
Engineering Time-Expanded Graphs for Faster

Timetable Information?

Daniel Delling, Thomas Pajor, and Dorothea Wagner

Department of Computer Science, University of Karlsruhe, P.O. Box 6980, 76128 Karlsruhe, Germany.
{delling,pajor,wagner}@informatik.uni-karlsruhe.de

Abstract. We present an extension of the well-known time-expanded approach for timetable infor-
mation. By remodeling unimportant stations, we are able to obtain faster query times with less space
consumption than the original model. Moreover, we show that our extensions harmonize well with
speed-up techniques whose adaption to timetable networks is more challenging than one might expect.

1 Introduction

During the last years, many speed-up techniques for computing a shortest path between a
given source s and target t have been developed. The main motivation is that computing
shortest paths in graphs is used in many real-world applications like route planning in road
networks or timetable information for railways. Although Dijkstra’s algorithm [6] can
solve this problem, it is far too slow to be used on huge datasets. Thus, several speed-
up techniques have been developed (see [5] for an overview) yielding faster query times
for typical instances. However, recent research focused on developing speed-up techniques
for road networks, while only few work has been done on adapting techniques to graphs
deriving from timetable information systems. In general, two approaches exist for modeling
timetable information: The time-dependent and time-expanded approach. While the former
yields smaller inputs (and hence, smaller query times), the latter allows a more flexible
modeling of additional constraints. It turns out that adaption of speed-up techniques to
each of these models is more challenging than one might expect.

In this work, we use a different approach for obtaining faster query times. Instead of
applying a routing algorithm, e.g., plain Dijkstra, on the original model, we improve the
time-expanded model itself in such a way that a routing algorithm does not exploit parts
of the graph not necessary for solving the earliest arrival problem (EAP). Interestingly, it
turns out that those optimizations are included in the time-dependent approach implicitely.
By introducing those techniques to the time-expanded approach, query times for the time-
expanded approach are comparable to the time-dependent approach.

1.1 Related Work

The simple, i.e., without realistic transfers, time-expanded model has been introduced
in [22]. The model has been generalized in [19] in order to deal with realistic transfers.
Since then, this realistic model has been used for many experimental studies, e.g., [15, 20,
2]; most of them focusing on faster speed-up techniques or multi-criteria optimization for
timetable information. However, [22] enriched the simple time-expanded graph by short-
cuts and [20] introduced minor changes to the time-expanded model itself by removing
unnecessary nodes with outgoing degree 1.

? Partially supported by the Future and Emerging Technologies Unit of EC (IST priority – 6th FP), under contract
no. FP6-021235-2 (project ARRIVAL).



1.2 Our Contributions

This paper is organized as follows. Section 2 includes formal definitions and a review of the
time-expanded model for timetable information. Our main contribution is Section 3. We
show how the main ingredient for high-performance speed-up techniques in road networks,
i.e., contraction, can be adapted to time-expanded graphs. Unfortunately, it turned out that
this contraction yields a tremendous growth in number of edges (unlike in road networks).
However, by changing the modeling of unimportant stations, a Dijkstra does not exploit
unnecessary parts of the network. The key observation is the following. Assume T is a
station with only one line stopping. A passenger traveling via T only leaves the train if T
is her target station, otherwise it never pays off to leave the train. Moreover, we are able to
generalize this approach to stations with more lines stopping at that station. In Section 4
we introduce a new speed-up technique tailored to time-expanded graphs based on blocking
certain connections. Furthermore, we show how existing techniques have to be adapted to
timetable graphs. It turns out that certain pitfalls exist that one might not expect. However,
those adapted techniques harmonize well with our new approaches, which we confirm by an
experimental evaluation in Section 5. We conclude our work in Section 6 with a summary
and future work.

A preliminary version of this paper has been published in [4]. Besides some minor im-
provements, we here provide detailed proofs of correctness.

2 Preliminaries

Throughout the whole work, we restrict ourselves to the earliest arrival problem (EAP),
i.e., find a connection in a timetable network with lowest travel time. In the following we
often call this single-criteria search in contrast to multi-criteria search that also minimizes
number of transfers and further criteria [15, 20].

Moreover, we restrict ourselves to simple, directed graphs G = (V, E, length) with pos-
itive length function length : E → R

+. The reverse graph G = (V, E) is the graph ob-
tained from G by substituting each (u, v) ∈ E by (v, u). A partition of V is a family
P = {P0, P1, . . . , Pk} of sets Pi ⊆ V such that each node v ∈ V is contained in exactly one
set Pi. An element of a partition is called a cell. The boundary nodes BP of a cell P are all
nodes u ∈ P for which at least one node v ∈ V \P exists such that (v, u) ∈ E or (u, v) ∈ E.

The Condensed Model is the easiest approach for modeling timetable information. Here,
a node is introduced for each station and an edge is inserted iff a direct connection between
two stations exists. The edge weight is set to be the minimum travel time over all possible
connections between these two stations. Unfortunately, several drawbacks exist. First of all,
this model does not incorporate the actual departure time from a given station. Even worse,
travel times highly depend on the time of the day and the time needed for changing trains
is also not covered by this approach. As a result, the calculated travel time between two
arbitrary stations in such a graph is only a lower bound of the real travel time. However,
in Section 4 we show that the condensed model is helpful for certain speed-up techniques.

The (Realistic) Time-Expanded Model. Throughout this work, we use the realis-
tic time-expanded model allowing realistic queries. Therefore, three types of nodes are

2



used to represent certain events in the timetable. Departure and arrival nodes are used
to model elementary connections in the timetable. Thus, for each elementary connection
c ∈ C one arrival and departure node is created and an edge is inserted between them.
To model transfers, transfer nodes are introduced. For each departure event one trans-
fer node is created which connects to the respective departure node having weight 0.
To ensure a minimum transfer time transfer(S) at a specific station S, an edge from
each arrival node u is inserted to the smallest (considering time) transfer node v where
∆(time(u),time(v)) ≥ transfer(S). Here ∆(·, ·) denotes the time difference between
two points in time and time : V → T maps each node to its timestamp with respect to the
timetable. Due to the periodic nature of our timetables ∆ is defined by

∆(t1, t2) :=

{
t2 − t1 if t2 ≥ t1,
t2 + 1440− t1 otherwise.

To ensure the possibility to stay in the same train when passing through a station, an
additional edge is created which connects the arrival node with the appropriate departure
node belonging to this same train. Further to allow transfers to an arbitrary train, transfer
nodes are ordered non-decreasing. Two adjacent nodes (w.r.t. the order) are connected by
an edge from the smaller to the bigger node. Furthermore, to allow transfers over midnight,
an overnight-edge from the biggest to the smallest node is created. For further details,
see [20].

For each edge e = (u, v) in the expanded graph the weight w(e) is defined as the time
difference ∆(time(u),time(v)) of the nodes the edge connects. Hence, we call the graph
consistent in time, meaning for each path from u to v in the graph, the sum of the edge
weights along the paths is equal to the time difference ∆(time(u),time(v)).

For future considerations the following notation will be helpful. Let ≺ ⊆ V × V be a
relation which compares two events in time. Since in the expanded model nodes correspond
to events with a certain timestamp, our relation is defined on the set of nodes of the graph.
We say for two nodes u, v ∈ V that u ≺ v if the event of u is happening before the event of
v. Please note that it cannot be determined for u and v if u ≺ v just by comparing time(u)
and time(v) due to the periodic nature of the timetable and the fact that times are always
expressed in minutes after midnight. If for example time(u) = 400 and time(v) = 600
there are two possibilities. Either u ≺ v with ∆(u, v) = 200 or v ≺ u with ∆(v, u) = 1640.
As a consequence, the ∆ function applied to a tuple (u, v) is only valid if u ≺ v.

3 Engineering the Time-Expanded Model

In this section, we present approaches how to enhance the classical time-expanded model.
Our first attempt applies a technique deriving from road networks, i.e., contraction, to
railway graphs. However, it turns out that this approach yields a too high number of edges.
Hence, we also introduce the Route-Model which changes the modeling of “unimportant”
stations.

3.1 Basic Contraction

All speed-up techniques developed during the last years have one thing in common. During
preprocessing they apply a contraction routine, i.e., a process that removes unimportant

3



nodes from the graph and adds shortcuts to the graph to keep the distances between the
remaining nodes correct. Interestingly, the fastest hierarchical technique for routing in road
networks, Contraction Hierarchies [7], relies only on such a routine. The key observation is
that in road networks, the average degree of remaining nodes does not explode.

At a glance, one could be optimistic that contraction also works well in railway networks.
Like in road networks, some nodes in time-expanded graphs are more important than others.
However, contraction does not exploit the special structure of time-expanded timetable
graphs. For example, departure nodes have an outgoing degree of 1. Thus, we can safely
remove such nodes and add a shortcut between the corresponding transfer and arrival
node. More precisely, we propose a new contraction routine consisting of three steps. In the
following we explain each step separately.

Omitting Departure Nodes The first step of our contraction routing bypasses all de-
parture nodes. In [20], the authors state that departure nodes can be omitted in time-
expanded graphs which can be interpreted as bypassing those nodes.

Omitting Arrival Nodes In a second step, we bypass all arrival nodes within the net-
work. As a consequence, the degree of transfer nodes highly increases. By these two steps
we reduce the number of nodes by approximately a factor of 3. However, the graph still
contains all original transfer nodes of which some are more important than others.

Bypass Transfer Nodes The final step of our contraction bypasses nodes according to
their degree. We bypass nodes with low degree first yielding changes in the degree of its
neighbors. Our contraction ends if all transfer nodes have a total degree at least of δ,
which is a tuning parameter. We suggest to use a min-heap to determine the next node
to be bypassed. The key of a node x shall be degin(x) + degout(x).

Note that we need not apply all three steps. While the first step reduces both number
of nodes and edges, the following two steps yield higher edge counts. In the following, we
call a time-expanded model with shortcut departure nodes, the phase 1 model. The phase 2
model has neither arrival nor departure nodes. If we also remove (some) transfer nodes, we
call the resulting graph a phase 3 graph. For an experimental evaluation of this contraction
routine, see Section 5.

3.2 Route-Model

In our experimental studies, it turned out that our contraction routine from the last section
suffers from a dramatic growth in number of edges. Already our phase 2 model has up to
3.6 times more edges than the original graph (cf. Section 5). Hence, we here introduce a
different approach, called the route model. In contrast to contraction, we exploit certain
semantic properties of the time expanded graph regarding transferring which eventually
leads to a reduction of the number of shortest paths. The classic time-expanded model
allows transfers at a station from each arriving train to all subsequent departing trains.
However, when planning an itinerary by hand, we would probably do the following intuitive
pruning: During the way from the source to the target station assume we find a route which
leads to some station S on the way, arriving there at time tS. Then, we would not need to
examine paths toward station S with an arrival time t′S > tS, since computing these paths
is redundant as we already arrived at S earlier, and we could achieve the same result by
taking the earlier computed path arriving at S at tS and then waiting at S until t′S. This
observation is the basic idea behind the route model.

4



Remodeling of Stations. The modifications to the (original realistic) time-expanded graph
are done locally and independently for each station S, and involve the following three steps:

1. Remove all outgoing edges from all arrival nodes. This includes edges to transfer nodes
as well as edges to the departure node of the same train.

2. Insert a minimal number of new transfer-edges directly from the arrival nodes to depar-
ture nodes. This allows us to model transfers more specific without losing any optimal
shortest paths in comparison to the original time expanded model.

3. Keep the transfer nodes and their interconnecting edges as well as departure-edges from
transfer to departure nodes. Although, there are no more edges in the graph to get from
an arrival node to a transfer node, the transfer nodes are still used as source nodes for
the actual Dijkstra query.

The only non-trivial modification is the second one, where for each arrival node we need
to find a minimal set of departure nodes which shall become reachable from the particular
arrival node. For that reason let S be the currently considered station and NS all neighbors
of S. A station T ∈ NS is called a neighbor of S if at least one elementary connection from
S to T exists. Thus, we can speak of routes between S and each neighbor from NS. We
now use the following notation. u denotes an arbitrary but fixed arrival node of S from
which outgoing edges are inserted. v denotes the departure node toward which the edges
(u, v) are inserted. Furthermore, w denotes the arrival node corresponding to the elementary
connection to which the departure node v belongs. The basic idea is to insert (at least) one
edge per route toward a departure node belonging to the the particular route. So, let us
consider some fixed station T ∈ NS with T 6= R where R is the station where we just came
from through u. Of all departure nodes v belonging to an elementary connection (v, w) from
S to T we insert an edge (u, v) in S according to the following criteria.

1. The node w is the smallest (regarding time) possible (meaning it is not in violation with
the second criterion) arrival node at T that is after u, i.e. w � u.

2. The node v respects the transfer time criterion at S. For that reason it has to hold that
v � u + transfer(S) if u and v belong to different trains, or v � u if they share the
same train.

Obviously, by this strategy we select the edge (u, v) according to the earliest possible arrival
event at the target station T . This yields a transfer to a train which arrives at T by the
earliest possible time. Note that if we instead would have chosen v according to the earliest
possible departure node at S, we could have missed a different train that departs at S later,
but arrives at T earlier. Such a scenario is called overtaking of trains. Also note, that if the
train belonging to u utilizes the route toward station T , it does not necessarily have to be
the case, that the inserted edge (u, v) corresponds to the departure event of that specific
train. It simply corresponds to the train arriving at T first, which may well be a different
train.

Transfer Times at Neighboring Stations. While we did respect the transfer time criterion
of S, we also have to respect the transfer time criterion at T . Figure 1 shows why this is
important.

On the left side the train Z2 arriving at T just slightly after Z1 is the optimal path, but
it can not be transferred to, because at S we only chose Z1 and at T the transfer time is

5



v

w

Z1

Z2

wrong path

right path

u

S T

(a)

v

w

wrong path

right path

u

Z1

Z2

S T

(b)

Fig. 1: Two problems concerning the transfer time criterion at station T .

too big to reach it from Z1. On the right picture the scenario is even worse. While the train
Z1 is the earliest train regarding the arrival time at T , the optimal route again contains Z2

which departs at S earlier than Z2, but it is not reachable because it arrives at T slightly
after Z1. Again the transfer time at T is too big to enter Z2 at T . In both cases we have to
ensure that Z2 can be entered somewhere. Since our modifications should remain local in
the sense that modifications at S should not involve modifications at some other stations,
we ensure that Z2 can be reached at S.

By adding some more edges to the graph, we are able to allow those connections as well.
Let wearl denote the earliest arrival node at T as computed before. Then, we insert edges
(u, v) (belonging to connections (v, w)) satisfying the following properties.

1. Consider all trains arriving after wearl but no later than the transfer time at T , meaning
w � wearl and w ≺ wearl + transfer(T ).

2. Still respect the transfer time criterion at S, i.e. v � u+transfer(S) if u and v belong
to different trains and v � u otherwise.

This routine ensures that (a) it is possible to arrive at T as early as possible and (b) all
trains that go through T within the margin between the earliest arrival time and the transfer
time at T can be reached by entering them at S.

Uncommon Routes. Despite these modifications, we additionally have to deal with another
phenomenom in railway networks. In very few cases, it might pay off to use an itinerary
with a sequence of stations R → S → T → S → R′ instead of R → T → R′. This odd
situation may arise if T and S are close to each other, a train runs from R to T , another
from T to R′, and transfer(S) < transfer(T ) holds. Figure 2 gives an example.

Our Route-Model does not allow such connections. However, we may overcome this
problem by introducing edges at arrival nodes u of S toward departure nodes leading back
to R if and only if the following inequation holds:

κR,S + κS,R + transfer(S) < transfer(R).

Here κR,S denotes the best lower bound regarding travel time from R to S. By this we
ensure that no shortest paths get lost while in most cases we still get the advantage of
prohibiting cycles along the same route. Please note, that we can not rule out cycles such
as · · · → R → S → T → R → · · · , however cycles of this type occur less often in general
timetable networks.

6



Station R Station S
Z1

Z1

Z2

Z2

transfer(R)
too big

transfer(S)
small enough

Fig. 2: Situation where it is necessary to go forth and back along the same route in order to transfer to train Z2.

Leaving Big Stations Untouched. It turns out that remodeling of stations with many neigh-
bors, e.g., major train hubs, lead to a disproportionately high increase in additional edges,
since for each neighbor (route) at least one edge must be inserted for each arriving train.
In the original time expanded model, however, at most two edges existed for each arrival
node (arrival-transfer and arrival-departure). Since our modifications are only local we can
choose for each station individually whether we want to convert it to the Route-Model or
not. For that reason we introduce a tuning parameter γ indicating that stations with more
neighbors than γ should be left untouched. Hence, changing γ yields a trade-off between a
speed-up regarding the number of touched nodes against an increasing size of the edge set
of the graph.

A problem that arises when mixing Route-Model stations with classic stations is that
the main advantage of the Route-Model—subsequent connections on the same route are
not visited during the Dijkstra search—may fade. Analyzing the example in Figure 3, we
observe a big station which has not been converted followed by a route containing a few
small stations. While at the small stations no connections exist between connections of the
same route, they are nevertheless visited, because they are all accessible through the big
station. Hence, we developed Node-Blocking which adopts the idea behind the Route-Model

Big Station Small Station Small Station

Fig. 3: When a big station which is not converted is visited during a Dijkstra query, all subsequent connections
are visited as well, while only the red path should be relevant. Unimportant nodes are omitted in the figure.

7



as a speed-up technique, and blocks redundant connections of the same route, so they are
not visited. This technique is explained in Section 4.

3.3 Correctness of the Route-Model

In this section we provide an extensive correctness proof of our Route-Model, i.e. we show
that applying Dijkstra on the Route-Model still yields correct solutions to the earliest
arrival problem.

In order to conduct our proof we need to introduce some notions first. Let Π be a path
in a time-expanded railway graph. Then Π covers a sequence of stations S = S1 → S2 →
· · · → Sn. A sequence of the form S1 → S2 → · · · → Sk−1 → Sk → Sk−1 → · · ·S2 → S1

is called a cycle. Note, that there might be more complicated “cycles” like for example
S1 → S2 → S3 → S1, but we restrict ourselves to the simple cycles as defined above. A
sequence S′ is said to be contained in a sequence S, if S′ is part of S, i.e. the sequence S′

occurs at some place in S. A cycle S is called dispensable if it holds that

k−1∑
i=1

κSi,Si+1
+ transfer(Sk) +

k−1∑
i=1

κSi+1,Si
≥ transfer(S1).

Here κR,S for two stations R and S, again, denotes the minimal travel time from R to
S. Now, a sequence S is called minimal, if it does not contain any dispensable cycles. A
minimal sequence can be constructed from any (non-minimal) sequence by removing every
dispensable cycle from it. Think of it as continuing the journey at S1 (of the cycle) directly
instead of going through the cycle first. Since the minimal travel time of the cycle is longer
than the transfer time at S1, this is always possible.

First, we now prove the following lemma, which is essential to the proof of correctness.

Lemma 1. Each minimal sequence of stations in the realistic time expanded graph is also
contained in the Route-Model graph.

Proof. Let S be a minimal sequence in the time expanded graph. If S does not contain any
cycles, then it is trivially contained in the Route-Model by its construction rules: At each
station Si for each neighbor edges are introduced to connect to them, just as well toward
Si+1.

If there is a non-dispensable cycle in the sequence S, then the only place where no edges
might be in the Route-Model graph is at the turning point Sk of the cycle. The sub-cycle
Sk−1 → Sk → Sk−1 must be non-dispensable itself, otherwise it would not be contained in
S. For that reason, it must hold that

κSk−1,Sk
+ transfer(Sk) + κSk,Sk−1

< transfer(Sk−1).

But this is exactly the criterion for which edges back to Sk−1 are inserted in the Route-
Model. Hence, the path S is also contained in the Route-Model. ut

We can now deduce the main correctness theorem.

Theorem 1. Applying Dijkstra on the Route-Model yields correct solutions to the earli-
est arrival problem.

8



Proof. We prove the theorem in two steps. First, we show that each shortest path in the
Route-Model is also contained in the original time expanded model and second, we show
the reverse, that for each shortest path in the expanded model there is an equivalently long
shortest path in the Route-Model.

Route Model → Classic Model. Let Π be an arbitrary (shortest) path in the Route-Model
covering a sequence S of stations. The first construction step, namely the removal of edges
does not create any new paths in the Route-Model, so by that argument Π is also contained
in the classic expanded graph. For the second construction step (the appropriate insertion
of new outgoing edges from the arrival nodes) does not lead to any new shortest paths
either. Since an edge e = (u, v) at some station Si is only inserted if it does not violate the
transfer time criterion, it always corresponds to a valid path in the classic time expanded
graph. If no trains are changed through e, then e is exactly the train-edge from the arrival to
the departure node of that train. If trains are changed through e, then by the construction
rules it holds that u + transfer(Si) ≺ v. But, in this case there is also a path (through
some transfer nodes) from u to v in the classic graph. By that reason, there are no shorter
paths in the Route-Model than in the classic model.

Classic Model → Route Model. We now show that no shortest paths get lost by the Route-
Model. We prove this by contradiction. Let Π be a shortest path of length λ retrieved by
some query from S1 to Sn at departure time td(S1). Assume that the shortest path Π ′

computed in the Route-Model for the same query has length λ′ > λ. Then there are two
possibilities.

1. The sequence of stations covered by Π and Π ′ are identical.
Then it must hold that at some station Si in the classic model we entered a train
Zf that arrives at Sn earlier. We assume without the loss of generality that Si is the
latest possible station (meaning the nearest from the target station) where we entered
the faster train Zf . Because there is no possibility to enter Zf at a later point, for all
subsequent stations Si+1, . . . , Sn it must hold that either Zf arrives there before the
slower train Zs (computed by the Route-Model), or that it arrives after Zs but within
the margin of the transfer time at the particular station (otherwise Si would not be the
latest possible station to switch to Zf ).
Let wf be the arrival node of Zf and ws be the arrival node of Zs at the next station
Si+1. In the first case if wf ≺ ws there must have been an edge inserted in the Route-
Model to board Zf at Si, because there is always an edge inserted to the train arriving
at Si+1 earliest. In the second case if ws + transfer(Si+1) � wf , there is also an edge
inserted at Si to board Zf , because edges to all trains along the route are inserted that
arrive at Si+1 within the margin of transfer(Si+1). Hence it is possible to board Zf

at Si in the Route-Model which is the desired contradiction.
2. The sequence of stations covered by Π and Π ′ are not identical.

Let us call the sequences S and S′. Because of Lemma 1 there must also exist a (poten-
tially longer) path along S in the Route-Model. If we substitute Π ′ for that path, this
case can be reduced to the first one leading to the desired contradiction.

Thus, the two models are equivalent in the sense that (a) no shorter itineraries can be
computed in the Route-Model and (b) for each (shortest) itinerary computed in the classic
model there is an equally short itinerary computable in the Route-Model. ut

9



4 Speedup Techniques

In principle, we could use Dijkstra’s algorithm for solving EAP. However, plain Dijkstra
visits unnecessary parts of the graph, even if we use our Route-Model. Hence, we introduce
two approaches for obtaining faster query times. We adapt existing techniques—developed
for road networks—to timetable graphs and introduce a new speed-up technique following
the ideas from our Route-Model.

4.1 Tailored Speed-Up Techniques

Node-Blocking is a speed-up technique tailored to time-expanded networks. It basically
incorporates the ideas behind the Route-Model as described in Section 3.2: if we can reach
a station S at some time tS we try to prune paths reaching S at a later time t′S > tS.
Recall that the Route-Model prunes the search by removing certain edges from the graph.
Node-Blocking, on the contrary, achieves a similar result by dynamically blocking departure
nodes during the Dijkstra query. The idea is as follows. If we visit a departure node v
belonging to an elementary connection targeting some station T , we can prune all future
departure nodes b targeting T .

Preprocessing. Formally, each departure node v of an elementary connection between two
stations S and T induces a set Bv of blocked nodes. A node b is contained in Bv if and only
if the following conditions hold.

1. b is a departure node at S belonging to an elementary connection targeting the same
station T as v.

2. b � v holds.
3. If w and c are the arrival nodes at T of the connections associated with v and b, respec-

tively, then w +transfer(T ) ≺ c must hold, i.e., we respect the transfer time criterion
at T .

Although the “blocked state” of each node is dynamic in the sense that it depends on
the shortest path query, and therefore must be computed during the query, the set Bv

of inducing blocked nodes can be precomputed for each node v by iterating through all
departure nodes of the station and checking whether the above criteria apply to them.

Note that in contrast to the Route-Model, we do not have to deal with the transfer
time criterion at S, since we only block nodes, and hence never allow a path to be taken
which was forbidden by the transfer time criterion at S. In worst case, we block departure
nodes which cannot be reached anyway due to the transfer time criterion of S. Moreover,
all special cases are covered by our third condition.

Query. The modifications to standard Dijkstra algorithm are simple. We introduce an
additional flag blocked(v) to all nodes of the graph, which is initialized to false. Then,
whenever we try to insert a node v into the queue, we mark all nodes Bv as blocked. If v is
marked as blocked, we prune the search.

Combination with Route Model. Although our Route-Model and Node-Blocking follow the
same ideas, the advantage of the Route-Model is the lower computation-overhead during
the query. However, as discussed in Section 3.2, it does not pay off to remodel major hubs.
Hence, Node-Blocking harmonizes well with the Route-Model as we use Node-Blocking for
pruning paths at such hubs.

10



Combination with Phase 1+ Models. Since from the Phase 1 model onwards departure
nodes are removed, Node-Blocking has to be altered slightly to conform with these models.
Instead of departure nodes blocking future departure nodes, we simply let the corresponding
arrival nodes (belonging to the respective departure nodes) block each other. In this case,
the arrival nodes assume the role of the previous departure nodes regarding blocking, which
allows us to continue using the same query algorithm.

Correctness of Node-Blocking. We assume at this point that the reader is familiar
with the notions introduced during the correctness proof of the Route-Model in Section 3.3,
in particular with the terms sequence and cycle. However, we do not restrict ourselves to
simple cycles here. The term dispensable cycle can be generalized to any cycle S = S1 →
· · · → Sn → S1 if it holds that

n−1∑
i=1

κSi,Si+1
+ κSn,S1 ≥ transfer(S1).

Please note, that this condition does not contain transfers along the cycle, because we do
not necessarily have a unique “turning point” that induces a transfer.

Theorem 2. Applying Node-Blocking to Dijkstra’s algorithm yields correct solutions to
the earliest arrival problem.

Proof. We conduct this proof in two steps. First, we show that each shortest path with Node-
Blocking enabled is also a path without Node-Blocking. Second, we show that a shortest
path without Node-Blocking due to a minimal sequence of stations is also computable with
Node-Blocking enabled.

Node-Blocking → Without Node-Blocking. This is trivially true. Since Node-Blocking blocks
nodes when they are about to be inserted into the priority queue, we can see this as dynam-
ically deleting edges from the graph (namely the edges pointing to blocked nodes) during
the query. Obviously, the graph emerging at the end of the query is a subgraph of the
original graph, hence the computed path is also contained in the original graph without
Node-Blocking enabled.

Without Node-Blocking → Node-Blocking. Let Π be a shortest path covering a minimal
sequence of stations S computed by Dijkstra. Note again, that for any shortest path Π ′

covering a non-minimal sequence S′ we can construct a minimal sequence S by removing
each dispensable cycle. This directly induces the desired path Π. Then the following two
statements hold.

1. A path ΠB with Node-Blocking enabled covering the same sequence exists.
The default blocked-state of all departure nodes is false. Therefore, when we arrive
at some station Si along the sequence S on our path, the first departure node leading
to Si+1 is not blocked when it is inserted into the priority queue (Note, a node never
blocks itself, so this is even true if only one connection toward Si+1 existed). For that
reason, there exists a path from Si to Si+1. Note, that due to the minimal nature of
the sequence S the subsequence Si → Si+1 is not contained again in S at a future
point with one exception: The travel time of the cycle (beginning with Si+1) is longer

11



than transfer(Si+1), but in this case the departure node belonging to the respective
connection arriving within the margin of transfer(Si+1) is not blocked.

2. ΠB is a shortest path. Assume td(Si) is the first time the Dijkstra algorithm discovers
a departure node u along the route Si → Si+1 in our sequence. Let furthermore ta(Si) be
the arrival time at Si+1 of the connection belonging to that departure node. Now assume
further, that the optimal route continues at Si+1 at some point td(Si+1) � ta(Si+1) +
transfer(Si+1). Then taking the non-blocked connection through u and waiting at
Si+1 yields an optimal subpath from Si to Si+1. If the optimal journey continues at Si+1

within the margin of transfer time, i.e. td(Si+1) ≺ ta(Si+1) + transfer(Si+1) then we
ensure that the respective connections arriving within that margin are not blocked by
u, hence the optimal subpath from Si to Si+1 is prevailed as well. Since Si and Si+1 were
arbitrary sections along the (optimal) sequence S, the computed path ΠB is a shortest
path.

From this follows that Node-Blocking yields correct shortest path queries w.r.t. the earliest
arrival problem. ut

4.2 Adapting Speed-Up Techniques

Although the adaption of many techniques may be promising, we choose basic goal-directed
techniques for adaption. It turned out that adaption of more sophisticated techniques, e.g.,
Highway Hierarchies [21], Contraction Hierarchies [7], REAL [9], SHARC [1], is much more
challenging than expected. The main reason are either the need of a bidirectional query
algorithm or the bad performance of the contraction routine.

Arc-Flags. The classic Arc-Flag approach, introduced in [14, 13], first computes a partition
P of the graph and then attaches a label to each edge e. A label contains, for each cell
Pi ∈ P , a flag AFPi

(e) which is true if a shortest path to at least one node in Pi starts with
e. A modified Dijkstra—from now on called Arc-Flags Dijkstra—then only considers
those edges for which the flag of the target node’s cell is true. The big advantage of this
approach is its easy query algorithm. However, preprocessing is very extensive. The original
approach grows a full shortest path tree from each boundary node yielding preprocessing
times of several weeks for instances like the Western European road network. Recently, a new
centralized approach has been introduced [12]. However, it turns out that this centralized
cannot be used in time-expanded transportation networks due to memory consumption.
Hence, we use the original approach of growing full shortest path trees from each node.

Adaption. The query algorithm can be adapted to time expanded railway graphs very
easily. We only have to consider that the exact target node is unknown (just the target
station is known). For that reason we simply abort the Dijkstra algorithm as soon as a
node belonging to the target station is settled. The preprocessing of Arc-Flags, however,
needs some extra attention. Since we do not know the exact target node in advance, we
have to ensure that all nodes belonging to the same station also get the same cell-id of
the partition assigned. For that reason, we simply compute the partition on the condensed
graph and map it to the expanded graph by assigning for each node v ∈ V the cell-id due
to cell(v) := cell(station(v)).

12



Computing the backwards-shortest path trees from each boundary node of each cell can
then be done as described in [14]. However, this approach yields a problem specific on time
expanded graphs. Since the length of any path in the graph always corresponds to the time
needed to travel between the beginning and ending event (node) of that particular path, any
two different paths between the same nodes always have the same length. Therefore, the
number of shortest paths (in fact, there are only shortest paths in time expanded graphs)
is tremendous. Unfortunately, if we set flags to true for every path, we do not observe any
speed-up (cf. Section 5). In order to achieve a speed-up we have to prefer some paths over
others. We examine the following four reasonable strategies for prefering paths:

Hop Minimization. For two paths of equal length, choose the one that has less hops
(nodes) on it. This approach is often used in road networks [1].

Transfer Minimization. Choose the path that has less transfers between trains. While
this is a good strategy for querying, it sets too many arc-flags to true, since for different
boundary nodes too many different paths lead a transfer-minimal connection.

Distance Minimization. Choose the path that is shorter (geographically).
Direct Geographical Distance. Choose the path whose direct geographical distance is

closer to the source node of the shortest path tree, formally for some node v that is
reached from u we choose the new predecessor according to

pre(v)new := argmin
w∈{u,pre(v)}

{
√(

coordx(w)− coordx(s)
)2

+
(
coordy(w)− coordy(s)

)2},

where s is the source node of the shortest path tree. This optimization is very aggressive,
as it leads to the same result for different boundary nodes of the same cell as often as
possible.

Section 5 shows the huge difference in the query performance when the arc-flags are com-
puted with different strategies. Note that we can optimize query times by setting as many
flags as possible to false. However, we also loose the ability to choose the “best” path during
the query (e.g. due to a minimal number of transfers, costs, etc.). This yields a trade-off
between query time and the quality of the computed itineraries.

Arc-Flags and Node-Blocking. Unfortunately, Node-Blocking does not harmonize with Arc-
Flags. This is due to the fact of Node-Blocking being a very aggressive technique, leaving
only very few connection arcs per station and route accessible. The optimization criterion
hereby, namely arriving as early as possible at the next station does not necessarily match
with our path selection during Arc-Flags preprocessing. As a result, both techniques prune
different shortest paths. A possible solution would be to adapt the path selection for Arc-
Flags according to Node-Blocking. However, this turns out to be complicated as we have
to grow shortest path trees on the reverse graph. Hence, this path selection strategy is not
implemented yet.

ALT. Goal directed search, also called A∗ [11], pushes the search towards a target by adding
a potential to the priority of each node. The ALT algorithm, introduced in [8], uses a small
number of nodes—so called landmarks—and the triangle inequality to compute such feasible
potentials. Given a set L ⊆ V of landmarks and distances d(`, v), d(v, `) for all nodes v ∈ V
and landmarks ` ∈ L, the following triangle inequations hold: d(u, v)+d(v, `) ≥ d(u, `) and

13



d(`, u)+d(u, v) ≥ d(`, v). Therefore, π(u, t) := max`∈L max{d(u, `)−d(t, `), d(`, t)−d(`, u)}
provides a lower bound for the distance d(u, t) and, thus, can be used as a potential for u.

Adaption. The query algorithm is, again, straight forward to adapt to time-expanded rail-
way graphs. Since the only difference to the standard Dijkstra algorithm is the key which
is inserted into the priority queue, we can still simply abort the search as soon as a node
of the target station gets settled. However, we cannot compute the landmarks on the ex-
panded graph directly since then we would have to know the target node t in advance.
Hence, we compute the landmarks on the much smaller condensed graph which still yields
feasible potentials because the edge weights in the condensed graph are defined as the lower
bounds regarding travel time. The potential function π during the query is then computed
as follows:

π(v) = max
`∈L

max{dist(station(v), `)− dist(T, `), dist(`, T )− dist(`, station(v))},

where T is the target station of the query. We can think of this as using a “lower bound of
a lower bound” of the shortest path.

Former studies revealed that the selection of landmark nodes is crucial to the perfor-
mance of ALT. The quality of the lower bounds highly depends on the quality of the
selected landmarks. Thus, several selection strategies exist. To this point, no technique is
known how to pick landmarks yielding the smallest search space for random queries. Thus,
several heuristics exist. The best are avoid and maxCover. The first tries to identify re-
gions that are not well covered by landmarks while the latter is basically the avoid routine
followed by a local optimization. For details, we refer to [10].

Due to the small size of the condensed networks, another strategy for obtaining potentials
seems promising. For each query, we use the target station T as landmark and compute
the distances of all stations to T on-the-fly. The advantage of this dynamic-landmark-
selection is a tighter lower bound. However, we have to run a complete Dijkstra in the
condensed graph for each query which can take more time than using worse lower bounds
from landmarks during the query. Note that this approach for obtaining lower bounds for
A∗ was already proposed in [15].

Combining Arc-Flags and ALT. In [17], we observed that Arc-Flags (with the direct
geographical distance strategy) and ALT optimize in two different ways. While Arc-Flags
prunes paths that lead to the wrong direction geographically, ALT optimizes in time in
the sense that fast trains are preferred over slow trains. Fast trains (having less stops in
between) tend to get near the target station faster, yielding a lower key in the priority
queue regarding the lower bound function. For that reason, it is suggestive to examine the
combination of the two speed-up techniques. The implementation is straight-forward, since
Arc-Flags does not interfere with ALT—Arc-Flags simply ignores edges that do not have
their appropriate flag set, and ALT just alters the key in the priority queue.

5 Experiments

In this section, we present our experimental evaluation. Our implementation is written in
C++ using solely the STL. As priority queue we use a binary heap. Our tests were executed

14



on one core of an AMD Opteron 2218 running SUSE Linux 10.3. The machine is clocked at
2.6 GHz, has 16 GB of RAM and 2 x 1 MB of L2 cache. The program was compiled with
GCC 4.2, using optimization level 4.

Inputs. We use two inputs for our evaluation. The railway network of Central Europe
and a local bus network of greater Berlin. Both networks have been provided by HAFAS
for scientific use; the former network consists of 30,517 stations and 1,775,552 elementary
connections. The corresponding figures for the latter are 2,874 and 744,005, respectively.
While the network of Europe provides a good average structure for a railway network
mixed of long-distance trains supported by short-distance trains, the bus network of Berlin
consists of a very homogeneous structure, since there are almost no “long-distance” buses.
Because of this and the very dense operations of buses with their short travel times between
stations, it has already been shown [17] that this network seems to be a very hard instance
for timetable information queries.

It should be noted that, while our timetable data is realistic, the transfer times at the
stations were not available to us. Hence, we generated them at random and chose between
5 and 10 minutes for the railway and between 3 and 5 minutes for the bus network.

Default Settings. In the following, we report preprocessing times and the overhead of the
preprocessed data in terms of additional bytes per node. We evaluate query performance
by running 1 000 random s–t queries with source and target station picked uniformly at
random. We fix the departure time to 7:00 am. We report the average number of settled
nodes during the query as well as the average query time. The speed-up refers to the query
time and is computed in reference to the classic time expanded model without any speed-up
technique applied.

5.1 Models

Parameters. We start our experimental evaluation with parameter tests for our Route-
Model. Recall that in the Route-Model we may affect the conversion process by the selection
of γ which controls the maximum number of neighbors a station may have in order to
become a Route-Model station. In the following we use values between 2 and 10 for γ.
Table 1 reports for both our inputs: the resulting size (in terms of number of edges) and
query performance. Note that we do not report number of nodes, as the remodeling routine
does not add or remove any nodes. We also enabled Node-Blocking (see Section 4.1).

We observe that for both instances the Route-Model yields a speed-up. Increasing γ up
to 5 increases performance, while values > 5 do not pay off. This is mostly due to the fact
that for both graphs the majority of stations has less or equal than 5 neighbors (91% for
the Europe and even 99% for the Berlin network).

Concerning Europe with γ < 5, we observe that the resulting graph has less edges than
originally. Recall in the original graph the number of outgoing edges per arrival node is at
most 2 (one toward the nearest transfer node and one toward the departure node of the
same train). Hence, a decrease in number of the edges can only result from merely one edge
being inserted for many arrival nodes at stations of degree 2. Interestingly, this observation
of decreasing edges does not hold for our bus network which is due to the high density of
the network: Because the stations are very close to each other, it often holds that the travel
time to go forth and back between some stations S1 and S2 is less than transfer(S1),

15



Table 1: The effect of γ on the performance of the Route-Model with Node-Blocking enabled.

europe bvb
Size Query Size Query

γ-value #edges #settled [ms] speed-up #edges #settled [ms] speed-up

reference 8,505,951 1,161,696 534.7 1.00 3,694,253 151,379 37.6 1.00

2 7,912,584 411,836 202.4 2.64 3,785,680 91,591 27.4 1.37
3 8,035,324 359,294 171.7 3.11 4,292,849 74,963 25.2 1.49
4 8,332,816 329,413 158.3 3.38 5,059,228 63,438 25.1 1.50
5 8,729,619 313,046 154.1 3.47 5,437,647 59,670 25.4 1.48
6 9,071,974 303,460 153.9 3.47 5,625,277 57,990 25.6 1.47
7 9,396,276 297,831 155.1 3.45 5,768,926 56,994 25.8 1.46
8 9,712,940 292,482 156.4 3.42 5,782,375 56,921 25.7 1.46
9 9,936,119 289,036 158.7 3.37 5,782,375 56,921 25.8 1.46
10 10,195,050 285,103 159.3 3.36 5,782,375 56,921 25.8 1.46

which results in back-edges being inserted for arrival nodes at S2 (coming from S1). Second,
the operation frequency of the buses is very high, such that it may occur that edges toward
more than the first bus of the route are inserted, when they arrive at the next station within
the margin of its transfer time.

Summarizing, a value of γ = 5 yields the best results for railway input. The correspond-
ing figure for the bus networks is 4.

Comparison to the Classic Time-Expanded Model. Next, we compare different contraction
steps (Section 3) and our route model with the classic time expanded model. Table 2
shows the differences in graph size and query performance. While the overall graph size
decreases when switching from the classic expanded to the phase 1 model, the number
of edges significantely increases if applying our phase 2 model. Although the number of
nodes decreases about 50%, this increase in number of edges leads to an worse query
performance, since more edges are relaxed during the query. We hence conclude that the
phase 2 model—and therefore the phase 3 model as well—is not the preferred choice for
fast timetable queries.

Table 2: Comparison of the different models. The Route-Model is computed with γ = 5 for europe and γ = 4 for
bvb.

Size Query
input Model #nodes #edges #settled [ms] spd-up

Classic expanded 5,207,980 8,505,951 1,161,696 534.7 1.00
Phase 1 3,472,022 6,769,991 768,181 426.5 1.25
Phase 2 1,736,064 15,571,190 431,274 631.1 0.85

europe Route 5,207,980 8,729,619 793,462 360.6 1.48
Route w/ blocking 5,207,980 8,729,619 313,046 154.1 3.47
Route + Phase 1 3,472,018 6,821,337 439,024 256.3 2.09
Route + Phase 1 w/ blocking 3,472,018 6,821,337 200,213 122.8 4.35

Classic expanded 2,232,016 3,694,253 151,379 37.6 1.00
Phase 1 1,488,011 2,950,248 99,253 29.1 1.29
Phase 2 744,006 13,229,482 60,218 56.8 0.66

bvb Route 2,232,016 5,059,228 97,978 32.6 1.15
Route w/ blocking 2,232,016 5,059,228 63,438 25.1 1.50
Route + Phase 1 1,488,011 3,918,788 51,210 22.7 1.66
Route + Phase 1 w/ blocking 1,488,011 3,918,788 34,032 18.6 2.02

16



Regarding the Route-Model, the increase in graph size is still reasonable while the query
time decreases. However, we see, that the query performance benefits from Node-Blocking
as the speed-up more than doubles in the Europe network with Node-Blocking enabled. The
reason for the weak performance without Node-Blocking is that paths through the graph,
that should be pruned by the Route-Model approach, are still relaxed when they are not
blocked in non-converted big traffic hubs. In the bus network the general performance gain
is not as big as with the railway network. Even Node-Blocking does not have such a great
impact, which is mostly due to the dense structure of this network.

Because the Route-Model can be combined well with the phase 1 model (departure nodes
are simply removed after the conversion to the Route-Model), this gives us a gain in graph
size while still keeping the advantages of the Route-Model. The query performance behaves
as expected and increases by approximately one third compared to the Route-Model alone.
If we then additionally apply Node-Blocking on the route + phase1 model, we get the best
query performance of all the models which yields a speed-up of 4.35 in the railway network
of Europe and 2.02 in the Berlin bus network.

5.2 Speedup Techniques

Up to now, we showed that by remodeling stations and using additional pruning techniques,
we already achieve a speed-up of 4.35 over plain Dijkstra. Here, we now show that this
approach harmonizes well with other speed-up techniques deriving from road networks.

Path-Selection during Arc-Flags Preprocessing. We already mentioned in Section 4.2 that
in expanded timetable networks the number of shortest paths between two nodes is enor-
mously high. It turns out that setting arc-flags for all paths yields a bad query performance.
Hence, we have to favor some paths over the others. We proposed four different reasonable
strategies: Minimize hops, minimize transfers, minimize accumulated geographic distance
along the path and finally minimize the direct geographic distance from the preceding node
to the source of the shortest path tree (see Section 4.2). Table 3 shows the impact of each
strategy on the performance of Arc-Flags. Note that due to the long preprocessing times
of Arc-Flags, we use a subnetwork of our European instance, namely the German railway
network called de fern (6822 stations and 554996 connections).

Table 3: Arc-Flags. Evaluation of different path-selection strategies. For each strategy we apply a partition with
64 cells.

Prepro Query
Strategy [h:m] [B/n] #settled [ms] speed-up

reference — 0 152,998 58.1 1.00

hops 17:00 26.2 149,931 70.3 0.83
transfers 16:26 26.2 152,307 71.7 0.81
distance 20:53 26.2 134,462 61.8 0.94
geo. dist. to target 16:08 26.2 38,511 15.0 3.87

While minimizing hops is useful in road networks [1] (which can be interpreted there
as preferring a route that has less road crossings) this results in a poor performance in
railway network. Almost all flags are opened during preprocessing, thus the overhead of
the Arc-Flags query algorithm outweighs the benefit from the few remaining pruned arcs.

17



Interestingly, using minimal transfer or minimal distance strategies as path selection yields a
poor query performance as well. This is mostly due to too many different paths of boundary
nodes of the same cell being optimal, thus too many flags are set to true. Recall that the
partition is computed on the condensed graph, hence for one station that is at the border
of a cell, nodes belonging to all times of day are boundary nodes which may lead to very
different transfer or distance minimal routes in the graph.

The minimal direct geographic distance strategy overcomes this issue by always choosing
the same preceding node for all times of the day. For that reason, as many arc-flags as
possible are kept false, which eventually yields a speed-up of 3.87 on the German railway
network. Since all other strategies actually worsen the query performance, we choose the
direct geographic distance strategy for further experiments involving Arc-Flags on time
expanded railway networks.

Speed-Up Techniques on our Models. In the next experiment we compare the performance
of the adapted speed-up techniques on the different models from Section 3. Because of the
bad performance of the phase 2 model, we only compare the classic expanded model, the
phase 1 model, the Route-Model and the combination of the route and phase 1 models.

Furthermore, we tested the effect of dynamic-landmark-selection against a precomputed
set of landmarks. Table 4 shows our results. We show the query performance as well as
preprocessing-costs by preprocessing time and additionally bytes per node required to store
the preprocessed data. For each model we tested the following speed-up techniques:

– BA: Node-Blocking with ALT.
– BdA: Node-Blocking with ALT and dynamic-landmark-selection.
– uFA: Unidirectional Arc-Flags with ALT.
– uFdA: Unidirectional Arc-Flags with ALT and dynamic-landmark-selection.

Regarding classic ALT we always used a set of 8 precomputed landmarks by the max-
Cover [10] method. Arc-Flags were computed using a partition of 128 cells obtained from
SCOTCH [18]. The strategy for path-selection was geographic distance to target. Note that
for Arc-Flags, we turn off Node-Blocking (cf. Section 4.2).

We observe, that for all speed-up technique our modifications to the classic expanded
model yield improvements regarding both query performance and preprocessing time. While
the transition from the classic to the phase 1 model is more beneficial for Arc-Flags than
ALT with Node-Blocking, the latter performs better on the Route-Model where Node-
Blocking fits the model considerably better. The combination “Route + Phase 1” unifies
the advantages of each model yielding the best speed-ups.

In general, Arc-Flags has a higher impact on query time than ALT together with Node-
Blocking (about 5.5 times faster on both networks) which is being paid for with very
high preprocessing time and roughly 30 times more required space per node. Note, that
the dynamic ALT comes for free, as it does not require any preprocessing at all. With
our modified models we can, however, still achieve a speed-up of 10.13 in Europe and
2.54 in Berlin with dynamic ALT and Node-Blocking, which is useful in a scenario where
preprocessing is limited or not allowed.

Comparing the standard ALT against ALT with dynamic landmarks, we observe, that
regarding query time dynamic ALT only pays off as long as the general speed-up (achieved
through some other speed-up technique or model) does not exceed the cost we pay for

18



Table 4: Comparing different models in conjunction with the classic speed-up techniques. The parameter set used
throughout: 128 cells, geographic distance to target path-selection-strategy for Arc-Flags and 8 landmarks using
maxCover for the classic ALT.

europe bvb
Prepro Query Prepro Query

Model/Algorithm [h:m] [B/n] #settled [ms] spd [h:m] [B/n] #settled [ms] spd

Reference — 0 1,161,696 534.7 1.00 — 0 151,379 37.6 1.00

Classic Exp. (BA) ≈ 4 s 4.0 261,151 162.7 3.29 ≈ 2 s 4.1 96,533 33.6 1.12
Classic Exp. (BdA) ≈ 1 s 4.0 233,280 130.8 4.09 ≈ 1 s 4.0 94,345 29.1 1.29
Classic Exp. (uFA) 106:11 106.5 71,937 32.7 16.35 45:30 108.0 49,921 17.0 2.21
Classic Exp. (uFdA) 106:11 106.5 65,143 33.9 15.77 45:30 107.9 49,014 15.2 2.47

Phase 1 (BA) ≈ 5 s 4.5 208,579 145.5 3.67 ≈ 2 s 4.1 67,019 26.1 1.44
Phase 1 (BdA) ≈ 1 s 4.0 185,996 116.4 4.59 ≈ 1 s 4.0 65,488 22.8 1.65
Phase 1 (uFA) 77:52 127.2 30,583 14.0 38.19 31:59 129.0 15,004 5.4 6.96
Phase 1 (uFdA) 77:52 126.7 27,310 18.5 29.06 31:59 128.9 14,713 5.1 7.37

Route (BA) < 4 s 4.4 140,826 73.2 7.30 ≈ 2 s 4.1 49,591 22.3 1.69
Route (BdA) ≈ 1 s 4.0 127,444 65.4 8.18 ≈ 1 s 4.0 48,390 19.8 1.90
Route (uFA) 85:49 109.7 50,050 22.1 24.19 50:58 147.1 25,289 10.2 3.69
Route (uFdA) 85:49 109.3 45,180 25.3 21.13 50:58 147.0 24,785 9.3 4.04

Route + Ph. 1 (BA) ≈ 4 s 4.5 89,524 58.7 9.11 < 2 s 4.1 26,653 16.0 2.35
Route + Ph. 1 (BdA) ≈ 1 s 4.0 80,665 52.8 10.13 ≈ 1 s 4.0 26,007 14.8 2.54
Route + Ph. 1 (uFA) 83:58 128.2 20,044 9.5 56.28 34:56 170.6 6,195 2.6 14.46
Route + Ph. 1 (uFdA) 83:58 127.7 17,805 15.2 35.18 34:56 170.5 6,053 2.8 13.43

computing the distance table on-the-fly. Since the condensed graph of Europe has about
11 times more stations than the Berlin graph, the cost for computing the dynamic distance
table carries much more weight there—A one-to-all Dijkstra takes about 7 ms on the
condensed graph of Europe. Hence, it never pays off using dynamic landmarks together
with Arc-Flags here. The same effect can be observed in the Berlin network, however, only
with the combination of the route and phase 1 models due to the much smaller condensed
graph.

Summarizing, our modifications yield a speed-up of 3.5 if we apply ALT and Arc-Flags
to both time-expanded graphs. The corresponding figure for our bus network is 5.5. This
yields an overall speed-up of 56.28 for Europe and 14.46 for Berlin when compared to the
classic model without any speed-up technique applied.

5.3 Comparison to the Time-Dependent Model

Table 5 compares the performance of Dijkstra’s algorithm and ALT applied to our
route+phase 1 time-expanded model and the time-dependent model. We observe that by the
introduction of our Route-Model (and Node-Blocking) query performance of time-expanded
queries are faster than for the time-dependent approach. Hence, we are able to close the
performance-gap between both models. Analyzing the time-dependent approach, we notice
that Node-Blocking is included implicitly: During a query we do not relax an edge more
than once although it represents several connections running from one station to another.
Hence, early connections block later ones. Our remodeling and Node-Blocking technique
introduces these optimizations to the time-expanded approach. As a result the performance
advantage of the time-dependent approach fades.

19



Table 5: Performance of Dijkstraand uni-directional ALT using a time-dependent variant of our European input.
For comparison, the corresponding figure for the time-expanded approach (route-model with phase 1) are given as
well.

time-dependent time-expanded
Prepro Queries Prepro Queries

time #settled speed time speed time #settled speed time speed
technique [h:m] nodes up [ms] up [h:m] nodes up [ms] up

Dijkstra 0:00 260 095 1.0 125.2 1.0 0:00 200 213 1.0 122.8 1.0
uni-ALT 0:02 127 103 2.0 75.3 1.7 0:01 89 524 2.2 58.7 2.1

6 Conclusion

In this work, we introduced a local remodeling routine for the time-expanded approach based
on the intuition that at many stations in a network, the number of reasonable choices is little.
It turns out that this approach leads to a closely related speed-up technique harmonizing
well with our remodeling. Moreover, we adapted speed-up techniques to the time-expanded
model and show that they harmonize well with our new approach. Altogether, our approach
yields query times up to 56.28 times faster than pure Dijkstra.

Regarding future work, we are optimistic that our approach would also work well for
multi-criteria optimization. Although our pruning techniques may not work as strict as
for single-criteria search, the number of reasonable choices is little in this scenario as well.
Another very important problem is how to handle updates in case of delays. It seems as if
updating a time-expanded graph is rather expensive, though possible [3, 16].

References

1. R. Bauer and D. Delling. SHARC: Fast and Robust Unidirectional Routing. In I. Munro and D. Wagner,
editors, Proceedings of the 10th Workshop on Algorithm Engineering and Experiments (ALENEX’08), pages
13–26. SIAM, 2008.

2. R. Bauer, D. Delling, and D. Wagner. Experimental Study on Speed-Up Techniques for Timetable Informa-
tion Systems. In C. Liebchen, R. K. Ahuja, and J. A. Mesa, editors, Proceedings of the 7th Workshop on
Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS’07), pages 209–225.
Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, 2007.

3. D. Delling, K. Giannakopoulou, D. Wagner, and C. Zaroliagis. Timetable Information Updating in Case of
Delays: Modeling Issues. Technical Report 133, Arrival Technical Report, 2008.

4. D. Delling, T. Pajor, and D. Wagner. Engineering Time-Expanded Graphs for Faster Timetable Information.
In Proceedings of the 8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and
Systems (ATMOS’08), Dagstuhl Seminar Proceedings. Internationales Begegnungs- und Forschungszentrum für
Informatik (IBFI), Schloss Dagstuhl, Germany, September 2008.

5. D. Delling, P. Sanders, D. Schultes, and D. Wagner. Engineering Route Planning Algorithms. In J. Lerner,
D. Wagner, and K. A. Zweig, editors, Algorithmics of Large and Complex Networks, Lecture Notes in Computer
Science. Springer, 2009. To appear.

6. E. W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerische Mathematik, 1:269–271,
1959.

7. R. Geisberger, P. Sanders, D. Schultes, and D. Delling. Contraction Hierarchies: Faster and Simpler Hierarchical
Routing in Road Networks. In C. C. McGeoch, editor, Proceedings of the 7th Workshop on Experimental
Algorithms (WEA’08), volume 5038 of Lecture Notes in Computer Science, pages 319–333. Springer, June 2008.

8. A. V. Goldberg and C. Harrelson. Computing the Shortest Path: A* Search Meets Graph Theory. In Proceedings
of the 16th Annual ACM–SIAM Symposium on Discrete Algorithms (SODA’05), pages 156–165, 2005.

9. A. V. Goldberg, H. Kaplan, and R. F. Werneck. Better Landmarks Within Reach. In C. Demetrescu, editor,
Proceedings of the 6th Workshop on Experimental Algorithms (WEA’07), volume 4525 of Lecture Notes in
Computer Science, pages 38–51. Springer, June 2007.

10. A. V. Goldberg and R. F. Werneck. Computing Point-to-Point Shortest Paths from External Memory. In
Proceedings of the 7th Workshop on Algorithm Engineering and Experiments (ALENEX’05), pages 26–40. SIAM,
2005.

20



11. P. E. Hart, N. Nilsson, and B. Raphael. A Formal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cybernetics, 4:100–107, 1968.

12. M. Hilger. Accelerating Point-to-Point Shortest Path Computations in Large Scale Networks. Master’s thesis,
Technische Universität Berlin, 2007.

13. E. Köhler, R. H. Möhring, and H. Schilling. Acceleration of Shortest Path and Constrained Shortest Path
Computation. In Proceedings of the 4th Workshop on Experimental Algorithms (WEA’05), Lecture Notes in
Computer Science, pages 126–138. Springer, 2005.

14. U. Lauther. An Extremely Fast, Exact Algorithm for Finding Shortest Paths in Static Networks with Geo-
graphical Background. volume 22, pages 219–230. IfGI prints, 2004.

15. M. Müller–Hannemann and M. Schnee. Finding All Attractive Train Connections by Multi-Criteria Pareto
Search. In Algorithmic Methods for Railway Optimization, volume 4359 of Lecture Notes in Computer Science,
pages 246–263. Springer, 2007.

16. M. Müller–Hannemann, M. Schnee, and L. Frede. Efficient On-Trip Timetable Information in the Presence of De-
lays. In Proceedings of the 8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization,
and Systems (ATMOS’08), Dagstuhl Seminar Proceedings. Internationales Begegnungs- und Forschungszentrum
für Informatik (IBFI), Schloss Dagstuhl, Germany, September 2008.

17. T. Pajor. Goal Directed Speed-Up Techniques for Shortest Path Queries in Timetable Networks, January 2008.
Student Research Project.

18. F. Pellegrini. SCOTCH: Static Mapping, Graph, Mesh and Hypergraph Partitioning, and Parallel and Sequential
Sparse Matrix Ordering Package, 2007.

19. E. Pyrga, F. Schulz, D. Wagner, and C. Zaroliagis. Experimental Comparison of Shortest Path Approaches
for Timetable Information. In Proceedings of the 6th Workshop on Algorithm Engineering and Experiments
(ALENEX’04), pages 88–99. SIAM, 2004.

20. E. Pyrga, F. Schulz, D. Wagner, and C. Zaroliagis. Efficient Models for Timetable Information in Public
Transportation Systems. ACM Journal of Experimental Algorithmics, 12:Article 2.4, 2007.

21. P. Sanders and D. Schultes. Engineering Highway Hierarchies. In Proceedings of the 14th Annual European Sym-
posium on Algorithms (ESA’06), volume 4168 of Lecture Notes in Computer Science, pages 804–816. Springer,
2006.

22. F. Schulz, D. Wagner, and K. Weihe. Dijkstra’s Algorithm On-Line: An Empirical Case Study from Public
Railroad Transport. In Proceedings of the 3rd International Workshop on Algorithm Engineering (WAE’99),
volume 1668 of Lecture Notes in Computer Science, pages 110–123. Springer, 1999.

21


