Round-Based Public Transit Routing

Daniel Delling*

Abstract

We study the problem of computing all Pareto-optimal
journeys in a dynamic public transit network for two
criteria: arrival time and number of transfers. Exist-
ing algorithms consider this as a graph problem, and
solve it using variants of Dijkstra’s algorithm. Unfortu-
nately, this leads to either high query times or subop-
timal solutions. We take a different approach. We in-
troduce RAPTOR, our novel round-based public transit
router. Unlike previous algorithms, it is not Dijkstra-
based, looks at each route (such as a bus line) in the
network at most once per round, and can be made even
faster with simple pruning rules and parallelization us-
ing multiple cores. Because it does not rely on pre-
processing, RAPTOR works in fully dynamic scenarios.
Moreover, it can be easily extended to handle flexible
departure times or arbitrary additional criteria, such
as fare zones. When run on London’s complex public
transportation network, RAPTOR computes all Pareto-
optimal journeys between two random locations an or-
der of magnitude faster than previous approaches, which
easily enables interactive applications.

1 Introduction

We study the problem of computing best journeys in
public transit networks. A common approach to solve
this problem is to model the network as a graph and
to run a shortest path algorithm on it [25]. At first
glance, this is tempting: one can just use Dijkstra’s
algorithm [14], possibly augmented by a variety of
speedup techniques that attempt to accelerate queries
using auxiliary data computed in a preprocessing stage
(see Delling et al. [13] for an overview). Unfortunately,
there are several downsides to this approach. Although
known speedup techniques can achieve speedups of up
to several million on road networks [1], they fall short
when applied to public transportation networks [2],
which have a much different structure. More impor-
tantly, unlike in road networks, travel times are usu-

" *Microsoft Research Silicon Valley. dadellin@mircosoft.com
fKarlsruhe Institute of Technology. pajor@kit.edu. This work
was done while the author was at Microsoft Research Silicon
Valley.
fMicrosoft Research Silicon Valley. renatow@microsoft.com

Thomas Pajor'

Renato F. Werneck?

ally not enough to compute best journeys in public
transit; other criteria, such as number of transfers and
costs, can be just as important. This is often han-
dled by reporting all Pareto-optimal journeys between
two points using augmented versions of Dijkstra’s algo-
rithm [25]. This increases running times significantly
and makes acceleration techniques even more compli-
cated [5, 12, 15, 23, 24], rendering the efficient computa-
tion of multi-criteria journeys an elusive goal [5]. More-
over, the dynamic nature of public transit systems, with
frequent delays and cancellations, makes preprocessing-
based techniques impractical.

A feature shared by most previous approaches is
that they operate on a graph. This complicates exploit-
ing properties specific to transit networks, such as the
fact that vehicles operate on predefined lines. One ex-
ception is the concept of transfer patterns [3]: it can
answer queries extremely fast, but its preprocessing ef-
fort (thousands of CPU hours) is so high that optimality
must be dropped in order to make it practical. It is un-
clear how it can be used in a dynamic scenario.

This work introduces RAPTOR, our novel Round-
bAsed Public Transit Optimized Router. For two
given stops, it computes all Pareto-optimal journeys—
minimizing the arrival time and the number of trans-
fers made—between them. Unlike previous approaches,
RAPTOR is not Dijkstra-based. Instead, it operates in
rounds, one per transfer, and computes arrival times by
traversing every route (such as a bus line) at most once
per round. Our algorithm boils down to a dynamic pro-
gram with simple data structures and excellent memory
locality. Unlike Dijkstra-based algorithms, which are
notoriously hard to parallelize [20, 22], with RAPTOR
we can distribute independent routes among multiple
CPU cores. We also introduce two extensions of RAP-
TOR. The first, McRAPTOR, generalizes RAPTOR to
handle more criteria, beyond arrival time and transfers.
As an example we use fare zones, a common pricing
model. The second extension is rRAPTOR: it computes
bicriteria range queries, outputting full Pareto-sets of
journeys for all departures within a time range. Be-
cause our algorithms do not rely on preprocessing, they
are fully dynamic, easily handling delays, cancellations,
or route changes. Finally, our experiments show that
on the full network of London, with over 20 thousand

stops and 5 million daily departure events, RAPTOR
computes all Pareto-optimal bicriteria journeys between
two random locations in under 8 ms—fast enough for
practical use.

The paper is organized as follows. Section 2 has
formal problem definitions and discusses existing solu-
tions that are relevant to this work. Section 3 introduces
RAPTOR, our main contribution, and Section 4 shows
how to extend it to handle more criteria (McRAPTOR)
and range queries (rRAPTOR). Section 5 reports ex-
perimental results. Finally, Section 6 has concluding
remarks.

2 Preliminaries

Our algorithms work on a timetable (II,S,T,R,F)
where IT C Ny is the period of operation (think of it as
the seconds of a day), S is a set of stops, T a set of trips,
R aset of routes, and F a set of transfers (or foot-paths).
Each stop in S corresponds to a distinct location in the
network where one can board or get off a vehicle (bus,
tram, train, etc.). Typical examples are bus stops and
train platforms. Each trip ¢ € T represents a sequence
of stops a specific vehicle (train, bus, subway, ...) visits
along a line. At each stop in the sequence, it may
drop off or pick up passengers. Moreover, each stop
p in a trip ¢ has associated arrival and departure times
Tarr(t7p)a7_dep(t;p) € Ha with Tarr(tap) < Tdep(tap)' The
first and last stops of a trip have an undefined arrival
and departure time, respectively. The trips in 7 are
partitioned into routes: each route in R consists of the
trips that share the same sequence of stops. Typically,
there are many more trips than routes. Finally, foot-
paths in F model walking connections (or transfers)
between stops. FEach transfer consists of two stops
p1 and po with an associated constant walking time
£(p1,p2). Note that F is transitive: if p; and po are
indirectly connected by foot-paths, (p1,p2) is contained
in F as well.

The output produced by any journey-planning algo-
rithm on a timetable is a set of journeys J. A journey
is defined as a sequence of trips and foot-paths in the
order of travel. In addition, each trip in the sequence is
associated with two stops, corresponding to the pick-up
and drop-off points. Note that a journey containing k
trips has exactly k—1 transfers. Journeys are associated
with several optimization criteria. We say a journey J;
dominates a journey Jy, denoted by J; < Jo, if Jp is no
worse in any criterion than Js. A set of pairwise non-
dominating journeys is a Pareto-set. In our algorithms
we use labels (often associated with stops) for interme-
diate journeys. The definition of domination translates
to labels naturally.

The simplest problem we consider is the Farliest

Arrival Problem. Given a source stop ps, a target stop
pt, and a departure time 7, it asks for a journey that
departs ps no earlier than 7, and arrives at p, as early
as possible. The Multi-Criteria Problem is a generaliza-
tion with more than one optimization criterion (always
including earliest arrival time). More precisely, it asks
for a full Pareto-set of journeys, with each journey leav-
ing ps no earlier than 7. For example, one journey can
arrive at 4p.m. with 2 transfers, and another one at
3:30 p.m. with 3 transfers. Finally, the Range Problem
asks for alternate journeys with varying departure time.
More precisely, for every departure time 7 € A where
A C TII, we ask for a journey that leaves ps; no later
than 7 and arrives at p; as early as possible. It is a
special case of the multi-criteria problem using arrival
and departure time as criteria with domination J; < Js
iff Tdep<J1) > Tdep(J2) and Tarr(Jl) < Tarr(J2)~

2.1 Existing Graph-Based Approaches. Previ-
ous work on journey planning focused on graph-based
models, in particular the time-expanded and the time-
dependent approaches [25]. The time-expanded ap-
proach models each event in the timetable (e. g., depar-
ture or arrival of a trip at a stop) by a separate vertex.
This results in large graphs yielding poor query perfor-
mance. In contrast, the time-dependent model groups
trips along edges into time-dependent functions. In gen-
eral, the size of the resulting graph is linear in the num-
ber of stops and routes, which is orders of magnitude
smaller than the number of events. We therefore focus
on the more efficient time-dependent model.

The time-dependent route model [25] creates a stop-
vertex for each stop p € S. In addition, a route-vertex r,
is created for each stop p and every route r € R, where r
is serving p. Edges are added within each stop between
the stop-vertex and every route-vertex (and vice versa)
to allow transfers. Their constant weights represent the
transfer time (if any) between trips serving p. To model
trips, time-dependent edges are added between route-
vertices. More precisely, if a trip ¢ € T serves two
subsequent stops pi1, p2 along its route r € R, an edge
from r,, to rp, is required. This edge is time-dependent,
and its function reflects a travel time of 7. (¢, p2) —
Tdep(t, p1) at departure time 74ep (¢, p1). Edge costs can
be modeled as special piecewise linear functions, and
can be efficiently evaluated [9, 10]. To incorporate
foot-paths, for each (p;,p;) € F a time-independent
edge is added between the corresponding stop-vertices,
weighted by ¢(p;, pj). The time-dependent station model
is a condensed version with only one vertex per stop,
combined with time-dependent edges. Although it leads
to smaller graphs, it complicates the query algorithms
in order to incorporate transfers correctly [5, 16].

Algorithms. To solve the earliest arrival problem
from a source stop ps at time 7 on the time-dependent
model, we can use an augmented variant of Dijkstra’s
algorithm [14]. It scans vertices with increasing arrival
time, but evaluates each edge e = (u,v) at time dist(u),
which is the arrival time at u. The algorithm stops as
soon as the target stop-vertex is scanned. We refer to
this algorithm as Time-Dijkstra (TD).

The Multi-Criteria Problem on the time-dependent
route model can be solved by a multi-label-correcting al-
gorithm (MLC) [25]. Tt handles arbitrary criteria that
are modeled by edge costs and generalizes Dijkstra’s
algorithm as follows. Labels now contain multiple val-
ues, one for each optimization criterion. Each vertex u
maintains a bag B, representing a Pareto-Set of non-
dominated labels. The algorithm maintains a prior-
ity queue of unprocessed labels, ordered lexicographi-
cally. Each step extracts the minimum label L, from
the queue and processes the corresponding vertex wu.
For every edge (u,v), a new label L, is created. If L,
is not dominated by a label in B,, L, is inserted into
B, (possibly eliminating some labels in B,). The prior-
ity queue is updated accordingly. Several improvements
to MLC exist [15]: (1) hopping-reduction avoids prop-
agating a label back to the vertex it originated from:;
(2) label-forwarding does not use the priority queue for
new labels that have no increase in cost; and (3) target-
pruning eliminates labels L that are dominated by a
label from the target vertex’s bag. We do not use goal-
direction for MLC; although helpful for long-distance
rail networks [15], it does not help on dense urban net-
works [4]. Even with these improvements, MLC is much
more costly than plain Time-Dijsktra: not only must it
scan the same vertex multiple times, but it also has to
handle more complicated data structures, such as bags.

When the only additional criterion (besides arrival
time) is number of transfers, one can use the simpler
Layered Digkstra (LD) algorithm [7]. It works when
values of the second criterion are discrete. As an
example, let K be a bound on the number of transfers.
During preprocessing, the graph is copied into K layers,
with transfer edges rewired to point to the layer directly
above. Running Time-Dijkstra from the source vertex
on the bottom layer results for each ¥ < K in a
journey having exactly k transfers for vertices on layer
k. Instead of copying the graph, we can use an array of
K labels for each vertex and read/write the k’th entry in
“layer” k. Moreover, to implement domination, a label
at vertex u on layer k can be pruned, if there exists a
label with earlier arrival time at u on a layer smaller
than k. Similarly, the label can be pruned if the target
vertex has a label with smaller arrival time on any layer
< k. We can drop the requirement for the bound K

as input by dynamically extending the labels whenever
necessary.

A known efficient solution to the Range Prob-
lem is the Self-Pruning Connection-Setting algorithm
(SPCS) [10]. It first assembles all departing trips at ps.
Then, it initializes a priority queue with all these trips,
using their arrival times as keys. The search algorithm
is very similar to TD, with additional pruning. When a
label L is extracted from the queue at vertex v, it can be
pruned if v has already been scanned with a label L’ for
which Tgep(L’) > Taep(L) holds. Target pruning can be
incorporated by keeping track of the maximum depar-
ture time of any journey that reached the target; any
journey with a later departure time (anywhere in the
graph) can then be pruned. A multi-core version of this
algorithm partitions the departing trips of ps among the
available cores, which then run SPCS independently. In
the end, the resulting journeys are merged, and domi-
nated ones discarded.

3 Owur Approach: RAPTOR

We now introduce the basic version of RAPTOR, our
algorithm. It solves the bicriteria problem minimizing
arrival time and number of transfers—like LD or MLC.
However, our method is not based on Dijkstra’s algo-
rithm. In fact, it does not even need a priority queue.
We start with a basic version of the algorithm, then
propose some optimizations. Let p; € S be the source
stop, and 7 € II the departure time. Recall that our
goal is to compute for every k a nondominated journey
to a target stop p; with minimum arrival time having
at most k trips.

The algorithm works in rounds. Round k computes
the fastest way of getting to every stop with at most
k — 1 transfers (i.e., by taking at most k trips). Note
that some stops may not be reachable at all. To
explain the algorithm, we bound the number of rounds
by K. (We show that this bound can be dropped
later.) More precisely, the algorithm associates with
each stop p a multilabel (7(p), 71 (p), ..., Tk (p)), where
7i(p) represents the earliest known arrival time at p with
up to 7 trips. All values in all labels are initialized to
00. We then set 7(ps) = 7. We maintain the following
invariant: at the beginning of round k (for k£ > 1), the
first k entries in 7(p) (from 79(p) to 7,—1(p)) are correct,
i.e., entry 7;(p) represents the earliest arrival time at p
using at most ¢ trips. The remaining entries are set to
00. The goal of round k is to compute 74 (p) for all p. It
does so in three stages.

The first stage of round k sets 74 (p) = 7,—1(p) for
all stops p: this sets an upper bound on the earliest
arrival time at p with at most k trips.

The second stage then processes each route in the

r2

Ps

T3

Dt
T4

Figure 1: Scanning routes for a query from ps to p;. Route ry is first scanned in round 1, routes ro and r3 in
round 2, and finally, route r4 in round 3. Scanning a route begins at the earliest marked stop (bold). Hollow

stops are never visited.

timetable exactly once. Consider a route r, and let
T(r) = (to,t1,...,tj7(y—1) be the sequence of trips
that follow route r, from earliest to latest. When
processing route r, we consider journeys where the last
(k’th) trip taken is in route r. Let et(r, p;) be the earliest
trip in route r that one can catch at stop p;, i.e., the
earliest trip ¢ such that 7gep(t,p;) > Th—1(p;). (Note
that this trip may not exist, in which case et(r,p;) is
undefined.) To process the route, we visit its stops
in order until we find a stop p; such that et(r,p;) is
defined. This is when we can “hop on” the route. Let
the corresponding trip ¢ be the current trip for k. We
keep traversing the route. For each subsequent stop p;,
we can update 75 (p;) using this trip. To reconstruct the
journey, we set a parent pointer to the stop at which ¢
was boarded. Moreover, we may need to update the
current trip for k: at each stop p; along r it may be
possible to catch an earlier trip (because a quicker path
to p; has been found in a previous round). Thus, we
have to check if 74,_1(p;) < Tarc(t,p;) and update t by
recomputing et(r, p;).

Finally, the third stage of round k considers foot-
paths. For each foot-path (p;,p;) € F it sets 7(p;) =
min{7(p;), 7 (pi) + £(pi,p;)}. Note that since F is
transitive, we always find the fastest walking path, if
one exists. The algorithm can be stopped after round
k, if no label 7 (p) was improved. Also note that we can
dynamically extend the multilabels beyond K items.

The worst-case running time of our algorithm can
be bounded as follows. In every round, we scan each
route r € R at most once. If |r| is the number
of stops along r, then we look at) . |r| stops in
total. Caching et(r,-), we look at every trip ¢ of a
route at most once, since et(r, -) can only decrease while
scanning a route. Thus, the total running time of
our algorithm is linear per round. In total, it takes
O(K (X, er IT|+|T1+|F|)) time, where K is the number
of rounds. Constant access to the stops along routes
and the arrival and departure times of specific trips

can be achieved by a few arrays (see Appendix A for
details). In contrast, a similar analysis for the route-
based model reveals that MLC and LD are slower by at
least a logarithmic factor, due to the priority queues.

3.1 Improvements. Having set up the basic version
of our algorithm, we now propose some optimizations.

Iterating over all routes in every round seems waste-
ful. Indeed, there is no need to traverse routes that can-
not be reached by the previous round, since there is no
way to “hop on” to any of its trips. More precisely, dur-
ing round k, it suffices to traverse only routes that con-
tain at least one stop reached with exactly k — 1 trips.
To see why, consider a route whose last improvement
happened at round ¥’ < k — 1. The route was visited
again during round &' + 1 < k, and no stop along the
route improved. There is no point in traversing it again
until at least one of its stops improves (due to some
other route). To implement this improved version of
the algorithm, we mark during round k — 1 those stops
p; for which we improved the arrival time 74— (p;). At
the beginning of round k, we loop through all marked
stops to find all routes that contain them. Only routes
from the resulting set) are considered for scanning in
round k. Moreover, since the marked stops are exactly
those where we potentially “hop on” a trip in round k,
we only have to traverse a route beginning at the earliest
marked stop it contains. To enable this, while adding
routes to @), we also remember the earliest marked stop
in each route. See also Figure 1.

Another useful technique is local pruning. For each
stop p;, we keep a value 7*(p;) representing the earliest
known arrival time at p;. Since we are only interested in
Pareto-optimal paths, we only mark a stop during route
traversal at round k& when the arrival time with k£ trips
is earlier than 7*(p;). Note that local pruning allows
us to drop the first stage (copying the labels from the
previous round), since 7*(p;) automatically keeps track
of the earliest possible time to get to p;.

Note that, as described, RAPTOR does not exploit
the fact that we are only interested in journeys to a
target stop p;. In fact, it computes journeys to all
stops of the network. Since this seems wasteful, we use
target pruning. During round k, there is no need to
mark stops whose arrival times are greater than 7*(p;)
(the best known arrival time at p;). A description
in pseudocode including marking and pruning can be
found in Algorithm 1.

3.2 Transfer Preferences and Strict Domina-
tion. MLC can be extended to the scenario where one
is interested in Pareto-optimal solutions with respect
to strict domination: one journey only dominates an-
other if it is strictly better in at least one criterion [6].
This leads to bigger Pareto-Sets. The motivation for
this extension stems from outputting journeys which use
transfers at preferred locations. Then, the best journey
is determined in a postprocessing step, by looking at all
possible combinations of transfer locations.

RAPTOR can handle transfer preferences, without
extending the Pareto-set, as follows: when scanning a
route 7 in round k while using trip ¢, we keep track
of the stop (among those where ¢ can be boarded)
that maximizes the transfer preference value. Then,
whenever we write a label 74(p), we set its parent
pointer immediately to the stop with the maximum
preference encountered so far. If strict dominance is
still necessary, it can be incorporated into our algorithm
as well. Whenever we write a label 74(p), instead of
keeping a single parent pointer we add pointers to every
stop p’ where the current trip ¢ could be boarded, i.e.,
to those stops p’ where 7,_1(p’) < Taep(t,p’) held. To
avoid dynamic allocation at every stop, we can write
tuples of parent pointer and arrival time to a separate
log in memory. Since parent pointers may change,
we reconstruct the final parent pointers by linearly
sweeping over the log in a postprocessing step.

3.3 Parallelization. Our algorithm can be extended
to work in parallel. Most of the work is spent processing
individual routes, which are scanned in no particular or-
der. If several CPU cores are available, each can handle
a different subset of the routes (in each round). Dur-
ing round k, however, multiple threads may attempt
to write simultaneously to the same memory location
71 (p). Race conditions could be avoided with standard
synchronization primitives (such as locks), but that can
be costly. Instead, we propose two lock-free paralleliza-
tion approaches for our algorithm.

If the hardware architecture ensures atomic writes
for the values of 7;(p), we can just “blindly” write to
Tr(p). The corresponding memory position will always

Algorithm 1: RAPTOR

Input: Source and target stops ps, p; and
departure time 7.

// Initialization of the algorithm

1 foreach i do
2 | 7() o0
3 7°(-) o0
4 7o(ps) < T
5 mark p;
6 foreach k + 1,2,... do
// Accumulate routes serving marked
stops from previous round
7 Clear Q
8 foreach marked stop p do
9 foreach route r serving p do
10 if (r,p') € Q for some stop p’ then
11 Substitute (r,p") by (r,p) in Q if p
comes before p’ in r
12 else
13 L Add (r,p) to Q
14 unmark p
// Traverse each route
15 foreach route (r,p) € Q do
16 t < 1 // the current trip
17 foreach stop p; of r beginning with p do
// Can the label be improved in
this round? Includes local
and target pruning
18 if t £ 1 and
arr(t,p;) < min{7*(p;), 7*(p:)} then
19 Tk(pi) — Tarr(tapi)
20 7 (pi) = Tare(t, pi)
21 mark p;
// Can we catch an earlier trip
at pi?
22 if 7,_1(pi) < Taep(t,p;) then
23 L t + et(r,p;)
// Look at foot-paths
24 foreach marked stop p do
25 foreach foot-path (p,p’) € F do
26 L i(p') = min{m.(p'), 7 (p) + £(p,p)}
27 mark p’
// Stopping criterion
28 if no stops are marked then
29 L stop

have a valid upper bound on the arrival time at p, even if
a thread could not successfully write a better value. To
restore consistency after the route scanning stage, each
thread maintains a log of all update attempts on any
value 7% (p). The logs are then used to correct the labels
by the master thread sequentially. The same technique
can also be used to keep 7*(p) consistent. We call this
approach update log parallelization.

If atomic writes are not guaranteed, we can still
avoid locks with the conflict graph approach. We
use the fact that any two routes that have no stop
in common can be safely scanned in parallel. In
a preprocessing step, we build an undirected conflict
graph G, where vertices correspond to routes and there
are edges between any two routes that share at least one
stop. We then greedily color the routes such that no two
adjacent routes share the same color. Routes with the
same color can always be processed independently.

To implement this approach efficiently, we order the
routes according to their colors (with ties broken arbi-
trarily) to obtain a sequence R = {ro,71,...,7jg|-1}
We then compute for every route r; a dependent route
pre(r;) = r;, defined as the highest-indexed conflicting
route that appears before 7 in the order (j < 7). The
route scanning stage is now modified as follows. When
a thread finishes scanning a route, it grabs the next (in
index order) available unprocessed route r; and waits
(in a busy loop) until all routes up to pre(r;) have been
fully processed. Once this happens, it can safely process
r;: conflicting routes r; with 7 < ¢ have already been
processed, and those with j > ¢ will wait until r; is fin-
ished. Threads can use shared memory to communicate
to others that their own routes have been processed, en-
suring no two threads ever write to the same location.
Unmarked routes can be skipped and set to processed.
In dynamic scenarios, route dependencies must be up-
dated whenever a route changes, but this takes negligi-
ble time.

4 Extensions

In this section we show how RAPTOR can be extended
to handle additional criteria, such as fare zones. We call
the resulting algorithm McRAPTOR. For the special
case of bicriteria range queries, we present a tailored
extension called rRAPTOR.

4.1 More Criteria: McRAPTOR. Recall that
plain RAPTOR stores exactly one value 74(p) per stop
and round. To extend the algorithm to more criteria,
we keep multiple nondominating labels for each stop p
in round k, similarly to MLC (cf. Section 2.1). We store
these labels in bags, denoted by By (p).

The algorithm is then modified as follows. When

relaxing a route r, we first create an empty route bag
B,.. Each label L in the route bag has an associated
active trip ¢(L). When traversing the stops of r in
order, we process each stop p in three steps. The first
step updates the arrival times of every label L € B,
according to their associated trips ¢(L) at p. Note
that if two labels have the same associated trip, one
might be eliminated. In the second step, we merge B,
into By(p) by copying all labels from B, to By(p), and
discarding dominated labels in Bj(p). The final step
merges By_1(p) into B, and assigns trips to all newly
added labels. Moreover, the foot-paths stage of the
algorithm is also modified. When looking at a foot-
path (p;,p;), we create a temporary copy of Bg(p;) and
add £(p;, p;) to the arrival time of every label. Then we
merge this bag into By (p;).

We can also adapt local and target pruning. Sim-
ilarly to 7* in RAPTOR, we keep for every stop p a
best bag B*(p) that—informally—represents the non-
dominated set of labels over all previous rounds. Thus,
whenever we are about to add a label L to a bag By (p),
we check if L is dominated by B*(p) or B*(p:) (recall
that p; is the target stop). If either is the case, L is not
added to Bg(p). Otherwise, we also update B*(p) by
adding L to B*(p), if necessary.

Like RAPTOR, McRAPTOR scans routes in no
particular order, and thus, can be parallelized in the
same way. However, since updates to B, (p) cannot be
atomic, we must use the conflict graph approach.

An example: Fare zones. We now consider a
practical scenario: fare zones. Transit agencies often
assign each stop p to one (or multiple) fare zones from
a set Z. The price of a journey is then determined
by which fare zones it touches. However, handling
exact prices during the algorithm often is complicated.
Thus, we are interested in computing all Pareto-optimal
journeys including the set of touched fare zones as
a criterion. Precise fare information can then be
determined in a (quick) post-processing step.

We handle this scenario as follows. Each label is a
tuple L = (7(L),2(L)), where z(L) C Z is the set of
touched fare zones so far. Here, a label L; dominates
Loy iff 7(L1) < 7(L2) and 2(L1) € z(Lz2). Note that
z(p) is a cost imposed by stops rather than travel. We
initialize the source bag Bg(ps) with a label (7, z(ps)).
Moreover, each time we are about to merge a label L
into a bag By(p), we first update z(L) < z(L) U z(p).
To implement z(-) efficiently, we use integers as bit sets
(one bit per fare zone). Domination is tested by bitwise-
and, and set-union is equivalent to bitwise-or.

4.2 Range Queries: rRAPTOR. For the special
case of range queries;, RAPTOR can be extended to

rRAPTOR similarly to SPCS [10].

Let A C II be the input time range. First, we
accumulate into a set ¥ all departure times of trips ¢
at the source stop ps that depart within A. Now, we
run standard RAPTOR for every departure time 7 € ¥
independently. This results in a label 7 (p) for every
stop p, departure time 7, and round k. However, not all
journeys from U are useful to get to p. More precisely,
a journey J; dominates a journey Jy iff 7gep(J1) >
Tdep(JQ) and Tarr(Jl) < Tarr(J2)~

To integrate this domination rule, we order ¥ from
latest to earliest, and then run RAPTOR for every 7 €
¥ in order. However, we keep the labels 75 (p) between
rounds instead of reinitializing them. To see why this is
correct, note that this value of 74 (p) corresponds to an
intermediate journey departing from ps; no earlier than
journeys computed in the current run (recall that ¥ is
ordered). Thus, if 7 (p) is smaller, we also know how to
reach p earlier. Hence, we can safely prune the current
journey. However, we cannot use local pruning, since
the best arrival times 7*(p) do not carry over to earlier
departures. Instead, at the beginning of round k we set
T(p) = Tr—1(p) for all stops where 7;,_1(p) improves
Tr(p)-

RAPTOR’s parallelization techniques also work for
rRAPTOR. However, when || is larger than the num-
ber P of CPU cores, we can use the same approach as
for SPCS [10]: We partition ¥ into subsets of equal size
Uo,...,Up_1. Then, each core i runs rRAPTOR on ¥,
independently. The results are merged in the end, and
dominated journeys are discarded.

5 Experiments

In this section we present an experimental study to
evaluate our algorithms. Our main input uses realistic
data from Transport for London [26]. It includes tube
(subway), buses, tram, and Dockland Light Rail (DLR).
We extracted a Tuesday from the periodic summer
schedule of 2011, which is publicly available [18]. The
network has 20 843 stops, 2225 routes served by 133011

trips, and a total of 5132 672 distinct departures (a trip
departing at a stop). Moreover, there are 45652 foot-
paths in the network. Each tube and DLR station is also
assigned to one of 11 fare zones. In London a tube ticket
automatically includes any bus ride. Thus, we assign
bus stops to a special fare zone z that every tube/DLR
station is also a member of. We compare our algorithms
to existing graph-based techniques, which use the route
model graph (cf. Section 2.1). The resulting graph has
100 878 vertices and 283 587 edges.

All experiments were done on a dual 6-core Intel
Xeon X5680 machine clocked at 3.33 GHz, with 96 GiB
of DDR3-1333 RAM. We implemented all algorithms in
C++ (with OpenMP for parallelization), and compiled
them with Microsoft Visual C++ 2010 (64 bit) with full
optimization. To evaluate performance, we ran 10000
queries with source/target stops and departure time
selected uniformly at random. Results for more realistic
distributions are similar.

RAPTOR. In our first set of experiments we
evaluate RAPTOR (cf. Section 3) and compare it to
LD and MLC (cf. Section 2.1), which solve the same
problem. All algorithms are fully optimized: RAPTOR
makes use of marking, local, and target pruning; LD
has pruning enabled; and MLC uses pruning, label-
forwarding, and hop-avoidance. For comparison, we also
report the performance of Time-Dijkstra (TD), which
solves the (simpler) earliest arrival problem. The results
are presented in Table 1. We report the average number
of visits and label comparisons per stop, the size of
the Pareto-sets (number of journeys) output, and the
running time in milliseconds. Moreover, for RAPTOR
we report the average numbers of rounds, as well as the
average number of times each route is relaxed.

We observe that, on average, RAPTOR performs
8.4 rounds before it can stop (i.e., no labels can
be improved) and scans each route 3 times. When
considering the number of label comparisons per stop,
we see that RAPTOR, MLC, and LD are no more
than a factor of 2 apart. However, RAPTOR strongly

Table 1: Evaluation of the base variant of RAPTOR on the London instance, compared to Time-Dijkstra (TD),
Layered Dijkstra (LD), and Multi-Label-Correcting (MLC). “Tr” indicates whether the algorithm is (e) minimizing

the number of transfers besides arrival time or not (o).

Relax. # Visits # Comp. Time
Algorithm Tr # Rnd. p. Route p. Stop p. Stop # Jn. [ms]
RAPTOR e 8.4 3.0 11.1 22.2 1.9 7.3
TD o — — 7.4 7.4 0.9 14.2
LD [7] . - — 17.3 305 1.9 445
MLC [15] o — - 12.8 287 1.9 67.2

Table 2: Comparison of several extensions of RAPTOR on the London instance (see Section 4). We also include
the Multi-Label-Correcting (MLC) and Self-Pruning Connection-Setting (SPCS) algorithms. Besides arrival time,
the criteria we may consider are range (R), number of transfers (Tr), and fee zones (Fz).

Relax. # Visits # Comp. Time
Algorithm R Tr Fz # Rnd. p.Route p. Stop p. Stop # Jn. [ms]
rRAPTOR . o 138.5 36.6 124.7 346.4 16.3 87.0
McRAPTOR e 9.5 3.8 15.1 2062.7 16.3 259.8
McRAPTOR o 10.8 4.5 17.9 396.4 9.0 107.4
MLC [15] o - - 48.1 930.3 9.0 399.5
SPCS [11] . - — 76.2 762 7.8 183.6

benefits from its simpler data structures, better locality,
and lack of a priority queue: with an average query
time of 7.3ms, it is 9 times faster than MLC, and 6
times faster than LD. Even TD, which only minimizes
arrival time (regardless of the number of transfers), is
outperformed by RAPTOR: it outputs half the number
of journeys in twice the amount of time. Although
TD could be accelerated using models yielding smaller
graphs [5, 11, 16], these models would make multi-
criteria queries more complicated [5].

Extensions of RAPTOR. We evaluate McRAP-
TOR and rRAPTOR (cf. Section 4). For rRAPTOR, we
fix the time range to 2 hours, and consider two variants
of McRAPTOR. The first emulates a two-hour range
query by using departure time as an additional crite-
rion; the second uses fare zones, as discussed in Sec-
tion 4. We compare our algorithms to MLC (using ar-
rival time, transfers, and fare zones) and SPCS (using
a range of 2 hours as well). Note that SPCS is a range
query minimizing only arrival time (regardless of trans-
fers). The results are presented in Table 2. Note that
columns R (range), Tr (transfers), and Fz (fare zones)
indicate which criteria each method takes into account.

Recall that TRAPTOR repeatedly runs RAPTOR,
(without reinitializing labels). Its performance reflects
this: it runs 16 times as many rounds, and takes 87 ms
on average. Using McRAPTOR to emulate the same
range queries reduces the number of rounds (relative to
rRAPTOR), but running times triple. Again, we profit
from the simpler data structures. McRAPTOR handles
bags of labels instead of running more rounds, which is
costly. Compared to pure RAPTOR, taking London’s
fare zones into account results in 4.7 times more re-
ported journeys. Using McRAPTOR, we achieve a run-
ning time of 107 ms, a factor of 3.7 faster than MLC.
This is less than the factor of 9 for RAPTOR (cf. Ta-
ble 1): unlike RAPTOR, McRAPTOR also uses costly
bags.

Figure 2 shows the number of scanned routes per
round for RAPTOR, rRAPTOR, and McRAPTOR. We

normalize rRAPTOR’s plot by the number of calls to
RAPTOR within each query. All algorithms reach the
entire network within about 5 rounds, when most routes
are scanned. Beyond that, fewer routes are useful, and
the algorithms begin running dry. McRAPTOR takes
longer to converge, while rRAPTOR generally scans less
routes (per departure time) than RAPTOR, since it can
prune across different departure times.

— McRAPTOR
o -=-- RAPTOR
231 s\ | rRAPTOR
Q
=
Q
k=
= O
O
8
& o
=3
H o
07 —————
T T 17 17T 17 1T 17T 1T 1T 1T 17T 1T T 1T T
1 3 5 7 9 11 13 15 17

Figure 2: Number of relaxed routes per round.

Parallelization. Table 3 shows the parallel per-
formance of our algorithms. Since writes to 74(p) are
atomic for RAPTOR, we use update logs; McRAP-
TOR is parallelized using conflict graphs. Among the
Dijkstra-based algorithms, only SPCS can be paral-
lelized efficiently. We ran each algorithm on one, three,
six, and 12 cores, pinning thread ¢ to core 1.

Comparing the parallel implementations (Table 3)
with the sequential ones (Tables 1 and 2), we observe a
slow-down of less than 10% for all algorithms. This is
expected because we introduce additional work for our
parallel implementations (see Section 3.3). On six cores,
RAPTOR achieves a speedup of only 1.9. Recall that

Table 3: Parallel performance of RAPTOR, McRAPTOR, rRAPTOR, and SPCS in a multi-core setup.

1 core 3 cores 6 cores 12 cores

Comp. Time # Comp. Time # Comp. Time # Comp. Time
Algorithm R Tr Fz p. Stop [ms] p. Stop [ms] p. Stop [ms] p. Stop [ms]
RAPTOR o . o 21.5 7.7 21.7 5.0 21.8 4.1 21.8 3.7
rRAPTOR e e O 346.4 923 357.7 395 374.0 26.8 404.6 21.6
McRAPTOR e e o 2098.6 280.2 2101.2 113.1 2098.4 66.1 2098.2 50.1
McRAPTOR o e e 410.0 118.6 410.6 494 408.4 299 408.3 26.1
SPCS [11] e o o 76.2 183.6 79.9 69.1 85.2 449 95.5 38.9

we only parallelize scanning routes, which limits the
speedup due to Amdahl’s law (it makes up 75 % of the
total sequential running time). Because McRAPTOR
spends more time on each route (due to the costly
manipulation of bags), it has better speedups when
run in parallel (a factor of 4 with either fare zones or
range query emulation). Finally, rTRAPTOR achieves
a speedup of 3.4 on six cores, which is consistent
with SPCS. Using 12 cores hardly pays off for any
algorithm. Compared to six cores, the additional
speedup is limited; increased memory contention is a
factor in this case.

Additional inputs. We now consider three more
test cases: Los Angeles [19], New York [21], and
Chicago [8]. We generated these instances from General
Transit Feeds (GTFS) that are publicly available [17].
We use an extract of August 10, 2011 (a Wednesday).
The timetables consist of 15003/17894/12137 stops,
1099/1393/710 routes followed by 16 376/45 299/20 303
trips, and 931 864/1 825221/1194 571 departure events.
When building the route model graphs, the result-
ing instances have 81657/66124/47561 vertices and
214 369/193159/118452 edges. Unfortunately, foot-
path data was not available with these networks, so

we generated synthetic foot-paths with a known heuris-
tic [11], resulting in 15482/49 858/12 888 inserted foot-
paths. Since no fare zone data is available for these
networks, we did not run our multi-criteria algorithms
that include fare zones. Note that while these are the
biggest publicly available GTFS networks at the time of
writing, they are all smaller than the London instance.
Table 4 shows the results for all relevant algorithms.

The results are consistent with the previous ex-
periments: RAPTOR outperforms both LD and MLC
on every instance. It can compute all Pareto-optimal
journeys between two random stops within 3.4ms on
Los Angeles, 3.1ms on New York, and 1.8ms on
Chicago. Parallelizing RAPTOR shows almost no ef-
fect: speedups are below a factor of 1.7 for 6 cores on
all instances. Running rRAPTOR results in query times
of around 20 ms for all instances. Parallelizing rRAP-
TOR pays off more than for RAPTOR, though speedups
are still limited. The best speedup of 2.7 on 6 cores is
achieved on New York. Finally, we observe that rRAP-
TOR again outperforms SPCS by a factor of 2.

Table 4: Comparison of base RAPTOR, rRAPTOR, LD, MLC, and SPCS on other instances. A trailing “6” in
the algorithm description refers to a parallel execution on 6 cores.

Los Angeles New York Chicago

Comp. Time # Comp. Time +# Comp. Time
Algorithm R Tr p. Stop [ms] p. Stop [ms] p. Stop [ms]
RAPTOR o e 24.0 34 14.6 3.1 14.4 1.8
RAPTOR-6 o ° 25.0 2.0 14.0 2.0 14.6 1.2
rRAPTOR ° ° 128.0 16.2 159.5 24.3 143.7 14.6
rRAPTOR-6 e e 141.8 7.1 173.9 9.0 154.3 5.5
LD [7] o e 375 249 254 21.8 226 130
MLC [15] o e 21.7 381 16.8 32.2 9.8 176
SPCS [11] e o 284 379 29.6 53.7 203 36.3
SPCS-6 [11] e o 33.0 1438 345 150 32.6 8.8

6 Conclusion

We have introduced RAPTOR, a novel algorithm for
fast multi-criteria journey planning in public transit net-
works. Unlike previous algorithms, it neither operates
on a graph nor requires a priority queue. Instead, it ex-
ploits the inherent structure of such networks by operat-
ing in rounds and processing each route of the network
at most once per round. Experiments on the transit
network of London reveal that RAPTOR is more than
an order of magnitude faster than previous approaches.
Moreover, RAPTOR can be easily parallelized, which
accelerates queries even further. Finally, since RAP-
TOR does not rely on preprocessing, it can be directly
used in dynamic scenarios. Regarding future work, we
are interested in using RAPTOR to handle public trans-
port networks of continental size. For such networks,
however, we most likely have to apply some preprocess-
ing.

Acknowledgments. We would like to thank Do-
minic Green, Hatay Tuna, Kutay Tuna, and Simon
Williams for inspirational discussions and processing the
London transit data.

References

[1] I. Abraham, D. Delling, A. V. Goldberg, and R. F.
Werneck. A Hub-Based Labeling Algorithm for Short-
est Paths on Road Networks. In SEA, LNCS 6630, pp.
230-241. Springer, 2011.

[2] H. Bast. Car or Public Transport — Two Worlds.
In Efficient Algorithms, LNCS 5760, pp. 355-367.
Springer, 2009.

[3] H. Bast, E. Carlsson, A. Eigenwillig, R. Geisberger,
C. Harrelson, V. Raychev, and F. Viger. Fast Rout-
ing in Very Large Public Transportation Networks us-
ing Transfer Patterns. In ESA, LNCS, pp. 290-301.
Springer, 2010.

[4] R. Bauer, D. Delling, and D. Wagner. Experimental
Study on Speed-Up Techniques for Timetable Informa-
tion Systems. Networks, 57(1):38-52, January 2011.

[5] A. Berger, D. Delling, A. Gebhardt, and M. Miiller-
Hannemann. Accelerating Time-Dependent Multi-
Criteria Timetable Information is Harder Than Ex-
pected. In ATMOS, OASIcs, 2009.

[6] A. Berger, M. Grimmer, and M. Miiller-Hannemann.
Fully Dynamic Speed-Up Techniques for Multi-criteria
Shortest Path Searches in Time-Dependent Networks.
In SEA, LNCS 6049, pp. 35—46. Springer, 2010.

[7] G. Brodal and R. Jacob. Time-dependent Networks as
Models to Achieve Fast Exact Time-table Queries. In
ATMOS, ENTCS 92, pp. 3-15, 2004.

[8] Chicago Transit Authority. www.transitchicago.com.

[9] D. Delling. Time-Dependent SHARC-Routing. Algo-
rithmica, 60(1):60-94, May 2011.

[10] D. Delling, B. Katz, and T. Pajor. Parallel Compu-
tation of Best Connections in Public Transportation
Networks. In IPDPS, pp. 1-12. IEEE, 2010.

[11] D. Delling, B. Katz, and T. Pajor. Parallel Com-
putation of Best Connections in Public Transporta-
tion Networks. Journal version. Submitted for publica-
tion. Online available at illwww.iti.uni-karlsruhe.
de/~pajor/paper/dkp-pcbcp-11.pdf, 2011.

[12] D. Delling, T. Pajor, and D. Wagner. Engineering
Time-Expanded Graphs for Faster Timetable Informa-
tion. In Robust and Online Large-Scale Optimization,
LNCS 5868, pp. 182—206. Springer, 2009.

[13] D. Delling, P. Sanders, D. Schultes, and D. Wagner.
Engineering Route Planning Algorithms. In Algorith-
mics of Large and Complex Networks, LNCS 5515, pp.
117-139. Springer, 2009.

[14] E. W. Dijkstra. A Note on Two Problems in Connexion
with Graphs. Numerische Mathematik, 1:269-271,
1959.

[15] Y. Disser, M. Miiller-Hannemann, and M. Schnee.
Multi-Criteria Shortest Paths in Time-Dependent
Train Networks. In WEA, LNCS 5038, pp. 347-361.
Springer, 2008.

[16] R. Geisberger. Contraction of Timetable Networks
with Realistic Transfers. In SEA, LNCS 6049, pp. 71—
82. Springer, 2010.

[17] General Transit Feed Specification. code.google.com/
transit/spec/transit_feed_specification.html

[18] London Data Store. data.london.gov.uk

[19] Los Angeles County Metropolitan Transportation Au-
thority. www.metro.net

[20] K. Madduri, D. A. Bader, J. W. Berry, and J. R.
Crobak. Parallel Shortest Path Algorithms for Solving
Large-Scale Instances. In C. Demetrescu, A. V. Gold-
berg, and D. S. Johnson, editors, The Shortest Path
Problem: Ninth DIMACS Implementation Challenge,
DIMACS Book 74, pp. 249-290. AMS, 2009.

[21] Metropolitan Transportation Authority of the State of
New York. www.mta.info

[22] U. Meyer and P. Sanders. A-Stepping: A Parallelizable
Shortest Path Algorithm. Journal of Algorithms,
49(1):114-152, 2003.

[23] M. Miiller-Hannemann and M. Schnee. Finding All
Attractive Train Connections by Multi-Criteria Pareto
Search. In Algorithmic Methods for Railway Optimiza-
tion, LNCS 4359, pp. 246-263. Springer, 2007.

[24] M. Miiller-Hannemann, M. Schnee, and L. Frede. Ef-
ficient On-Trip Timetable Information in the Presence
of Delays. In ATMOS,0ASIcs, 2008.

[25] E. Pyrga, F. Schulz, D. Wagner, and C. Zaroliagis.
Efficient Models for Timetable Information in Public
Transportation Systems. ACM Journal of Experimen-
tal Algorithmics, 12(2.4):1-39, 2007.

[26] Transport for London. www.tfl.gov.uk

route 0

trip 0 trip 1

route 1

trip 2 trip 3 trip 4

StopTimes:’ ‘ ‘ ‘

[1]

[1]

[|

[|

4

A
—

Routes: [ro |71 [r2]7s | 74]

v%v

RouteStops:’ ‘ ‘ ‘ ! ‘ ‘

Figure 3: Hlustration of the adjacency structure of routes.

A Data Structures

In this appendix, we present details on the data struc-
tures we use for RAPTOR. For simplicity, we assume all
routes, trips, and stops have sequential integral identi-
fiers, each starting at 0.

Route Traversal. For the main loop of the algo-
rithm, we need to traverse routes. For route r, we need
its sequence of stops (in order), as well as the list of all
trips (from earliest to latest) that operate on that route.

To enable this operation, we store an array Routes
where the i-th entry holds information about route ;.
It stores the number of trips associated with r;, as well
as the number of stops in the route (which is the same
for all its trips). It also stores pointers to two lists.

The first pointer in Routes[i| points to a list repre-
senting the sequence of stops along route r;. Instead of
representing each list of stops separately (one for each
route), we group them into a single array RouteStops.
Its first entries are the sequence of stops of route 0, then
those for route 1, and so on. The pointer in Routes|i]
is to the first entry in RouteStops that refers to route
i. See Figure 3.

The second pointer in Routes[i] points to a repre-
sentation of the list of trips that operate on that route.
Once again, instead of keeping separate lists for differ-
ent routes, we keep a single array StopTimes. (See
Figure 3.) This array is divided into blocks, and the
i-th block contains all trips corresponding to route r;.
Within a block, trips are sorted by departure time (at
the first stop). Each trip is just a sequence of stop times,
represented by the corresponding arrival and departure
times.

A route r; can be processed by traversing the stops
in RouteStops associated with r;. To find the earliest
trip departing from some stop p along the route after
some time 7, we can quickly access the stop times of
all trips at r; at p in constant time per trip due to
the way we sorted StopTimes. In particular, when
processing r; with trip ¢, the arrival time of the next stop

is determined by the subsequent entry in StopTimes.
Furthermore, to check if an earlier trip improves r;, we
can jump |r;| (the length of the route r; as stored in
Routes) entries to the left to retrieve the departure time
of the next earlier trip.

Other Operations. We still need to support some
operations outside the main loop of the algorithm. For
those, we need an array Stops, which contains infor-
mation about each individual stop. In particular, for
each stop p;, we must know the list of all routes that
serve it—this is important for our marking improve-
ment. Moreover, we also need the list of all foot-paths
that can be taken out of p;, together with their corre-
sponding lengths.

As before, we aggregate these two sets of lists in
two arrays. StopRoutes contains the lists of routes
associated with each stop: first the routes associated
with pg, than those associated with p;, and so on.
Similarly, Transfers represents the allowed foot-paths
from pg, followed by the allowed foot-paths from p;, and
so on. (Each individual foot-path from p; is represented
by its target stop p; together with the transfer time
£(p;,pj).) The i-th entry in Stops points to the first
entries in StopRoutes and Transfers associated with
stop p;. See Figure 4.

reansters: | | | | |

Stops: E;

StopRoutes:’ ‘ ‘ ‘

Figure 4:
stops.

Illustration of the adjacency structure of

