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Abstract. We present a set of three new time-dependent models with
increasing flexibility for realistic route planning in flight networks. By
these means, we obtain small graph sizes while modeling airport pro-
cedures in a realistic way. With these graphs, we are able to efficiently
compute a set of best connections with multiple criteria over a full day.
It even turns out that due to the very limited graph sizes it is feasible
to precompute full distance tables between all airports. As a result, best
connections can be retrieved in a few microseconds on real world data.

1 Introduction

Computing best connections in transportation networks is a showpiece applica-
tion of algorithm engineering. The problem can be solved by modeling a trans-
portation network as a graph where edge weights depict travel times on the
corresponding connection. In general, Dijkstra’s algorithm [11] can now solve
the problem of finding the quickest path between two nodes s and t. One cru-
cial challenge in the success of such an approach is the appropriate modeling
of the transportation network as a graph. While road networks can be modeled
in a straightforward manner (junctions are nodes, streets are edges), realistic
modeling of public transportation networks is more complex [18, 22, 9].

A practical extension of the shortest path problem is route planning in a
multi-modal context [15, 2, 1], where you switch—under certain constraints—
the type of transportation during your journey. In this work, we deal with a
subproblem of multi-modal route planning: Efficient computation of routes in
flight networks. Our work is motivated from [10], where most of the time for
retrieving best multi-modal connections is spent in a flight network, although
the flight network makes up only a very small part of the whole (multi-modal)
transportation network.
? Partially supported by the Future and Emerging Technologies Unit of EC, under

contracts no. FP6-021235-2 (FP6 IST/FET Open/Project ARRIVAL) and no. ICT-
215270 (FP7 ICT/FET Proactive/Project FRONTS), and the DFG (project WA
654/16-1).



Related Work. Timetable information in flight networks is similar to railway
networks, both inputs rely on some kind of periodic timetable. In addition, the
best connection depends on the time of departure. Efficient models for route
planning (or timetable information) in railway networks can be found in [18, 22,
9]. However, it turns out that simply using these models for flight networks yield
unnecessary big graphs. To our best knowledge, no efficient model tailored to
flight networks has been introduced yet.

In public transportation networks, we are not only interested in the best con-
nection for a given departure time: we might be willing to alter our departure
time in order to minimize the overall travel time. Such routes can be retrieved by
profile-queries, where we compute all best connections for a full time period. Such
profiles can be computed by a generalized variant of Dijkstra’s algorithm [7]
that propagates functions instead of scalars through the graph. An efficient al-
gorithm for accelerating such queries in time-dependent road networks has been
introduced in [8].

Moreover, the quickest connection is often not the best one: we also want
to reduce the number of transfers and/or the costs of a journey. A possible
approach to this is to compute a Pareto-set of routes [17, 12]. A route belongs
to the Pareto-set if no other route is better or equal in all metrics (travel time,
costs, transfers, etc.) under consideration. Pareto-routes can also be computed
by a generalization of Dijkstra’s algorithm [13, 14].

Our Contributions. In this work, we show how to plan routes in flight net-
works efficiently. Therefore, we first settle basic definitions on graphs and timeta-
bles in Section 2. Section 3 includes one of the main contributions of our work:
flexible and yet compact time-dependent models tailored to route planning in
flight networks. The key observation here is that in contrast to railway networks,
flight networks contain (almost) only direct connections between airports. Un-
like trains, planes do not stop at many airports on a route. Hence, we may use
a different model yielding very small graphs.

In Section 4, we show how to retrieve best connections in flight networks.
On the one hand, we deal with retrieving all quickest connections during the
given time period, while on the other hand, we introduce two other metrics, i.e.,
transfers and travel costs, worth optimizing. We end up in a multi-criteria setup
where the best connections form a Pareto-set. A key observation here is that
the graphs deriving from our compact model are so small that we may afford
to compute full Pareto-route distance tables between all pairs of airports in a
preprocessing step. Then, queries are reduced to table-lookups yielding query
times of a few microseconds.

In an extensive experimental study (Section 5), we show that our approach
is indeed feasible for a real-world network consisting of roughly 1 000 airports.
Our constructed graphs are small, and computation of a Pareto distance table
can be done in less than six minutes yielding a reasonable space consumption.
With these tables at hand, queries can be accelerated by 5 orders of magnitude



compared to a classic approach based on a multi-criteria Dijkstra. We conclude
our work in Section 6 by a summary and possible future research.

2 Preliminaries

A graph is a tuple G = (V,E) consisting of a finite set V of nodes and a set
E ⊆ V × V of edges which are ordered pairs (u, v) if the graph is directed. The
node u is called the tail of the edge, v the head. The reverse graph

←−
G = (V,

←−
E )

is the graph obtained from G by substituting each (u, v) ∈ E by (v, u).
Routing in public transportation networks requires an underlying timetable.

In this work we restrict ourselves to periodic timetables with a fixed time period
Π ∈ IN. Periodic timetables have been studied in the context of railway networks
extensively [18, 22]. In the following we give a brief introduction of timetables
that form the basis of our flight networks. A flight timetable is a tuple T :=
(C,A,F , ζ,Π) where C is a set of elementary connections, A a set of airports,
F a set of flights and Π the time period. Additionally, ζ : A → Z is a function
which maps each airport to the timezone it belongs to. In our data, timezones
are represented as UTC (Universal Time, Coordinated) offset from UTC+0 with
the same resolution as time points in general. An elementary connection c ∈ C is
a tuple c = (F,A1, A2, τ1, τ2) which is interpreted as flight F ∈ F departing at
airport A1 ∈ A at time τ1 and arriving at airport A2 ∈ A at time τ2. Note that
τ1 and τ2 are time points relative to the timezone of the airports A1 and A2.
The length len(c) of an elementary connection c ∈ C is then derived by stripping
off the timezone offset τ ′

i := τi − ζ(Ai) mod Π for both i = 1, 2 and computing
the length between the time points τ ′

1 and τ ′
2 with respect to the time period Π.

3 Modeling Issues

In basic, flight timetables are very similar to railway timetables as introduced
in [18, 22]. In order to obtain a graph, two approaches exist for railway timetable
information. The time-expanded approach rolls out the time-dependencies of the
timetable and yields a time-independent graph where each node represents an
event of the timetable and edges connect consecutive events. Their constant edge
weight is depicted as the time duration (e.g., the length of one specific elemen-
tary connection) of its respective events. On the other hand, the time-dependent
approach carries the time-dependencies of the timetable over to the graph. This
results in time-dependent connection-edges where edge weights correspond to
travel time functions of several trains sharing the same edge. While the for-
mer approach allows for more flexible modeling, the latter yields much smaller
graph sizes which is important in the context of multi-modal route planning
where overall graphs can become huge. For that reason, in this work we focus
on engineering the time-dependent approach for modeling flight timetables.



3.1 Applying Railway Models

Several time-dependent railway models exist for efficient and realistic railway
timetable information. The condensed model as introduced in [6] represents the
adjacencies of the underlying network. Since this model does not account for
transfer costs at stations, it has been extended to the realistic time-dependent
model in [21].

S1 S2

Z3

Z1, Z2

Fig. 1: Illustration of the time-
dependent railway model when
assuming a constant transfer
time for each station with two
stations served by two routes
(with trains Z1, Z2 and Z3, re-
spectively).

Briefly summarized, in a first step, the set
of trains (in our case the set of flights F) is di-
vided into a set of routes R. By these means,
two trains (flights F1, F2 ∈ F) are considered
equivalent if they both share the exact same se-
quence of stations (airports [A1, . . . , Ak]). The
graph is constructed by introducing a station
node for every station (airport) and a route
node for every route that runs through the
specific station (airport). Edges from station
to route nodes depict the constant transfer
time while edges from route nodes to station
nodes are modeled with zero cost. Connec-
tion edges are inserted between route nodes
of the same route and are weighted by time-
dependent travel-time functions depicting the
travel time of trains running along the specific
route. See Figure 1 for a small example.

The model can be extended further to account for variable transfer times
between trains of different routes. This is achieved by introducing edges between
each pair of route nodes r1, r2 at one station weighted by the time required to
change from a train of route r1 to a train of route r2.

Drawbacks. Using the realistic time-dependent railway model on flight timeta-
bles yields several drawbacks which eventually lead to both inaccurate modeling
regarding realism as well as unnecessarily large graphs, and thus, higher query
times.

Routes. In flight timetables all routes have length 1, since almost all flights
have no intermediate stops. In the rare case of flights serving a sequence S =
[A1, . . . , Ak] of airports, our flight timetables account for direct flights for each
pair (Ai, Aj) with i < j of airports (each possible subsequence of airports is
modeled by a direct flight). As a conclusion, all routes are of length 1.

Regarding the number of nodes per airport in the graph, for each airport
A ∈ A there is one route node per airport where at least one flight reaches
to and also one route node per airport where at least one flight arrives from.
Basically, the number of route nodes per airport can be bounded by 2 times the
number of neighbors of A. This immediately leads to another drawback.



(a) Network structure (b) Resulting graph using the railway model

Fig. 2: Illustrating the high number of nodes and edges generated by the time-dependent
railway model using a small example of two airports. Since all routes have length 1,
for each neighbor in the network structure, a dedicated route node is inserted in the
graph.

High Number of Neighbors. Whereas in railway networks the number of neigh-
bors in the station graph for each station is relatively small (less than 5 for most
of the stations [9]), airports tend to have lots more neighbors (cf. Section 5) due
to the many direct flights. Combining this observation with the previous issue,
we end up having unnecessarily many route nodes per airport. See also Figure 2
for an illustration of the high node and edge count when using route nodes for
each flight at an airport.

Procedures at Airports. Most importantly, procedures at airports differ from
procedures in train stations making the realistic railway model somewhat unre-
alistic. For example, boarding a flight at the departure airport including check-in
involves more time than switching flights which may only require us to walk from
one gate to another. Thus, at least two different types of times per airport are
desirable: Check-in time and transfer time.

Another issue that should be reflected by the model is a third type of time for
getting off at the destination airport. This Check-out time should cope for cus-
toms and baggage claim and is usually smaller than the Check-in time. While
in principle the railway model could account for that by adjusting the edge
weights of edges connecting route nodes to station nodes, incorporating a ded-
icated transfer time can only be achieved by inserting ‘transfer edges’ between
all route nodes, yielding Θ(N (A)2) many edges where N (A) depicts the num-
ber of neighbors of an airport A ∈ A. Because of the high number of neighbors
this approach is infeasible. These problems lead us to proposing a family of new
models for flight timetables with incrementing flexibility.



3.2 Tailored Models for Flight Timetables

The basis of our flight models is a flight timetable T = (C,A,F , ζ,Π). Further-
more, we introduce three different time functions to model the various procedures
in an airport as depicted above.

– Check-in time T ci : A → R+
0 .

This accounts for the whole process from arriving at the airport until the
departure of the plane composed of checking-in, passing security checks and
also the accounted waiting time at the gate plus the boarding time of the
plane.

– Check-out time T co : A → R+
0 .

This accounts for the reverse process: Leaving the plane, passing customs
while leaving the gate area and finally the time required to claim baggage.

– Transfer time T tr : A → R+
0 .

This time accounts for the time transferring between two planes. Usually,
this only involves leaving the plane, walking to another gate and boarding
the new plane.

Note that we assume that all three time functions do not depend on the specific
flights. In favor of more flexibility, this assumption is weakened in the second
and third versions of our model.

Fig. 3: Level I Model. Terminal nodes
are purple, departure nodes green and
arrival nodes yellow. Bold edges are
time-dependent and model flights be-
tween the airports while the thin time-
independent edges allow for check-in,
check-out and transfers within the air-
ports.

Level I: Constant-Time Model.
The Level I Model uses the time func-
tions exactly as defined above. For
each airport A ∈ A we insert a super
node into the graph called terminal
node. Since all flights either begin or
end at the airport, we insert two more
nodes per airport: A departure node
which resembles flight departures, and
an arrival node to model arrivals.

Edges are created in the follow-
ing way. There are three edges within
each airport. A check-in edge is in-
serted from the terminal node to the
departure node and its weight is set
to T ci(A). A check-out edge from the
arrival node to the terminal node with
weight T co(A) is inserted and finally
a transfer edge from the arrival node
to the departure node with weight
T tr(A) is created.

The actual flights are modeled as flight edges from the departure node of
airport A1 to the arrival node of airport A2 if and only if there is at least one



elementary connection from A1 to A2 in the timetable. The edge weight is time-
dependent and interpolation points are created for each elementary connection
c = (F,A1, A2, τ1, τ2) with departure time τ ′

1 and travel time len(c).
An example of the Level I Model is shown in Figure 3. While this model yields

very small graph sizes its drawback is the assumption that check-in, check-out,
and transfer times are constant for all flights. This is addressed by the Level II
Model.

Level II: Flight-Class Model. To account for more flexible check-in, check-
out, and transfers within airports, we augment the definitions of T ci, T co and
T tr to cope with different flight classes.

Similarly to the concept of routes in the realistic time-dependent railway
model, we partition the set of flights F into different flight classes. The set of
flight classes is denoted by C. The equivalence relation ∼ on the set of flights
according to which two flights are put into the same class is arbitrary. An example
might be F1 ∼ F2 ⇔ F1 and F2 are operated by the same airline alliance.

With flight classes defined, the time functions are extended as follows. The
check-in and check-out time functions are extended to T ci : A × C → R+

0 , and
T co : A×C→ R+

0 . The transfer-time function is extended to operate on pairs of
classes T tr : A×C×C→ R+

0 to account for transfers between flights of arbitrary
pairs of flight-classes.

α

α

β

β

β

α

α

β

α β βα

Fig. 4: The Level II Model with 3 airports and
2 classes α and β. The bottom airport has no
incident flights of class α, thus, the respective
nodes and (gray) edges can be omitted

The Level I Model is mod-
ified as follows. Let A ∈ A
denote an airport. We insert
k := |C| departure resp. ar-
rival nodes—one for each flight
class ci ∈ C. The departure and
arrival nodes are connected to
the terminal node by check-in
and check-out edges like in the
Level I Model. As edge weights
we use T ci(A, ci) and T co(A, ci)
for each of the classes. To incor-
porate transfers, for each pair
ci, cj of flight-classes we insert
a transfer edge from the arrival
node of class ci to the depar-
ture node of class cj weighted
with T tr(A, ci, cj). By this, we

generate O(k2) edges. Finally, the time-dependent flight edges between two air-
ports A1 and A2 are inserted with respect to the correct classes, i.e., if the flight
is of class c, the departure node belonging to c at A1 is used as tail while the
arrival node of the same class at A2 is used as head of the edge. Interpolation
points on the functions of the flight edges are created the same way as in the
Level I Model.



In order to avoid the creation of unnecessary nodes, at each airport A we
can omit the creation of departure and arrival nodes (and their incident edges)
which belong to flight classes that do not contain any outgoing resp. incoming
connections from/to the airport A. Figure 4 shows a small example consisting
of two flight classes α and β.

Level III: Variable-Time Model. This is the most flexible model, however,
some of the drawbacks worked out for railway models recur. The Level II Model
is generalized further by assuming that each flight F ∈ F belongs to a distinct
flight class. Thus, the set C of flight classes consists of singleton sets and it
holds that |C| = |F|. By these means, we are able to model individual check-in,
check-out, and transfer times for each (pair of) flight(s).

On the downside, the size of the graph becomes very large. For an airport
A ∈ A let C(A) denote the set of elementary connections either departing or
arriving at A. Then this model yields Θ(|C(A)|) nodes and Θ(|C(A)|2) edges per
airport. Since in general it holds that |C(A)| > |N (A)|, graphs generated by
this model turn out even larger than using the realistic time-dependent railway
model.

Level I and III Models as a Special-Case. We like to point out, that both the
Level I and Level III Models can be seen as special cases of the Level II Model.
In the case of |C| = 1, i.e., we only have one flight class, we obtain the Level I
Model, while in the case of |C| = |F| we obtain the Level III Model as described
above. Thus, by adjusting the number of flight classes we are able to control the
flexibility of the resulting model in a continuous way. However, for real world
scenarios a very limited number of flight classes seems sufficient (for example,
using each major flight alliance as a dedicated class, since transfers within flights
of the same airline alliance can be usually processed faster).

4 Route Planning in Flight Networks

In this section, we show how to compute best connections with the models in-
troduced in Section 3.

4.1 Quickest Connections (Earliest Arrival Problem)

In the Earliest Arrival Problem, given source and destination airports S
and T as well as a departure time τS < Π, we ask for an itinerary from S to
T arriving at T as early as possible and departing at S no earlier than τS . The
straightforward approach to compute the earliest arrival for a given departure
time is to run plain Dijkstra on any of the above proposed model. We simply
insert the terminal node of the desired departure airport S into a priority queue
and run Dijkstra’s algorithm until we settle the terminal node of the requested
arrival airport T . However, especially in flight networks, we are often interested
for all ‘optimal’ connections during a whole day (resp. time period). This can



be done by a so-called profile query [8]. Such queries determine the travel time
function between two airports for the full time period Π. This can be achieved
by a label-correcting variant of Dijkstra’s algorithm. The main difference to
plain Dijkstra is that we propagate functions instead of constants through the
network (cf. [7, 8] for details). Note that by this procedure, the algorithm loses
its label-setting property, i.e., a node may be settled more than once during one
run of the algorithm. The departure times of the optimal connections are then
exactly the local minimums of the computed travel time function between S and
T .

4.2 Multi-Criteria Connections

Up to now, we only showed how to compute quickest connections in flight net-
works. However, we might be willing to accept slightly longer routes if the costs
are less or the number of transfers is smaller. A common approach to obtain such
better routes is to compute Pareto routes. In this work, we run multi-criteria
profile searches, i.e., we obtain Pareto connections between two stations for the
full time period. Besides travel time, we use the number of transfers and costs
as additional optimization criteria.

The Pareto connections between two airports can be obtained by a gener-
alized version of Dijkstra’s algorithm, similar to as introduced in [13, 14]. At
each node u, we maintain a list of labels list(u). In our case, a label contains
a travel time function, the number of transfers, and the costs of the tentative
journey. The list at the source node s is initialized with a label Ls := (0, . . . , 0).
We insert Ls into the priority queue. Then, in each iteration, we extract the
label with the smallest lower bound of its respective travel time function. Let
u be the associated node of the label. Then for all outgoing edges (u, v) ∈ E a
temporary label Lv is generated depicting the journey to v via u. If Lv is not
dominated by any of the labels in list(v), we add Lv to list(v), add Lv to the
priority queue, and remove all labels from list(v) that are dominated by Lv.
We may stop the query as soon as the priority runs empty or all labels in the
priority queue are dominated by all labels in list(t).

Rules of Dominance. In order to be able to run the algorithm described above,
we require to compare labels. We say that one label (consisting of several com-
ponents) dominates another label if it is better with respect to at least one
component and not worse respect to the remaining components. Note that in
our case, one component of our labels is a function. A travel time function f is
better than a function g if f(x) < g(x) holds for all x < Π. For more details on
dominance, we refer the interested reader to [12].

Generating Costs. Unfortunately, real-world pricing information was not avail-
able to us. Moreover, using arbitrary flight-costs per flight in time-dependent
graphs may result in non-FIFO networks making the computation of shortest
paths NP-hard [20]. Thus, we restrict ourselves to generated constant costs per



edge. We generate pricing information as follows. For each flight edge (u, v) ∈ E
we compute priceE → R+ according to

price(e) := fee(u) + fee(v) + fuel(e) + charge(e), (1)

where fee(·) depicts an airport fee, fuel(e) costs for fuel along the edge e and
charge(e) the amount of money charged by the flight operator. The airport fee
is computed by

fee(A) :=
(
αf + βf |F(A)|

)
· ρ(A), (2)

where αA is a general base fee, F(A) the number of flights departing/arriving
at A, and βA a constant coefficient. Furthermore, we perturb the costs by 25%
by choosing ρ(A) ∈ [0.75, 1.25] uniformly at random for each airport. Fuel costs
are computed by

fuel(e) := γ ·
√

distgeo(e), (3)

where γ is a coefficient and distgeo(e) is the geodesic length of the flight edge
(we use the GRS80-ellipsoid [16] with geographic coordinates for computing
distances). Finally, charge(e) is computed by

charge(e) :=
√
αc + βc distgeo(e) · ρ(e). (4)

Again, αc is a base charge, βc a constant coefficient. However, to model more
varying charges we perturb the costs by 50% by choosing ρ(e) ∈ [0.5, 1.5] uni-
formely at random.

Our final prices are generated by instantiating αf := 15, βf := 0.1, γ := 0.2,
αc := 30, βc := 0.5 resulting in flight costs between e 60 for very short and up
to e 1500 for long distance (intercontinental) flights.

4.3 Storing Distance Tables

During our experimental studies, it turned out that the resulting graphs deriving
from our level II Model are so small, that it is feasible to do a all-pair-shortest-
path preprocessing. This even holds for multi-criteria route planning. In the
following, we shortly explain how to preprocess the distance table in a multi-
criteria scenario, in case of single-criteria, we proceed analogously.

The preprocessing can be done in a straightforward manner. We maintain
a distance table with size |A| × |A|. For each airport Ai, we run a full Pareto-
Dijkstra as described above. This results in a set of labels for each airport Aj

depicting the Pareto-connections from Ai to Aj , which we store at the corre-
sponding place in the distance table. After having performed this step for any
airport, the distance table contains the Pareto connections for any pair of air-
ports. Hence, running a query is then reduced to a table-lookup in the distance
table.



5 Experiments

We conducted our experiments on one core of an AMD Opteron 2218 running
SUSE Linux 10.3. The machine is clocked at 2.6 GHz, has 32 GB of RAM
and 2 x 1 MB of L2 cache. The program was compiled with GCC 4.2, using
optimization level 3. Our implementation is written in C++ using solely the
STL and Boost at some points. As priority queue we use a binary heap.

Inputs. Our inputs derive from (publicly available) timetables of two major
flight alliances, which we crawled from the companies webpages. The first is
of StarAlliance [24] from November 2008 containing 20 888 flights between 965
airports. The latter is of Oneworld [19] (also November 2008) and contains 8 602
flights between 621 different airports. To make use of the Level II Model, we
also use a combined timetable which contains flights of both, StarAlliance and
Oneworld. The resulting timetable contains 29 490 flights and 1 172 airports.

Table 1 reports figures of the parameters of our input data. Besides the
number of airports and flights we show the average degree on the condensed
network (nodes equal airports and an edge (u, v) is inserted, iff. there is at least
one flight going from u to v). For comparison, we also provide figures for a typical
railway timetable (Ger-Rail) consisting of all trains in Germany operated by the
Deutsche Bahn in the winter period 2000/2001. We observe that the average
degree is significantly higher in flight timetables, while the maximum degree
is even up to 5 times larger. Moreover, in Figure 5 we show a straight line
visualization of our combined timetable. Blue spots depict airports (light spots
are not served by the timetable and are only drawn for orientation). The size
of the nodes reflects the number of flights departing and arriving at the specific
airports.

Methodology. In the following, we report query performance on each of our
models regarding both profile search and multi-criteria search using travel-time,
number of transfers and pricing as criteria (cf. Section 4). We evaluate the query
performance by running 1 000 random queries, picking source and destination
airports uniformly at random. We report the number of settled nodes, relaxed
edges and the average time per query.

Table 1: Figures for our input data. We use timetables of StarAlliance and Oneworld
as well as a combined timetable of both alliances. As comparison, we also provide data
for a railway timetable consisting of all German trains operated by Deutsche Bahn.

Timetable # Airports # Flights Avg. Deg. Max. Deg.

StarAlliance 965 20 888 13.35 175 (FRA)
Oneworld 621 8 602 8.86 152 (DWF)
Combined 1 172 29 490 14.52 192 (ORD)

# Stations # Conns
Ger-Rail 6 822 554 996 5.41 37 (Leipzig Hbf)



Fig. 5: Flight network composed of timetables from StarAlliance and Oneworld.

Regarding our table-lookup algorithm, we report preprocessing effort as the
amount of additional required space in Megabytes as well as preprocessing time.
Since table-lookups do not involve settled nodes and relaxed edges, we restrict
ourselves to query time together with the speed-up compared to the default
algorithm. Moreover, we increase the number of random queries to 10 000 0000
and report the query time by measuring the whole execution time of all queries
divided by the number of queries.

5.1 Size of the Models

Table 2 reports figures on the graph parameters of the different models intro-
duced in Section 3. For each of our inputs we apply the Level I, Level II and
Level III flight models, whereas regarding the Level II Model we use each flight
alliance as a separate flight class. Moreover, for comparison, we also apply the
time-dependent railway model with constant transfer times [22]. Besides report-
ing the total number of nodes and edges of the resulting graphs, we also present
the average number of flights per edge (only taking flight edges into account).

Applying the railway model to our flight timetables yields graphs of 13 849
nodes with 32 210 edges regarding the StarAlliance timetable, 6 123 nodes with
13 755 edges regarding the Oneworld timetable, and 18 184 nodes with 42 530

Table 2: Comparison of the sizes in number of nodes, edges and flights per edge. The
latter only refers to flight edges (not intra-airport edges)

StarAlliance Oneworld Combined
Model Nodes Edges Fl/Edge Nodes Edges Fl/Edge nodes Edges Fl/Edge

Level I 2 719 8 986 2.52 1 834 4 557 2.25 3 397 11 785 2.68
Level II 2 719 8 986 2.52 1 834 4 557 2.25 4 139 14 286 2.36
Railway 13 849 32 210 1.43 6 123 13 755 1.41 18 184 42 530 1.46
Level III 42 741 3 085 752 1.00 17 825 1 234 362 1.00 60 152 6 072 836 1.00



edges on the combined timetable. On all three instances graph sizes decrease
significantly when we use the Level I and II Models: in each timetable the number
of nodes and edges is between 3 and 5.4 times lower while incorporating more
realistic airport procedures (cf. Section 3). Note that the Level I and II Model
graphs are of equal size on the StarAlliance and Oneworld instances since they
only contain one flight class. However, on the combined instance switching from
the Level I to the more flexible Level II Model yields only a small increase
regarding graph size (4 139 compared to 3 397 nodes and 14 286 edges compared
to 11 785 edges).

Concerning the Level III Model, graph sizes increase dramatically. While
the increase in number of nodes compared to the Level II Model is between 10
and 15 times, the number of edges increases up to 6 072 836 on our combined
timetable. This is due to the fact that for each elementary connection on each
airport one dedicated node is created, and these departure respective arrival
nodes become fully interconnected yielding a quadratic number of edges in the
number of incident flights at each airport. The fact that for each flight a separate
(time-dependent) flight-edge is created, is also reflected by the number of flights
per edge, which is exactly 1 in the Level III Model.

5.2 Query Performance

Label Correcting Algorithms. Regarding profile and multi-criteria queries,
we use a label correcting algorithm (cf. Section 4) which may settle nodes multi-
ple times during one run. Moreover, we use travel-time, number of transfers and
pricing information as optimization criteria. In Table 3 we report the number
of settled nodes, relaxed edges and the average time per query on each of our
models.

As expected, figures roughly concur with the graph sizes from Table 2. Using
the railway model yields query times of 264.86 ms settling 71 673 nodes. On
the Level I Model we are able to reduce the query time to 47.5 ms while only
settling 8 426 nodes. Applying the Level II Model only yields a mild decrease
in performances to 68.68 ms settling 11 110 nodes which is still almost 4 times
faster than the time-dependent railway model.

Table 3: Query performance of our models using label correcting algorithms for both
profile- and multi-criteria searches. Query performance is evaluated by running 1 000
queries with source and destination airports picked uniformely at random.

Profile Multi-Criteria
Settled Relaxed Time Settled Relaxed Time

Model Nodes Edges [ms] Nodes Edges [ms]

Level I 8 426 41 462 47.55 23 825 104 213 215.74
Level II 11 110 53 477 68.68 31 491 137 068 305.31
Railway 71 673 171 924 264.86 184 516 435 062 1 126.50
Level III 133 083 5 739 353 4 805.60 673 295 32 180 968 109 666.66



Regarding multi-criteria search, we are able to enumerate all Pareto optimal
solutions in under a second’s time on both the Level I and Level II Models (215 ms
and 305 ms, respectively). However, both algorithms perform significantly worse
on the much larger Level III Model resulting in query times of 4.8 seconds for
profile queries and almost 2 minutes for multi-criteria queries.

Table-Lookups. The very small graph sizes of our flight networks allow pre-
computation of full distance tables between all airports. Regarding profile search,
we store travel-time functions for each pair of airports, while we store all Pareto
solutions when using multi-criteria search.

Table 4: Accelerating queries by table-lookups. We report the additional space required
as well as preprocessing time. On the query side we report the query time as well as
the speed-up compared to our label correcting algorithm from Table 3.

Profile Table-Lookup Multi-Crit. Table-Lookup
Space Prepro Time Speed- Space Prepro Time Speed-

Model [MiB] [m:s] [µs] Up [MiB] [m:s] [µs] Up

Level I 45.65 0:58 0.41 115 973 282.91 4:35 2.85 75 697
Level II 45.65 1:21 0.40 171 710 297.01 6:14 2.97 102 799
Railway 45.65 5:01 0.37 715 841 288.58 21:37 2.83 398 056
Level III 45.65 60:28 0.41 11 720 969 433.28 2618:23 4.37 25 095 345

Profile Search. Table 4 reports both preprocessing effort and query performance
on the combined timetable network for each of our models. For profile queries
the additional space required for each model is 45.65 MiB (note that we compute
distances between pairs of airports, thus, the required space is independent of the
number of nodes). Compared to the small size of our networks, 45.65 MiB may
seem fairly much. However, from the perspective of multi-modal route planning,
this additional effort is almost negligible, since the space consumption of all data
is dominated by the significantly larger road network and also by additional data
required for multi-modal speed-up techniques [10].

Regarding the preprocessing time, we are able to compute the full distance
table of travel-time functions between 1 minute on the Level I Model and 1 hour
on the Level III Model. As a result, we are able to execute random profile queries
in approximately 0.4µs time yielding a speed-up of over 11 Million on the Level
III Model. Note, that the query times are independent of the graph size, since
the graph is not used in the query algorithm.

Multi-Criteria Search. For multi-criteria search the required space for storing
the distance table increases with the complexity of the model and requires from
282.91 MiB (Level I Model) to 433.28 MiB (Level III Model) space. In contrast to
profile-search distance tables, here the number of entries in the table for each pair



of airports depends on the model for the following reason. Since we do not store
flight costs per actual flight, but a combined price per flight edge (cf. Section 4),
having less flights per edge (cf. Table 2) allows us to assign a greater variety of
different costs for flights between the same two airports. As a consequence, the
number of Pareto optimal solutions increases, hence, requiring more space. The
extreme case is the Level III Model, where each flight has its own designated
flight edge, and thus, allows the most realistic cost assignments (we are actually
able to assign a different price for each flight). Preprocessing time for distance
tables increases with the complexity of the models and is between 4.5 minutes
on the Level I Model and almost two days on the Level III Model. Again, we like
to point out the insignificant deterioration in preprocessing performance of the
Level II Model compared to the Level I Model. Query times are in the scale of
a few microseconds on all models: Enumerating all Pareto solutions for random
queries requires 2.85µs on the Level I Model, 2.97µs on the Level II Model and
4.37µs on the Level III Model. Again, the increase in query time is explained by
the bigger number of Pareto solutions with increasing model complexity.

6 Conclusion

In this work, we introduced how to model flight networks as graphs such that we
are able to compute best connections efficiently. By showing that known models
for railways yield a significant performance penalty, we justify our new model.
Moreover, we showed how to generate flight costs if data is missing. It turns out
that our model yields such small graphs making it feasible to compute full Pareto
distance tables making multi-criteria route planning in flight networks a matter
of microseconds. More precisely, we are able to perform point-to-point profile
and multi-criteria queries within a few microseconds with space requirements of
43.65 MiB (profile-search) and up to 433.28 MiB (multi-criteria search). While
the Level III Model is the most flexible, it turns out that in the case of using
flight alliances as flight classes, the Level II Model is sufficiently realistic while
yielding significantly smaller graphs, and thus, faster query times. However, we
like to point out, that in the case of our table-lookup algorithm the graph is no
longer required as input. Hence, it becomes feasible to apply a two step approach
for flight timetable information: Use a high detailed model (i.e., the Level III
Model) for modeling the timetable in the most flexible way, and obtain the
distance table in a second step. Queries can then be answered solely using the
distance table, thus, no longer requiring the large flight graphs as input data.

Regarding future work, it would be interesting to integrate traffic days into
our model. Moreover, we would like to add low-cost carriers to our data. However,
such companies tend to serve only very small airports which are far away from
the main hubs. Hence, we expect the network to be disconnected such that
multi-modal route planning becomes even more important in such a scenario.
On the technical side, we are optimistic that with the insights gained in this
work, we may extend our recent work on multi-modal route planning [10] to a
full multi-modal variant of Transit-Node Routing [3, 23, 4, 5].
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