Intriguingly Simple and Fast Transit Routing*

Julian Dibbelt, Thomas Pajor, Ben Strasser, and Dorothea Wagner

Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany.
{dibbelt,pajor,strasser,dorothea.wagner}@kit.edu

Abstract. This paper studies the problem of computing optimal jour-
neys in dynamic public transit networks. We introduce a novel algorithmic
framework, called Connection Scan Algorithm (CSA), to compute jour-
neys. It organizes data as a single array of connections, which it scans
once per query. Despite its simplicity, our algorithm is very versatile. We
use it to solve earliest arrival and multi-criteria profile queries. Moreover,
we extend it to handle the minimum expected arrival time (MEAT) prob-
lem, which incorporates stochastic delays on the vehicles and asks for
a set of (alternative) journeys that in its entirety minimizes the user’s
expected arrival time at the destination. Our experiments on the dense
metropolitan network of London show that CSA computes MEAT queries,
our most complex scenario, in 272 ms on average.

1 Introduction

Commercial public transit route planning systems are confronted with millions
of queries per hour [12], making fast algorithms a necessity. Preprocessing-based
techniques for computing point-to-point shortest paths have been very successful
on road networks [8,16], but their adaption to public transit networks [2,10] is
harder than expected [1,3,4]. The problem of computing “best” journeys comes
in several variants [14]: The simplest, called earliest arrival, takes a departure
time as input, and determines a journey that arrives at the destination as early
as possible. If further criteria, such as the number of transfers, are important,
one may consider multi-criteria optimization [7,9]. Finally, a profile query [6,7]
computes a set of optimal journeys that depart during a period of time (such as
a day). Traditionally, these problems have been solved by (variants of) Dijkstra’s
algorithm on an appropriate graph model. Well-known examples are the time-
expanded and time-dependent models [6, 10, 14, 15]. Recently, Delling et al. [7]
introduced RAPTOR. It solves the multi-criteria problem (arrival time and
number of transfers) by using dynamic programming directly on the timetable,
hence, no longer requires a graph or a priority queue.

In this work, we present the Connection Scan Algorithm (CSA). In its ba-
sic variant, it solves the earliest arrival problem, and is, like RAPTOR, not
graph-based. However, it is not centered around routes (as RAPTOR), but el-
ementary connections, which are the most basic building block of a timetable.
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CSA organizes them as one single array, which it then scans once (linearly)
to compute journeys to all stops of the network. The algorithm turns out
to be intriguingly simple with excellent spatial data locality. We also extend
CSA to handle multi-criteria profile queries: For a full time period, it com-
putes Pareto sets of journeys optimizing arrival time and number of transfers.

Finally, we introduce the minimum ez-
pected arrival time problem (MEAT). Hbf | 9:48 |10:08
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The output can be viewed as a decision
graph that provides all relevant alterna-
tive journeys at stops where transfers
might fail (see Fig. 1). We extend CSA
to handle these queries very efficiently.
Moreover, we do not make use of heavy
preprocessing, thus, enabling dynamic
scenarios including train cancellations, route changes, real-time delays, etc. Our
experiments on the dense metropolitan network of London validate our approach.
With CSA, we compute earliest arrival queries in under 2 ms, and multi-criteria
profile queries for a full period in 221 ms—faster than previous algorithms. More-
over, we solve the most complex of our problems, MEAT, with CSA in 272 ms,
fast enough for interactive applications.

This paper is organized as follows. Section 2 sets necessary notion, and
Section 3 presents our new algorithm. Section 4 extends it to multi-criteria profile
queries, while Section 5 considers MEAT. The experimental evaluation is available
in Section 6, while Section 7 contains concluding remarks.

Aachen
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Fig. 1. Delay-robust itinerary from
Karlsruhe to Aachen, Germany. A user
should try to take the leftmost path. If
transfers fail, alternatives are available.

2 Preliminaries

Our public transit networks are defined in terms of their aperiodic timetable,
consisting of a set of stops, a set of connections, and a set of footpaths. A stop p
corresponds to a location in the network where a passenger can enter or exit a
vehicle (such as a bus stop or train station). Stops may have associated minimum
change times, denoted 7., (p), which represent the minimum time required to
change vehicles at p. A connection ¢ models a vehicle departing at a stop pqep(c) at
time Tqep(c) and arriving at stop payr(c) at time 7, (¢) without intermediate halt.
Connections that are subsequently operated by the same vehicle are grouped into
trips. We identify them by t(c). We denote by cpext the next connection (after c)
of the same trip, if available. Trips can be further grouped into routes. A route
is a set of trips serving the exact same sequence of stops. For correctness, we
require trips of the same route to not overtake each other. Footpaths enable
walking transfers between nearby stops. Each footpath consists of two stops
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with an associated walking duration. Note that our footpaths are transitively
closed. A journey is a sequence of connections and footpaths. If two subsequent
connections are not part of the same trip, their arrival-departure time-difference
must be at least the minimum change time of the stop. Because our footpaths
are transitively closed, a journey never contains two subsequent footpaths.

In this paper we consider several well-known problems. In the earliest arrival
problem we are given a source stop ps, a target stop py, and a departure time 7.
It asks for a journey that departs from ps no earlier than 7 and arrives at p;
as early as possible. The profile problem asks for the set of all earliest arrival
journeys (from ps to p;) for every departure at p,. Besides arrival time, we
also consider the number of transfers as criterion: In multi-criteria scenarios
one is interested in computing a Pareto set of nondominated journeys. Here, a
journey J; dominates a journey Js if it is better with respect to every criterion.
Nondominated journeys are also called to be Pareto-optimal. Finally, the multi-
criteria profile problem requests a set of Pareto-optimal journeys (from ps to p)
for all departures (at p;).

Usually, these problems have been solved by (variants of) Dijkstra’s algorithm
on an appropriate graph (representing the timetable). Most relevant to our work is
the realistic time-expanded model [15]. It expands time in the sense that it creates
a vertex for each event in the timetable (such as a vehicle departing or arriving
at a stop). Then, for every connection it inserts an arc between its respective
departure/arrival events, and also arcs that link subsequent connections. Arcs
are always weighted by the time difference of their linked events. Special vertices
may be added to respect minimum change times at stops. See [14, 15] for details.

3 Basic Connection Scan Algorithm

We now introduce the Connection Scan Algorithm (CSA), our approach to public
transit route planning. We describe it for the earliest arrival problem and extend
it to more complex scenarios in Sections 4 and 5. Our algorithm builds on the
following property of public transit networks: We call a connection ¢ reachable
iff either the user is already traveling on a preceding connection of the same
trip ¢(c), or, he is standing at the connection’s departure stop pgep(c) on time, i. e.,
before 7qep(c). In fact, the time-expanded approach encodes this property into
a graph G, and then uses Dijkstra’s algorithm to obtain optimal sequences of
reachable connections [15]. Unfortunately, Dijkstra’s performance is affected by
many priority queue operations and suboptimal memory access patterns. However,
since our timetables are aperiodic, we observe that G is acyclic. Thus, its arcs
may be sorted topologically, e.g., by departure time. Dijkstra’s algorithm on G,
actually, scans (a subsequence of) them in this order.

Instead of building a graph, our algorithm assembles the timetable’s connec-
tions into a single array C, sorted by departure time. Given source stop ps and
departure time 7 as input, it maintains for each stop p a label 7(p) representing
the earliest arrival time at p. Labels 7(-) are initialized to all-infinity, except 7(ps),
which is set to 7. The algorithm scans all connections ¢ € C (in order), testing
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if ¢ can be reached. If this is the case and if 7,.(c) improves 7(parc(c)), CSA
relazes ¢ by updating 7(pa.:(c)). After scanning the full array, the labels 7(-)
provably hold earliest arrival times for all stops.

Reachability, Minimum Change Times and Footpaths. To account for minimum
change times in our data, we check a connection ¢ for reachability by testing
if 7(paep(c)) + Teh(Paep(€)) < Taep(c) holds. Additionally, we track whether a
preceding connection of the same trip ¢(c) has been used. We, therefore, maintain
for each connection a flag, initially set to 0. Whenever the algorithm identifies a
connection c¢ as reachable, it sets the flag of ¢’s subsequent connection cpext to 1.
Note that for networks with 7., () = 0, trip tracking can be disabled and testing
reachability simplifies to 7(pgep(c)) < Taep(c). To handle footpaths, each time
the algorithm relaxes a connection ¢, it scans all outgoing footpaths of p,,.(c).

Improvements. Clearly, connections departing before time 7 can never be reached
and need not be scanned. We do a binary search on C' to identify the first relevant
connection and start scanning from there (start criterion). If we are only interested
in one-to-one queries, the algorithm may stop as soon as it scans a connection
whose departure time exceeds the target stop’s earliest arrival time. Also, as soon
as one connection of a trip is reachable, so are all subsequent connections of the
same trip (and preceding connections of the trip have already been scanned).
We may, therefore, keep a flag (indicating reachability) per trip (instead of per
connection). The algorithm then operates on these trip flags instead. Note that we
store all data sequentially in memory, making the scan extremely cache-efficient.
Only accesses to stop labels and trip flags are potentially costly, but the number
of stops and trips is small in comparison. To further improve spatial locality,
we subtract from each connection ¢ € C the minimum change time of pgep(c)
from 7g4ep(c), but keep the original ordering of C. Hence, CSA requires random
access only on small parts of its data, which mostly fits in low-level cache.

4 Extensions

CSA can be extended to profile queries. Given the timetable and a source stop ps,
a profile query computes for every stop p the set of all earliest arrival journeys
to p for every departure from p,, discarding dominated journeys. Such queries are
useful for preprocessing techniques, but also for users with flexible departure (or
arrival) time. We refer to the solution as a Pareto set of (Tqep(Ps), Tarr(Pt)) pairs.

In the following, we describe the reverse p—p;-profile query, which is needed
in Section 5. The forward search works analogously. Our algorithm, pCSA (p for
profile), scans once over the array of connections sorted by decreasing departure
time. For every stop it keeps a partial (tentative) profile. It maintains the property
that the partial profiles are correct wrt. the subset of already scanned connections.
Every stop is initialized with an empty profile, except p;, which is set to a constant
identity-profile. When scanning a connection ¢, pCSA evaluates the partial profile
at the arrival stop par(c): It asks for the earliest arrival time 7* at p; over
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all journeys departing at p.,r(c) at 7ar(c) or later. It then updates the profile
at paep(c) by potentially adding the pair (7gep(c),7*) to it, discarding newly
dominated pairs, if necessary.

Maintaining Profiles. We describe two variants of maintaining profiles. The first,
pCSA-P (P for Pareto), stores them as arrays of Pareto-optimal (Tqep, Tarr) Pairs
ordered by decreasing arrival (departure) time. Since new candidate entries are
generated in order of decreasing departure time, profile updates are a constant-
time operation: A candidate entry is either dominated by the last entry or is
appended to the array. Profile evaluation is implemented as a linear scan over
the array. This is quick in practice, since, compared to the timetable’s period,
connections usually have a short duration. The identity profile of p; is handled as
a special case. By slightly modifying the data structure, we obtain pCSA-C (C for
constant), for which evaluation is also possible in constant time: When updating
a profile, pCSA may append a candidate entry, even if it is dominated. To ensure
correctness, we set the candidate’s arrival time 7* to that of the dominating
entry. We then observe that, independent of the input’s source or target stop,
profile entries are always generated in the same order. Moreover, each connection
is associated with only two such entries, one at its departure stop, relevant for
updating, and, one at its arrival stop, relevant for evaluation. For each connection,
we precompute profile indices pointing to these two entries, keeping them with the
connection. Furthermore, its associated departure time and stop may be dropped.
Note that the space consumption for keeping all (even suboptimal) profile entries
is bounded by the number of connections. Following [6], we also collect—in a
quick preprocessing step—at each stop all arrival times (in decreasing order).
Then, instead of storing arrival times in the profile entries, we keep arrival time
indices. For our scenarios, these can be encoded using 16 (or fewer) bits. We call
this technique time indexing, and the corresponding algorithm pCSA-CT.

Minimum Change Times and Footpaths. We incorporate minimum change times
by evaluating the profile at a stop p for time 7 at 7 + 7., (p). The trip bit is
replaced by a trip arrival time, which represents the earliest arrival time at p;
when continuing with the trip. When scanning a connection ¢, we take the
minimum of the trip arrival time and the evaluated profile at pa..(c). We update
the trip arrival time and the profile at pgep(c), accordingly. Footpaths are handled
as follows. Whenever a connection c is relaxed, we scan all incoming footpaths
at paep(c). However, this no longer guarantees that profile entries are generated
by decreasing departure time, making profile updates a non-constant operation
for pCSA-P. Also, we can no longer precompute profile indices for pCSA-C.
Therefore, we expand footpaths into pseudoconnections in our data, as follows.
If p, and p, are connected by a footpath, we look at all reachable (via the
footpath) pairs of incoming connections ¢, at p, and outgoing connections cout
at pp. We create a new pseudoconnection (from Pa to pp, departure time Tarr(Cin),
and arrival time Tqep(Cout)) iff there is no other pseudoconnection with a later or
equal departure time and an earlier or equal arrival time. Pseudoconnections can
be identified by a simultaneous sweep over the incoming/outgoing connections
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of p, and pp. During query, we handle footpaths toward p; as a special case of
the evaluation procedure. Footpaths at p, are handled by merging the profiles of
stops that are reachable by foot from p;.

One-to-One Queries. So far we described all-to-one profile queries, i.e., from all
stops to the target stop p;. If only the one-to-one profile between stops ps and p;
is of interest, a well-known pruning rule [6, 14] can be applied to pCSA-P: Before
inserting a new profile entry at any stop, we check whether it is dominated by
the last entry in the profile at p,. If so, the current connection cannot possibly be
extended to a Pareto-optimal solution at the source, and, hence, can be pruned.
However, we still have to continue scanning the full connection array.

Multi-Criteria. CSA can be extended to compute multi-criteria profiles, opti-
mizing triples (Tgep(Ps), Tare(Pt), #t) of departure time, arrival time and number
of taken trips. We call this variant mcpCSA-CT. We organize these triples hi-
erarchically by mapping arrival time 7a(p;) onto bags of (Taep(ps), #t) pairs.
Thus, we follow the general approach of pCSA-CT, but now maintain profiles
as (Tarr (pt), bag) pairs. Evaluating a profile, thus, returns a bag. Where pCSA-CT
computes the minimum of two departure times, mcpCSA-CT merges two bags, i. e.,
it computes their union and removes dominated entries. When it scans a connec-
tion ¢, #1t is increased by one for each entry of the evaluated bag, unless c is a
pseudoconncetion. It then merges the result with the bag of trip ¢(c), and updates
the profile at pgep(c), accordingly. Exploiting that, in practice, # t only takes
small integral values, we store bags as fixed-length vectors using #t¢ as index
and departure times as values. Merging bags then corresponds to a component-
wise minimum, and increasing #t to shifting the vector’s values. A variant,
mcpCSA-CT-SSE, uses SIMD-instructions for these operations.

5 Minimum Expected Arrival Time

In this section we aim to provide delay-robust journeys that offer sensible backup
alternatives at every stop for the case that transfers fail. A tempting approach
might be to optimize reliability, introduced in [9], possibly together with other
criteria. While this produces journeys that have low failure probabilities on their
transfers, they are not necessarily robust in our sense: The set of reliable journeys
may already diverge at the source stop, and in general, no fall-back alternatives
are guaranteed at intermediate stops. On the other hand, on high-frequency
urban routes (such as subways) an unreliable transfer might not be a problem, if
the next feasible trip is just a few minutes away. To ensure that the user is never
left without guidance, we compute a subset of connections (rather than journeys)
such that at any point along the way, the user is provided with a good (in terms
of arrival time) option for continuing his journey toward the destination. We
propose to minimize the expected arrival time to achieve these goals.

We assume the following simple delay model: A connection ¢ arrives at a
random time 7.2 (¢) but departs on time at Tgep(c). All random arrival times are

arr
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independent. No connection arrives earlier than its scheduled arrival time 7,,,(c).
To make computations meaningful, we assume an upper bound on all 7 (¢). We
further assume that walking is exact. Note that more complex stochastic models
have been considered in [5,11], containing dependent random variables to model
delays. In this case, however, such models also propagate data errors (besides
delays), therefore, requiring precise delay data [5], which is hard to obtain
in practice. Also, even basic operations in [11] have super-quadratic running
time (in the number of connections), making the approach impractical, already
for medium-sized timetables.

For a given target stop p;, we define for every subset S of connections of
the timetable and for every connection ¢ the expected arrival time 7(S,¢) at py,
recursively. Let ¢; ... ¢, C S be the connections that the user can transfer to at ¢’s
arrival stop pam(c), ordered by departure time T4ep(c;) (adjusted for footpaths
and minimum change times). We define

n+1
#(S, ¢) = min {%(5, Cuext)s O P [raep(cim1) < TE(0) < raep(ei)] - 7(S, ci)}

i=1

where Tgep (o) = Tarr (€), Tdep(Cnt1) = 00, 7(S, pt1) = 00, and 7(S, chext) = 00
if ¢ is the last connection of trip ¢(c¢). The base of the recursion is defined by
the connections c arriving at p;, for which we define #(S, c) = E[r.Z,(c)]. If the
possibility of the user not reaching the target is non-zero, the expected arrival
time is trivially oo. Since a connection is assumed to never arrive early, 7(S, ¢)
only depends on connections departing later than ¢, which guarantees termination.
(This is where we require aperiodicity; in periodic networks infinite recursions may
occur.) In short, we compute the average over the expected arrival times of each
outgoing connection from the stop par(c), weighted by the probability of the user
catching it. We define the minimum expected arrival time 7*(c) of a connection ¢
as the minimum 7(S, ¢) over all subsets S. A subset S* minimizes 7*(c), if for
every stop p the set of pair (7qep(c),7(S*,¢)) induced by those ¢ € S* that
depart at p, does not include dominated connections. (A pair is dominated,
if, wrt. another pair, it departs earlier with higher expected arrival time.) Note
that removing a dominated pair’s connection improves 7(-). Also, all subsets with
this property have the same 7(-) and therefore S* is globally optimal. At least
one subset S* exists that is optimal for every ¢, because removing dominated
connections is independent of c.

To solve the minimum expected arrival time problem (MEAT), we compute
a set S*, and output the reachable connections for the desired source stop and
departure time. Our algorithm is based directly on pCSA-P, with a different
meaning for its stop labels: Instead of mapping a departure time 740, to the
corresponding earliest arrival time 7., at p¢, the algorithm now maps 74ep to the
corresponding minimum expected arrival time 7* at p;. It does so by maintaining
an array of nondominated (7Tdqep, 7*) pairs. For a connection ¢, the label at
Stop parr(c) is evaluated by a linear scan over that array: Following from the
recursive definition above, the minimum expected arrival time 7*(c) is computed
by a weighted summation of each of the expected arrival times 7* collected during
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Table 1. Size figures for our timetables including figures of the time-dependent (TD),
colored time-dependent (TD-col), and time-expanded (TE) graph models [6, 14, 15].

Figures London Germany Europe
Stops 20843 6822 30517
Trips 125537 94 858 463 887
Connections 4850431 976678 4654812
Routes 2135 9055 42547
Footpaths 45652 0 0
Expanded Footpaths 8436763 0 0
TD Vertices (Arcs) 97k (272k) 114k  (314k) 527k (1448k

) )
TD-col Vertices (Arcs) 21k (71k) 20k (86 k) 79k  (339k)
TE Vertices (Arcs) 9338k (34990k) 1809k (3652k) 8778k (17557k)

this scan multiplied with the success probability of the corresponding transfer
at parr(c). An optimization, called earliest arrival pruning, first runs an earliest
arrival query from the source stop and then only processes connections marked
reachable during that query. Note that, since during evaluation we scan over
several outgoing connections, pCSA-C is not applicable.

6 Experiments

We ran experiments pinned to one core of a dual 8-core Intel Xeon E5-2670
clocked at 2.6 GHz, with 64 GiB of DDR3-1600 RAM, 20 MiB of L3 and 256 KiB
of L2 cache. We compiled our C++ code using g++ 4.7.1 with flags -03 -mavx.

We consider three realistic inputs whose sizes are reported in Table 1. They
are also used in [6, 10, 7], but we additionally filter them for (obvious) errors,
such as duplicated trips and connections with non-positive travel time. Our
main instance, London, is available at [13]. It includes tube (subway), bus, tram,
Dockland Light Rail (DLR) and is our only instance that also includes footpaths.
However, it has no minimum change times. The German and European networks
were kindly provided by HaCon [12]. Both have minimum change times. The
German network contains long-distance, regional, and commuter trains operated
by Deutsche Bahn during the winter schedule of 2001/02. The European network
contains long-distance trains, and is based on the winter schedule of 1996/97. To
account for overnight trains and long journeys, our (aperiodic) timetables cover
one (London), two (Germany), and three (Europe) consecutive days.

We ran for every experiment 10000 queries with source and target stops
chosen uniformly at random. Departure times are chosen at random between 0:00
and 24:00 (of the first day). We report the running time and the number of label
comparisons, counting an SSE operation as a single comparison. Note that we
disregard comparisons in the priority queue implementation.

Earliest Arrival. In Table 2, we report performance figures for several algo-
rithms on the London instance. Besides CSA, we ran realistic time-expanded
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Table 2. Figures for the earliest arrival problem on our London instance. Indicators are:
e enabled, o disabled, — not applicable. “Sta.” refers to the start criterion. “Trp.” indicates
the method of trip tracking: connection flag (o), trip flag (e), none (x). “One.” indicates
one-to-one queries by either using the stop criterion or pruning.

v & &’#Scanned # Reachable # Relaxed # Scanned # L.Cmp. Time
Alg. % & QO Arcs/Con.  Arcs/Con. Arcs/Con. Footpaths — p. Stop  [ms]

TE - — o 20370117 — 5739046 — 977.3 876.2
TD - — o 262080 — 115588 — 11.9 18.9
TD-col — — o 68183 — 21294 — 3.2 73
CSA o o o 4850431 2576 355 11090 11500 356.9 16.8
CSA e o o 2908731 2576 355 11090 11500 279.7 124
CSA o 2908731 2576 355 11090 11500 279.7 9.7
TE - — e 1391761 — 385641 — 66.8 64.4
TD - — e 158 840 — 68038 — 7.2 109
TD-col — — e 43238 — 11602 — 2.1 41
CSA e o o 420263 126 983 5574 7005 266 2.0
CSA . 420263 126 983 5574 7005 26.6 1.8

Dijkstra (TE) with two vertices per connection [15] and footpaths [14], realistic
time-dependent Dijkstra (TD), and time-dependent Dijkstra using the optimized
coloring model [6] (TD-col). For CSA, we distinguish between scanned, reachable
and relaxed connections. Algorithms in Table 2 are grouped into blocks.

The first considers one-to-all queries, and we see that basic CSA scans all
connections (4.8 M), only half of which are reachable. On the other hand, TE
scans about half of the graph’s arcs (20 M). Still, this is a factor of four more
entities due to the modeling overhead of the time-expanded graph. Regarding
query time, CSA greatly benefits from its simple data structures and lack of
priority queue: It is a factor of 52 faster than TE. Enabling the start criterion
reduces the number of scanned connections by 40 %, which also helps query
time. Using trip bits increases spatial locality and further reduces query time
to 9.7ms. We observe that just a small fraction of scanned arcs/connections
actually improve stop labels. Only then CSA must consider footpaths. The second
block considers one-to-one queries. Here, the number of connections scanned
by CSA is significantly smaller; journeys in London rarely have long travel times.
Since our London instance does not have minimum change times, we may remove
trip tracking from the algorithm entirely. This yields the best query time of 1.8 ms
on average. Although CSA compares significantly more labels, it outperforms
Dijkstra in almost all cases (also see Table 4 for other inputs). Only for one-to-all
queries on London TD-col is slightly faster than CSA.

Profile and Multi-Criteria Queries. In Table 3 we report experiments for (multi-
criteria) profile queries on London. Other instances are available in Table 4.
We compare CSA to SPCS-col [6] (an extension of TD-col to profile queries)
and rRAPTOR [7] (an extension of RAPTOR to multi-criteria profile queries).
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Table 3. Figures for the (multi-criteria) profile problem on London. “# Tr.” is the max.
number of trips considered. “Arr.” indicates minimizing arrival time, “Tran.” transfers.
“Prof” indicates profile queries. “# Jn.” is the number of Pareto-optimal journeys.

& & SE g #L.Cmp. Time
Algorithm % TP O # Jn. p. Stop  [ms]
SPCS-col — e o e o 98.2 477.7 1262
SPCS-col — e 0 e o 98.2 372.5 843
pCSA-P — e o e o 982 567.6 177
pCSA-P — e o e o 982 436.9 161
pCSA-C — e o e — 982 1912.5 134
pCSA-CT — e o e — 98.2 1912.5 104
rRAPTOR 8 e o o o 2034 1812.5 1179
rRAPTOR 8 o o o o 2034 1579.6 878
rRAPTOR 16 ¢ o o o 206.4 1634.0 922
mcpCSA-CT 8 o o o — 2034 15299.8 255
mcpCSA-CT-SSE 8 e e o — 2034 1912.5 221
mcpCSA-CT-SSE 16 e e e — 206.4 3824.9 466

Note that in [7] TRAPTOR is evaluated on two-hours range queries, whereas
we compute full profile queries. A first observation is that, regarding query
time, one-to-all SPCS is outperformed by all other algorithms, even those which
additionally minimize the number of transfers. Similarly to our previous exper-
iment, CSA generally does more work than the competing algorithms, but is,
again, faster due to its cache-friendlier memory access patterns. We also observe
that one-to-all pCSA-C is slightly faster than pCSA-P, even with target pruning
enabled, although it scans 2.7 times as many connections because of expanded
footpaths. Note, however, that the figure for pCSA-C does not include the post-
processing that removes dominated journeys. Time indexing further accelerates
pCSA-C, indicating that the algorithm is, indeed, memory-bound. Regarding
multi-criteria profile queries, doubling the number of considered trips also doubles
both CSA’s label comparisons and its running time. For rRAPTOR the difference
is less (only 12 %)—most work is spent in the first eight rounds. Indeed, journeys
with more than eight trips are very rare. This justifies mcpCSA-CT-SSE with
eight trips, which is our fastest algorithm (221 ms on average). Note that using
an AVX2 processor (announced for June 2013), one will be able to process 256 bit-
vectors in a single instruction. We, therefore, expect mcpCSA-CT-SSE to perform
better for greater numbers of trips in the future.

Minimum Ezpected Arrival Time. In Table 5 we present figures for the MEAT
problem on all instances. Besides running time, we also report output com-
plexity in terms of number of stops and arcs of the decision graph (see Fig. 1
for an example). Real world delay data was not available to us. Hence, we fol-
low Disser et al. [9] and assume that the probability of a train being delayed by ¢
minutes (or less) is 0.99 — 0.4 - exp(—t/8). After 30 min (10 min on London) we



Intriguingly Simple and Fast Transit Routing 11

Table 4. Evaluating other instances. Start criterion and trip flags are always used.

Germany Europe

&ﬁ'é- é{;\':&' & #L.Cmp. Time #L.Cmp. Time
Algorithm X T &PO #Jn. p. Stop [ms] #Jn. p. Stop [ms]
TE — e 0 0 © 1.0 317.0 117.1 0.9 288.6 624.1
TD-col — e 0 0 © 1.0 11.9 3.5 0.9 10.0 21.6
CSA — ® 0 0 o0 1.0 228.7 34 0.9 2095 19.5
TE — e 0 0 @ 1.0 29.8 11.7 0.9 56.3 129.9
TD-col — @ 0 0 e 1.0 6.8 2.0 0.9 5.3 11.5
CSA — e 0 o0 ® 1.0 408 0.8 0.9 742 83
pCSA-CT — @ 0 o — 20.2 429.5 4.9 114 457.6 46.2
rRAPTOR 8 o o o 0O 29.4 752.1 161.3 17.2 377.5 421.8
rRAPTOR 8 29.4 640.1 123.0 17.2 340.8 344.9
mcpCSA-CT-SSE 8 29.4 429.5 179 17.2 457.6 98.2

Table 5. Evaluating pCSA-P for the MEAT problem on all instances.

Max. Delay Decision Graph All-To-One One-To-One One-To-One

Network [min] # Stops # Arcs Time [ms]  Time [ms] Dis. Time [ms]
Germany 30 8 19 68.1 31.0 24.6
Europe 30 20 46 205.0 169.0 112.0
London 10 2724 30243 668.0 491.0 272.0

set this value to 1. Moreover, we also evaluate performance when discretizing
the probability function at 60 equidistant points [9]. We run pCSA-P on 10000
random queries and evaluate both the all-to-one and one-to-one (with earliest
arrival pruning enabled) setting. Regarding output complexity, on the German
and European networks the resulting decision graphs are sufficiently small to be
presented to the user. They consist of 8 stops and 19 arcs on average (Germany),
roughly doubling on Europe. However, for London these figures are impracti-
cally large, increasing to 2724 (stops) and 30243 (arcs). Note that in a dense
metropolitan network (such as London), trips operate much more frequently,
therefore, many more alternate (and fall-back) journeys exist. These must all be
captured by the output. Regarding query time, pCSA-P computes solutions in
under 205 ms on Germany and Europe for all scenarios. On London, all-to-one
queries take 668 ms, whereas one-to-one queries can be computed in 272 ms time.
Note that all values are still practical for interactive scenarios.

7 Final Remarks

In this work, we introduced the Connection Scan framework of algorithms (CSA)
for several public transit route planning problems. One of its strengths is the
conceptual simplicity, allowing easy implementations. Yet, it is sufficiently flexible
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to handle complex scenarios, such as multi-criteria profile queries. Moreover, we
introduced the MEAT problem which considers stochastic delays and asks for
a robust set of journeys minimizing (in its entirety) the user’s expected arrival
time. We extended CSA to MEAT queries in a sound manner. Our experiments
on the metropolitan network of London revealed that CSA is faster than existing
approaches, and computes solutions to the MEAT problem surprisingly fast
in 272 ms time. All scenarios considered are fast enough for interactive applica-
tions. For future work, we are interested in investigating network decomposition
techniques to make CSA more scalable, as well as more realistic delay models.
Also, since CSA does not use a priority queue, parallel extensions seem promising.
Regarding multimodal scenarios, we like to combine CSA with existing techniques
developed for road networks.
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