4:07 255 650 0.46
W 3 5 7:22 453 695 0.50

CTR 3 5 23:12 1 132 762 0.73
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Figure 9. Comparison of the query times on the road network
of Western Europe and the USA using the ALT algorithm. The
landmarks are chosen from the core-3 using maxCover.

Table 10. Comparison of the exact and approximate ALT algo-
rithm. The landmarks are taken from the full graph. The figures
are based on 1 000 random queries on 10 different sets of 16 land-
marks.

#settled nodes inaccurate queries
input metric landmarks exact approx. min – max

EUR

avoid 93 520 81 582 9.8% – 11.9%
time adv.av. 86 340 74 706 9.3% – 12.6%

maxCover 75 220 63 112 10.7% – 11.7%
avoid 253 552 225 618 31.5% – 38.4%

dist adv.av. 256 511 227 779 30.9% – 38.0%
maxCover 230 110 203 564 31.3% – 34.9%

USA

avoid 220 333 206 165 7.4% – 10.1%
time adv.av. 210 703 194 920 7.6% – 9.6%

maxCover 175 359 161 230 7.6% – 9.6%
avoid 308 823 289 701 24.8% – 29.9%

dist adv.av. 302 521 282 410 24.3% – 29.3%
maxCover 282 162 265 091 27.3% – 22.3%
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Figure 10. Comparison of the query times on the road network
of Western Europe and the USA using the approximate ALT al-
gorithm. The landmarks are chosen from the core-3 using max-
Cover.
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Figure 11. Comparison of the query times on the road network
of Western Europe and the USA using the approximate ALT al-
gorithm. The landmarks are chosen from the core-3 using max-
Cover.
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Figure 12. Actual distribution of the approximation error for a
random sample, grouped by Dijkstra rank. Note that, in order to
increase readability, the y-axis starts at 85%, i.e., at least 50% of
all queries returned an accurate result.
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Figure 13. Actual distribution of the approximation error for a
random sample, grouped by Dijkstra rank. Note that, in order to
increase readability, the y-axis starts at 50%, i.e., at least 50% of
all queries returned an accurate result.
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Approximation Error ALT (USA, travel time metric)
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Figure 14. Actual distribution of the approximation error for a
random sample, grouped by Dijkstra rank. Note that, in order to
increase readability, the y-axis starts at 80%, i.e., at least 80% of
all queries returned an accurate result.
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Figure 15. Actual distribution of the approximation error for a
random sample, grouped by Dijkstra rank. Note that, in order to
increase readability, the y-axis starts at 60%, i.e., at least 60% of
all queries returned an accurate result.
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Local Queries HH* (USA, travel time metric)
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Figure 16. Comparison of the query times of the exact and the
approximate HH∗ search.
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Figure 17. Actual distribution of the approximation error for a
random sample, grouped by Dijkstra rank. Note that, in order to
increase readability, the y-axis starts at 70%, i.e., at least 70% of
all queries returned an accurate result.
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Approximation Error HH* (USA, travel time metric)
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Figure 18. Actual distribution of the approximation error for a
random sample, grouped by Dijkstra rank. Note that, in order to
increase readability, the y-axis starts at 88%, i.e., at least 88% of
all queries returned an accurate result.
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Figure 19. Actual distribution of the approximation error for a
random sample, grouped by Dijkstra rank. Note that, in order to
increase readability, the y-axis starts at 75%, i.e., at least 75% of
all queries returned an accurate result.
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