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Abstract. Recent research on fast route planning algorithms focused either on
road networks or on public transportation. However, on the long run, we are in-
terested in planning routes in a multi-modal scenario: we start by car to reach
the nearest train station, ride the train to the airport, fly to an airport near our
destination and finally take a taxi. In other words, we need to incorporate public
transportation into road networks. However, we do not want to switch the type
of transportation too often. We end up in a label constrained variant of the short-
est path problem. In this work, we present a first efficient solution to a restricted
variant of this problem including experimental results for transportation networks
with up to 125 Mio. edges.

1 Introduction
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Fig. 1: Motivation of a label-constrained
shortest path: while the path at the top is
the quickest connection, it requires us to
use a car (black) between two trains (gray).
The path to the bottom, however, is prefer-
able since we do not need to leave the train.

Computing the quickest path in graphs model-
ing transportation networks is one of the show-
pieces of applied algorithms. In general, DI-
JKSTRA’s algorithm [1] finds a shortest (or
quickest) path between a given source s and
target t. Unfortunately, the algorithm is far too
slow to be used on huge datasets which ap-
pear frequently in route planning. Thus, sev-
eral speed-up techniques have been developed
that compute additional data during a prepro-
cessing step in order to speed-up queries dur-
ing the online phase.

However, all developed techniques so far
suffer from one drawback: they only work ei-
ther in road or railway networks. On the long
run, we are interested in multi-modal queries
where we change the type of transportation
along our journey. Unfortunately, it is not suf-
ficient to merge all networks and compute
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quickest paths in the resulting bigger network: the quickest path may force us to change
the type of transportation too frequently. See Figure 1 for an example. A possible ap-
proach to this problem is the LABEL CONSTRAINED SHORTEST PATH PROBLEM. The
idea is as follows. Each edge gets a label assigned depicting the type of transportation
network it represents. Then, only a path between s and t is valid if certain constraints
are fulfilled by the labels along the path. In this work, we present an approach how to
accelerate multi-modal queries by skipping main parts of the network without losing
correctness.

Related Work. Theoretical results on the hardness of the LABEL CONSTRAINED
SHORTEST PATH PROBLEM can be found in [3, 4]. Experimental evaluations of ba-
sic algorithms are given in [5], while basic speed-up techniques like A∗ [6] and bidirec-
tional search [7] have systematically been examined in [8]. Route planning in uni-modal
scenarios has been undergoing a rapid development in recent years with the fastest tech-
niques yielding query times of several microseconds in road networks [9]. For a recent
overview over uni-modal speed-up techniques, we direct the interested reader to [2].
However, to the best of our knowledge, there exists no route planning algorithm that
can answer a multi-modal query in a huge combined transportation network within
milliseconds. Since our approach is closely related to (uni-modal static) Transit-Node
Routing [9], we briefly recap this technique. TNR selects a subset T ⊂ V (normally
10 000 nodes) of so called transit nodes and stores distances between them in a ta-
ble. Moreover, each node v ∈V stores the distances to all relevant transit nodes, called
access-nodes. Then, with good choice of T , a long-range query can be reduced to three
table lookups. In order to decide whether a query is a long-range query, a locality filter is
introduced. In case s and t are too close to each other, an arbitrary speed-up technique
is applied. The percentage of global queries can be increased by introducing several
layers of transit nodes.

Our Contribution. In this work, we present an efficient approach to a special case of
multi-modal route planning. We assume that we want to use the road network only at
the beginning and the end of a journey and that the public transportation network is
much smaller than the road network. Then, by adapting some ideas from Transit-Node
Routing, we may “skip” the road network with a table lookup and restrict the search
to the much smaller public transportation network (PTN). We present how to compute
so-called access-nodes to the PTN for each node efficiently. With this information at
hand, we are able to present Access-Node Routing, accelerating multi-modal queries
(in our scenario) by more than 4 orders of magnitude. However, the main achievement
is that we are able to separate the public transportation network from the road network
in a multi-modal context. This allows us to run different query algorithms on the public
transportation and the road networks. Although, in this work we use an augmentation of
DIJKSTRA’s algorithm on the public transportation network, it would also be possible
to use a speed-up technique or even multi-criteria search.

This work is organized as follows. Section 2 settles basic definitions we need for
this work. In Section 3 we briefly recapt existing and new approaches for modeling
transportation networks. Moreover, we show how to obtain a multi-modal network and
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present that a label-constrained variant of the shortest path problem is a possible ap-
proach for better routes in multi-modal networks. It turns out that we need an automaton
that restricts the number of network changes. Starting from analyzing our networks and
automata, we develop our main contribution (Section 4) of this work: Access-Node
Routing. By running several experiments on transportation networks with up to 125
Mio. edges (Section 5), we show that Access-Node Routing is up to 31 000 times faster
than a label-constrained variant of DIJKSTRA. This value is achieved without using a
speed-up technique within the public transportation network. Section 6 concludes our
work with a brief summary and interesting open questions.

2 Preliminaries

A graph is a tuple G = (V,E) consisting of a finite set V of nodes and a set E ⊆V×V of
edges which are ordered pairs (u,v) if the graph is directed. The node u is called the tail
of the edge, v the head. The reverse graph

←−
G = (V,

←−
E ) is the graph obtained from G by

substituting each (u,v)∈E by (v,u). The main difference between uni- and multi-modal
route planning is that the nodes and edges of a graph are labeled by a finite set Σ of
symbols which is often called an alphabet. The node-label is denoted by lab : V → Σ ,
the edge-label by lab : E → Σ . Throughout the whole work we restrict ourselves to
directed labeled graphs which are weighted by a length function len depicting the travel
time from u to v. Depending on the edge-label, edge weights may be time-independent
or time-dependent. For time-independent weights, we use a positive length function
len : E→R+, while for time-dependent edges, we use a time-dependent length function
len : E → F with the function space F consisting of positive periodic functions f :
Π → R

+,Π = [0, p], p ∈ N such that f (0) = f (p) and f (x) + x ≤ f (y) + y for any
x,y ∈ Π ,x ≤ y. Note that these functions respect the FIFO property [10], and hence
our networks fulfill the FIFO property as well. In the following, we call Π the period
of the input. The upper bound of f is denoted by f = maxx∈Π f (x), the lower by f =
minx∈Π f (x). Note that we can obtain a time-independent labeled lower/upper bound
graph G/G from G by replacing each edge function with their lower/upper bounds.

A sequence w := σ1,σ2, . . . ,σk of symbols from Σ is called a word. The length
of a word is the number of symbols it is composed of. A not necessarily finite set L
of words over Σ is called a language over Σ . A non-deterministic finite automaton
A := (Q,Σ ,δ ,S,F) consists of a finite set Q of states, an alphabet Σ , the transition
function δ : Q×Σ→P(Q), a set S of initial states and a set F of final states. A language
L is called regular if it can be accepted by a non-deterministic finite automaton [11, 12].
Throughout the whole work we restrict ourselves to regular languages.

3 Models and Basic Algorithms

We now briefly present how to model transportation networks as graphs and how to con-
struct a multi-modal graph from these ingredients. Finally, we present why the LABEL
CONSTRAINED SHORTEST PATH PROBLEM is useful for our application of reasonable
route planning in multi-modal scenarios.
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3.1 Models

Modeling a road network or foot networks as a graph Groad is straightforward. Junctions
are modeled as nodes and an edge e = (u,v) between two junctions u,v ∈V is inserted
if and only if a road segment from u to v exists in the road network. The edge weights
len(e) in the road network represent the average travel time on the specific road seg-
ment. For foot edges, we assign a weight based on the assumption that we walk the seg-
ment with 4 km/h on average. Note that our foot networks compared to our road networks
have the same node set whereas the edge sets may differ due to motorways (not open to
pedestrians), one-ways and pedestrian zones (not open to traffic). For railway networks
Grail, we use the realistic time-dependent approach as presented in [13] where edges
are time-dependent and depict several trains running on the same route from one station
to another. We model flight networks Gflight as follows. Our realistic raw data incor-
porates two major flight alliances: StarAlliance [14] and Oneworld [15]. Thus, for each
airport we introduce a supernode and two departure and arrival nodes—one for each
flight alliance. Edges between supernodes and departure nodes model check-in, arrival-
departure edges the changing of planes (with different weights for transfers between
flight alliances) and arrival-supernode edges the check-out. Time-dependent edges be-
tween two airports A and B depict direct flights between A and B. Depending on the
fact which flight alliance operates the respective flight, head and tail are chosen as the
corresponding departure and arrival nodes. See [16] for details.

Let Σ = {road,foot,rail,flight} be an alphabet. We construct a multi-modal
network from our four types of transportation networks Gσ = (Vσ ,Eσ ),σ ∈ Σ by first
labeling each node u and each edge e with a label lab(u), lab(e) ∈ Σ . Then, we unify
the node and edge-sets to a graph Gmulti = (

⋃
σ∈Σ Vσ ,

⋃
σ∈Σ Eσ ) =: (Vmulti,Emulti). In

order to connect the networks among each other, we introduce so called link-edges (u,v)
with lab((u,v))= link and lab(u) 6= lab(v). These edges depict possible switches from
one transportation type to another. So, we have Σ = {road,foot,rail,flight,link}.
We connect each station node (railways) and supernode (flights) with its closest node
from the road network. Moreover, we connect each airport with its closest train stations
by a link edge. However, head and tail must not be more than 5 km away from each
other.

3.2 The Label-Constrained Shortest Path Problem

The LABEL CONSTRAINED SHORTEST PATH PROBLEM is an augmentation of the
classic SHORTEST PATH PROBLEM. The idea is that only such paths between s and
t are valid that form a word of a language L. More precisely, given an alphabet Σ ,
a language L ⊂ Σ ∗, a weighted, directed graph G = (V,E) with Σ -labeled edges and
source and target nodes s, t ∈V , we ask for a shortest path P = (u1, . . . ,uk) from s = u1
to t = uk, where the sequence of labels along the edges of the path forms a word of L.
In other words, lab((u1,u2)) . . . lab((uk−1,uk)) ∈ L must hold.

It turns out that the complexity of this problem depends on the restrictions to L [4].
In our case, where L is regular, the problem remains polynomially solvable. Then, we
can use a straightforward adaption of DIJKSTRA’s algorithm for computing a label-
constrained shortest s–t path. Besides the inputs for a normal DIJKSTRA, we also
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require an automaton A := (Q,Σ ,δ ,S,F) that accepts our language L. We initial-
ize pairs (s,q), q ∈ S with dists((s,q)) = 0 and insert them with key 0 into a pri-
ority queue. Any other node-state tuple (u,q′) is initialized with dists((u,q′)) = ∞.
Then, we remove a node-state tuple (u,q′) with minimum key from the queue, relax
all outgoing edges e = (u,v), determine all states q′′ ∈ δ (q′, lab(e)) and check whether
dists((u,q′))+ len(e)< dists((v,q′′)) holds. If so, we update the distance label and en-
queue (v,q′′). We may stop the search as soon as we settle a tuple (t,q′) with a final
state q′ ∈ F .

Note that this procedure can be adapted to a time-dependent scenario easily: if we
want to compute the shortest path for a given departure time τ , we simply have to
evaluate edge weights for their correct departure time when relaxing them. If we want
to compute the shortest path for all departure times, we have to use a label-correcting
algorithm that propagates functions instead of constants through the network (see [17,
18] for details).

A Special Case. When planning a typical multi-modal voyage, we observe that in most
cases we start in the road or foot network. Then, we enter the public transportation
network without using the road network again (except for transfers) until the end of
the journey. There, we either use a taxi or rental car or go by foot to reach our final
destination. This observation is characterized by the following definition on languages.

Definition 1 (Enclose Property). Let L be a regular language over the alphabet Σ

of edge-labels. If L is of the form L = σ∗r1
lσ∗t lσ∗r2

, where σr1 ,σr2 ∈ {road,foot} and
σt ∈ {rail,flight} and l = link, we say that L fulfills the enclose property.

In other words, the public transportation is enclosed by the road network part. An
example for an automaton for such languages only allows railway connections enclosed
by foot-edges. In the following, we denote this automaton by foot-and-rail. By
substituting foot by road and rail by flight, we obtain a second automaton which
we call road-and-flight.

Trees and Profile-Graphs. In the following, we build label-constrained shortest path
trees and profile graphs. As discussed in Section 3.1, our railway- and flight-networks
are time-dependent. So, running a label-constrained DIJKSTRA with a given departure
time τ from a node u until the priority queue is empty yields a tree rooted at u. Similarly,
running a label-constrained label-correcting algorithm (cf. [17, 18]) for all possible de-
parture times from u yields a so-called profile-graph. For each node v, we obtain a
function depicting the travel time from v to u (the profile) with changing parent node
during the period.

4 Access-Node Routing

Analyzing the networks obtained from our multi-modal approach, we observe that most
part of the graph is made up of road segments and, hence, a multi-modal DIJKSTRA
spends most its time settling road nodes. Access-Node Routing (ANR) accelerates
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queries with an automaton fulfilling the enclose property as described in Section 3.2.
The main idea is to precompute distances to all relevant access points to the public
transportation network. With this information at hand, we may “skip” the road network
and restrict the search to a much smaller network. In the following, we define access-
nodes, how they can be computed efficiently and the resulting query algorithm. It turns
out that space consumption of this approach is rather high, hence, we present how to
reduce space consumption by using the concept of contraction [19]. Note that in the
following, we explain how to skip the road network, however, this approach can also be
used to skip a foot network. Experiments for both variants can be found in Section 5.

4.1 Access-Nodes

Not every node in the public transportation network is suited as “access-node”. For ex-
ample, in the flight network the departure and arrival nodes are used to model internal
procedures at airports and should not be accessed directly from the road network. More
precisely, a node v is called access-node candidate if lab(v) 6= road and at least one in-
cident edge is a link-edge. The set of all access-node candidates is denoted by A. In our
case the set A includes exactly all station nodes regarding the railway network and all
supernodes of the flight network (cf. Section 3). Nodes v∈ A can be interpreted as entry
(or exit) points to/from the public transportation network. Computing distances from
every road network node to every access-node would require too much space. More-
over, not every entry point to the public transportation network is mandatory for correct
shortest paths. More precisely, a node v ∈ A with lab(v) 6= road is an access-node for
all nodes u with lab(u) = road if there exists another node w ∈ A with lab(w) 6= road
for which the shortest u–w path (for at least one departure time) uses v to enter the
public transportation network (i.e., all ancestors of v are road-labeled). The set of (for-
ward) access-nodes for a node u is denoted by−→A (u). Note that we can define backward
access-nodes←−A (u) analogously.

4.2 Computing Access-Nodes

In the following, we explain how to compute forward access-nodes for each v ∈Vmulti
with lab(v) = road efficiently. Computing backward access-nodes is done analogously.
In general, we present two approaches for computing access-nodes, a forward and an
inverse approach, which we both explain in detail.

For the forward approach, we construct a profile-graph (with an automaton fulfill-
ing the enclose property) Tv from each v with lab(v) = road. Whenever we settle a
candidate node a ∈ A, we add a to −→A (v) if a parent—with respect to Tv—of a is a road
node. We may stop the search as soon as all nodes u in the priority queue are covered.
A node u is called covered if at least one of its ancestors—with respect to Tv—is a
non-road node. Note that this approach requires two profile-graph constructions (for-
ward and backward) per road node. Hence, this approach is only useful if the number
of access-node candidates is high and thus, the construction terminates early.

For the backward approach, we compute for each access-node candidate a ∈ A all
nodes u ∈ A−1(a). Therefore, we construct a backward profile-graph not relaxing edges
whose tail is a road node. By this, we obtain travel time functions from each a′ ∈ A \
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{a} to a ∈ A. Next, we construct a backward shortest path forest: we initialize a with
distance 0 and any a′ with an upper bound on the travel time functions to a. This time,
we do not relax public transportation edges. We may stop the search as soon as all nodes
u in the priority queue have a node a′ ∈ A \ {a} as ancestor. Finally, we add all nodes
with ancestor a to A−1(a). After performing this task for all candidates, we obtain−→A (v)
for all road nodes by inverting the relation A−1(·). Note that by bounding the functions,
we may compute a superset of the actual access-nodes.

4.3 Query

With the preprocessed data at hand, we can skip the road network part for multi-modal
queries with automata fulfilling the enclose property. Assume lab(s) = lab(t) = road.
In a first step, we add node-state tuples (as,qs) (with corresponding distances) for all
as ∈

−→
A (s) and all qs ∈ Q obtained by a link-labeled transition originating from an

arbitrary initial state of the automaton to the priority queue. Node-state tuples (a f ,q f )

for all a f ∈
←−
A (t) and all q f ∈ Q such that there is a link-labeled transition from q f

to a final state in the automaton are accumulated in a target node set T . In a second
step, we run a multi-modal query in the public transportation network to T not relaxing
edges whose head is a road node. We may stop the search if all (a f ,q f ) ∈ T have
a final label assigned or the priority queue runs empty. We end up having distances
dists((a f ,q f )) for all (a f ,q f ) ∈ T . Then, the length of the shortest path from s to t is
min(a f ,q f )∈T{dists((a f ,q f ))+dist(a f , t)}. Note that we can run time-, profile-, or even
multi-criteria-queries within the public transportation network. The main gain we obtain
is skipping the road network.

Note that the paths found by our access-node query algorithm must contain a public
transportation node. While for long-range queries this may be a meaningful restriction
(nobody wants to drive 30 hours by car), low-range queries may contain only road
nodes. Fortunately, computations of quickest paths in road networks can be done in
microseconds. So, we run a check-query with the CHASE-algorithm [20] that outputs
the length of the quickest path if only the road network is used.

4.4 Core Access-Node Routing

One of the main drawbacks of pure Access-Node Routing is its high space consump-
tion. For each node v of the road network we store two sets of access-nodes together
with corresponding distances. Although the number of access-nodes per road node is
relatively small, it is not necessary to store these sets for all nodes but only for important
ones, i.e., the core of the graph. We use a contraction routine that removes unimportant
nodes and adds shortcuts in order to preserve distances between core nodes.

Preprocessing for Core-Based Access-Node Routing is done in two steps. First, we
contract the graph by a node-reduction followed by an edge-reduction which we obtain
by a straightforward adaption of the concepts presented in [20]. However, in order to
preserve correctness, we may only remove road nodes having no incident link-edges. As
a result, the embedded time-dependent public transportation network is fully contained
in the core. See [19] for more details on uni-modal contraction. In a second step, we
compute forward and backward access-nodes for all core nodes u with lab(u) = road.
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The query is a three-phase algorithm. During phase 1, we run a bidirectional DI-
JKSTRA, not relaxing edges outgoing from core-nodes. Whenever the forward search
settles a core node, we add it to a set S. A set T is maintained for backward search analo-
gously. Phase 1 ends if both priority queues are empty. Then, a (two-phase) access-node
query is started with S as source nodes and T as target nodes.

4.5 Comparison to Transit-Node Routing

As already mentioned, Access-Node Routing (ANR) adapts ideas from Transit-Node
Routing (TNR). Recall that TNR has three ingredients: a table for storing distances
between transit nodes, stored distances for each node to its relevant transit (access)
nodes, and a locality filter for deciding whether s and t are far away enough from each
other (cf. Section 1). In fact, ANR can be interpreted as a multi-modal variant of TNR.
Our access-node candidates become transit nodes and we store distances to the relevant
access-nodes. Unfortunately, due to poor upper bounds on the travel time functions of
the time-dependent edges of the public transportation network, we cannot make up an
efficient locality filter as for TNR: we have to run a local path query in almost all cases.
In fact, the only time we do not need to run a check query is when s and t are not in the
same component of the road network.

Note that TNR uses a (sophisticated) forward approach for determining the relevant
access-nodes. Unfortunately, our public transportation networks tend to be sparse and
they are time-dependent as well. As a result, the inverse approach turns out to be better
for our scenario. Summarizing, ANR can be interpreted as a variant of TNR with higher
flexibility but worse query performance. However, TNR has neither been adapted to
time-dependent nor label-constrained route planning so far. Both aspects are crucial
preconditions for route planning in our scenario.

5 Experiments

We conducted our experiments on one core of an AMD Opteron 2218 running SUSE
Linux 10.3. The machine is clocked at 2.6 GHz, has 32 GB of RAM and 2 x 1 MB
of L2 cache. The program was compiled with GCC 4.2, using optimization level 3.
Our implementation is written in C++ using solely the STL at some points. As priority
queue we use a binary heap.

Inputs. We use two different networks and two automata. The first network depicts
the foot network of Germany (|V | ≈ 4.5 Mio, |E| ≈ 11.2 Mio) merged with all long
distance trains from the timetable of the winter period 2000/2001 (498 stations and
18069 connections). This includes InterRegio (IR), InterCity (IC) and InterCityEx-
press (ICE) trains. We call the resulting graph de-road-rail(long) and apply the
foot-and-rail automaton to this input. Our second input consists of the road net-
work of Western Europe (|V | ≈ 30 Mio, |E| ≈ 73 Mio) and North America (including
Canada, |V | ≈ 20 Mio, |E| ≈ 51 Mio) and the flight network of both flight alliances (359
airports with 32 621 flights). We use this graph together with the road-and-flight au-
tomaton. In the following, this input is referenced to by na-eur-road-flight. Note
that second input has about 50 Mio. nodes and 125 Mio. edges.
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Methodology. In the following, we report preprocessing times and the overhead of the
preprocessed data in terms of additional bytes per node. We evaluate query performance
by random queries, i.e., the nodes s and t are picked uniformly at random. Since public
transportation networks are time-dependent, we additionally need a departure time τ ,
which we pick uniformly at random as well. We provide the average number of set-
tled nodes, i.e., the number of nodes extracted from the priority queue and the average
query time. Unless otherwise stated, all figures in this paper are based on 1 000 000
random s-t queries and refer to the scenario that only the lengths of the shortest paths
have to be determined, without outputting a complete description of the paths. Effi-
cient methods for unpacking table lookups have been published in [9]. Local paths are
computed by CHASE [20]which is a combination of Contraction Hierarchies [19] and
Arc-Flags [21].

Preprocessing. In Section 4, we presented two approaches to compute access-nodes:
a forward variant and an inverse approach. It turns out that the former is too slow for
our multi-modal inputs, hence, we only use the inverse approach. Table 1 reports key
figures for computing access-nodes. Note that na-eur-road-flight, we only use the
core-based approach (cf. Section 4.4). Also note that we report the preprocessing effort
for CHASE. Since we need to keep the road network as a uni-modal graph in memory,
the space consumption here includes the graph.

Regarding de-road-rail(long), the average number of forward and backward
access-nodes per road node is 32.4 resp. 20.9. Thus, 32.4 railway stations are important
(on average) to enter the railway network. While this seems to be a very high number
(even more if we consider that these railway stations have to be reached by foot), there
are two good reasons for this. First, the railway network is sparsely embedded into the
road network, thus, for a single road network node a lot of stations are important at least
once a day. Second, long distance trains do not operate very frequently on some parts of
the network. As a consequence, the upper bounds are of poor quality yielding many un-
necessary access-nodes. The same effect can be observed in the na-eur-road-flight
network, as flights are even more infrequent. This makes it attractive to cover far dis-
tances by car, thus, including many (also far away) airports into the set of relevant
access-nodes.

Table 1: Preprocessing Figures for (Core-Based) Access-Node Routing. We report the number
of access-node candidates, the average number of forward and backward access-nodes per road
node and the preprocessing time for computing access-nodes as well as the additionally required
space per node. We also report preprocessing effort for CHASE. Note that for CHASE we report
the space consumption including the graph.

Access-Node Routing CHASE
core- AN- forward backward time space time space

network based cand. access-nodes access-nodes [min] [B/n] [min] [B/n]
de-road-rail(long) 473 32.4 (6.8%) 20.9 (4.4%) 143 435 17 56
de-road-rail(long) X 473 31.0 (6.5%) 19.7 (4.1%) 26 56 17 56
na-eur-road-flight X 359 118.7 (33.0%) 119.1 (33.1%) 161 224 233 57
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Preprocessing times are in the range of several hours (between 26 minutes for the
core of the German network and almost three hours for the core of the continental net-
work). As expected, switching to Core-Based Access-Node Routing drastically reduces
both preprocessing time and the required space for the access-nodes. The additional
effort for preprocessing CHASE is comparable to ANR. We need 56 bytes per node
(including a uni-modal graph) and preprocessing times are within a reasonable range.

Query Performance. Table 2 reports query performance of a multi-modal DIJKSTRA,
ANR, and of our CHASE check-query for all our inputs. Note that the figures for
plain DIJKSTRA are based on 1 000 random queries. We observe a drastic drop in
both the number of settled nodes and the query time when using Access-Node Rout-
ing. In de-road-rail(long) we observe that the query time increases from 3.9 to
5.8 milliseconds when switching to the core-based variant. This is due to the compu-
tational overhead of the initialization phase. The performance of Access-Node Routing
on na-eur-road-flight is better than on de-road-rail(long). This is due to the
fact that the flight network is significantly smaller than the railway network embed-
ded in de-road-rail(long). Moreover, the number of access-nodes per road node is
only 14.2 whereas in Germany it is twice that much. The highest speed-up of 31551
is achieved when applying our biggest input. We are able to perform intercontinental
queries with an average time of 2.3ms compared to over 72sec when the standard algo-
rithm is used. We also observe that the running time for CHASE is negligible compared
to the execution time of ANR: query times are between 51 and 111 µs for settling only
very few nodes.

Three Phases. The query algorithm for Core-Based Access-Node Routing is made up
of three distinct phases (cf. Section 4.4). Table 3 reports the distribution of the running
time among the particular phases of the query algorithm. We observe that the pub-
lic transportation query makes up the major part of the running time (between 73.9%
and 96.2% depending on the network). This is expected since we do not use a speed-
up technique within the public transportation network. The time for looking up the
access-nodes is negligible as it is less than 2% on de-road-rail(long) and 7.9%
on na-eur-road-flight of the running time. This is due to the fact that the number
of average access-nodes per road node is higher than on the other two networks (cf.
Table 1).

Table 2: Query performance of (Core-Based) Access-Node Routing without local queries (i.e.,
all shortest paths use the transportation network) compared to plain multi-modal DIJKSTRA. Note
that the figures for the latter are based on only 1000 random queries.

DIJKSTRA Access-Node Routing Local (CHASE)
settled time core- #settled time speed- #settled time

network nodes [ms] based nodes [ms] up nodes [ms]
de-road-rail(long) 2483030 3492 13295 3.9 895 168 0.111
de-road-rail(long) 2483030 3492 X 13524 5.8 602 168 0.111
na-eur-road-flight 46244703 72566 X 4200 2.3 31551 75 0.051
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Table 3: In-depth analysis of Core-Based Access-Node Routing. This table reports the distri-
bution of query time among the particular phases of the query algorithm: the bidirectional ini-
tialization, the table-lookups of access-nodes, and DIJKSTRA on the public transportation net-
work. Furthermore, we report the amount of local queries (paths that do not use the transporta-
tion network) when generating 1000 (de-road-rail(long), ny-de-road-flight) and 100
(na-eur-road-flight) random queries.

QUERY

initialization access-node public total local
Network phase lookup transport [ms] queries
de-road-rail(long) 0.15 (2.4%) 0.08 (1.4%) 5.87 (96.2%) 5.8 2.3%
na-eur-road-flight 0.42 (18.2%) 0.18 (7.9%) 1.70 (73.9%) 2.3 24%.0

Furthermore, we report the relative number of local paths, i.e., how many quick-
est paths do not use the public transportation network. We observe a great variation
depending on the network. While in de-road-rail(long) only 2.3% of the queries
do not use the railway, while for na-eur-road-flight the amount of local queries
is 24%. Still, as observable in Table 2, running a CHASE query comes almost for free
compared to the running time of the multi-modal query. In general, the high number of
local queries is also due to the fact that we pick τ randomly. By computing a departure
time with minimal travel time via profile-searches [18], the amount of local queries most
probably will decrease. Note that in our scenario, it is sufficient to use profile-searches
within the public-transportation network in order to answer such requests.

6 Conclusion

In this work we presented a first efficient approach to a special variant of multi-modal
routing in large transportation networks. Using the reasonable assumption that we want
to use a car only at the beginning and the end of the journey, we can split the search
by adapting some ideas from Transit-Node Routing. The key idea is to skip the road
network during the query. Experiments on real-world multi-modal networks with up to
125 Mio. edges confirm the feasibility of our approach: random queries are up to 31 000
times faster than with a multi-modal variant of DIJKSTRA. We want to stress out that
we could achieve further speed-ups by using a better routing algorithm than DIJKSTRA
within the public transportation network.

Regarding future work, it would be interesting to develop a multi-modal speed-up
technique that does not restrict the choice of the automaton combined with reasonable
speed-ups. Preliminary results from [16] confirm that the adaption of some speed-up
techniques, e.g., Contraction Hierarchies, Arc-Flags or Landmarks, is much more chal-
lenging than one might expect. So, such a technique is non-trivial. Furthermore, we
want to develop better foot networks and accelerate public transportation queries.
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