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Abstract. In a recent work [I], we proposed a point-to-point shortest
paths algorithm which applies bidirectional search on time-dependent
road networks. The algorithm is based on A* and runs a backward search
in order to bound the set of nodes that have to be explored by the for-
ward search. In this paper we extend the bidirectional time-dependent
search algorithm in order to allow core routing, which is a very effec-
tive technique introduced for static graphs that consists in carrying out
most of the search on a subset of the original node set. Moreover, we
tackle the dynamic scenario where the piecewise linear time-dependent
arc cost functions are not fixed, but can have their coefficients updated.
We provide extensive computational results to show that our approach
is a significant speed-up with respect to the original algorithm, and it is
able to deal with the dynamic scenario requiring only a small computa-
tional effort to update the cost functions and related data structures.

1 Introduction

The Shortest Path Problem (SPP) on static graphs has received a great deal of
attention in recent years, because it has interesting practical applications (e.g.
route planners for GPS devices, web services) and provides an algorithmic chal-
lenge. Several works propose efficient algorithms for the SPP: see [2] for a review,
and [3] for an interesting analysis of possible combinations of speed-up techniques.
Much of the focus is now moving to the Time-Dependent Shortest Path Prob-
lem (TDSPP), which can be formally stated as follows: given a directed graph
G = (V, A), a source node s € V, a destination node ¢ € V', an interval of time
instants T, a departure time 79 € T and a time-dependent arc cost function
¢c: AXxT — Ry, find a path p = (s = vy,...,u5 = ¢) in G such that its

time-dependent cost v, (p), defined recursively as follows:
Vro(V1,02) = c(v1,v2,70) (1)
’yTO(Ul, e ,Ui) = ’}/7—0(’1}1, ... an—l) + C(Ui_l,Ui,To + ’yTO(Ul, e ,'Ui—l)) (2)

for all 2 <14 < k, is minimum.
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The TDSPP has been first addressed by [4] with a recursion formula; Dijk-
stra’s algorithm [5] is then extended to the dynamic case in [6], and the FIFO
property, which is necessary to guarantee correctness, is implicitly assumed. The
FIFO property is also called the non-overtaking property, because it states that
if T7 leaves u at time 19 and T5 at time 71 > 79, 15 cannot arrive at v before T
using the arc (u,v). The TDSPP in FIFO networks is polynomially solvable [7],
while it is NP-hard in non-FIFO networks [8]. We focus on the FIFO variant.
The A* algorithm [9] has been adapted to efficiently compute shortest paths on
static road networks in [I0ITI]. Those ideas have been used in [I2] on dynamic
graphs as well, while the time-dependent case on graphs with the FIFO property
has been addressed in [I3[T2]1]. The SHARC-algorithm [14], which employs a hi-
erarchical approach combined with goal directed search via arc flags [15], allows
fast unidirectional shortest path calculations in large scale networks; it has been
recently extended in [16] to compute optimal paths even on time-dependent
graphs, and represents the fastest known algorithm so far for time-dependent
shortests path computations.

Bidirectional search cannot be directly applied on time-dependent graphs,
the optimal arrival time at the destination being unknown. In [I], we tackled
this problem running a forward search on the time-dependent graph, and a
backward search on a time-independent graph with the purpose of bounding the
set of nodes explored by the forward search. To the best of our knowledge, it
was the first method allowing practical shortest path computations (i.e., in less
than 300 msec) on large scale time-dependent road networks. In this paper we
extend those concepts in order to include core routing on the time-dependent
graph, and we analyze a dynamic scenario as well, in order to take into account
updates of the cost function. Core routing is a well known technique for shortest
path algorithms on static graphs [3], whose main idea is to shrink the original
graph in order to get a new graph (core) with a smaller number of vertices. Most
of the search is then carried out on the core, yielding a reduced search space.

Throughout the rest of this paper we will consider a lower bounding function
A: A — Ry such that V(u,v) € A, 7 € T we have A(u,v) < c¢(u, v, 7). In practice,
A can easily be computed, given an arc length and the maximum allowed speed
on that arc. In the experimental evaluation we will consider piecewise linear
time-dependent arc cost functions.

The rest of this paper is organized as follows. In Section 2] we briefly review A*
and the bidirectional A* algorithm applied on a time-dependent graph described
in [I]. In Section [B] we describe core routing on static graphs and generalize it
to the time-dependent case. In Section [4] we discuss the dynamic scenario. In
Section Bl we provide a detailed experimental evaluation of our method, and
analyze the results.

2 A* with Landmarks

A* is an algorithm for goal-directed search which is very similar to Dijkstra’s
algorithm. The difference between the two algorithms lies in the priority key.
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For A*, the priority key of a node v is made up of two parts: the length of the
tentative shortest path from the source to v (as in Dijkstra’s algorithm), and an
underestimation of the distance to reach the target from v. The function which
estimates the distance between a node and the target is called potential function
m; the use of 7 has the effect of giving priority to nodes that are (supposedly)
closer to target node t. If the potential function is such that 7(v) < d(v,t) Vv € V,
where d(v,t) is the distance from v to ¢, then A* always finds shortest paths [9];
otherwise, it becomes a heuristic. A* is guaranteed to explore no more nodes
than Dijkstra’s algorithm.

On a road network, Euclidean distances can be used to compute the poten-
tial function, possibly dividing by the maximum allowed speed if arc costs are
travelling times instead of distances. A significant improvement over Euclid-
ean potentials can be achieved using landmarks [10]. The main idea is to select
a small set of nodes in the graph, sufficiently spread over the whole network
(several heuristic selection strategies have been proposed — see [I7]), and pre-
compute all distances between landmarks and any node of the vertex set. Then,
by triangle inequalities, it is possible to derive lower bounds to the distance be-
tween any two nodes. Suppose we have selected a set L C V of landmarks, and
we have stored all distances d(v,£),d(¢,v)Vv € V,£ € L; the following triangle
inequalities hold: d(u,t) + d(t,£) > d(u,£) and d(¢,u) + d(u,t) > d(¢,t). There-
fore my(u) = maxper{d(u,?) — d(t,¢),d(¢,t) — d(¢,u)} is a lower bound for the
distance d(u,t), and it can be used as a valid potential function for the forward
search [10]. Bidirectional search can be applied, but the potential function must
be consistent for the forward and backward search [I1]. Bidirectional A* with
the potential function described above is called ALT; an experimental evalua-
tion on static graphs can be found in [I1]. It is straightforward to observe that,
if arc costs can only increase with respect to their original value, the potential
function associated with landmarks yields valid lower bound, even on a time-
dependent graph; in [I2] this idea is applied to a real road network in order to
analyse the algorithm’s performance both in the case of arc cost updates and of
time-dependent cost functions, but in the latter scenario the ALT algorithm is
applied in an unidirectional way.

In a recent work [I], a bidirectional ALT algorithm on time-dependent
road networks was proposed. The algorithm is based on restricting the scope
of a time-dependent A* search from the source using a set of nodes defined by
a time-independent A* search from the destination. The backward search is a
reverse search on the graph G weighted by the lower bounding function A.

Given a graph G = (V, A), source and destination vertices s,t € V, and a
departure time 79 € T', let p* be the shortest path from s to ¢ leaving node s at
79. The algorithm for computing p* works in three phases.

1. A bidirectional A* search occurs on G, where the forward search is run on the
graph weighted by ¢ with the path cost defined by ({)-(2]), and the backward
search is run on the graph weighted by the lower bounding function A. All
nodes settled by the backward search are included in a set M. Phase 1
terminates as soon as the two search scopes meet.
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2. Suppose that v € V is the first vertex in the intersection of the heaps of
the forward and backward search; then the time dependent cost u = v, (py)
of the path p, going from s to t passing through v is an upper bound to
Yro (p*). Let B be the key of the minimum element of the backward search
queue; phase 2 terminates as soon as 3 > p. Again, all nodes settled by the
backward search are included in M.

3. Only the forward search continues, with the additional constraint that only
nodes in M can be explored. The forward search terminates when t is settled.

We call this algorithm TIME-DEPENDENT ALT (TDALT). Given a constant
K > 1, K-approximated solutions can be computed switching from phase 2
to phase 3 as soon as 8 > Ku; as the search stops sooner, the number of
explored nodes decreases. We use the backward potential function 7} (w) =
max{m,(w),d(s,v,70) + 7r(v) — wp(w)} described in [I], where 7y and m, are
the landmark potential functions for, respectively, the forward and the back-
ward search, and v is a node already settled by the forward search. To guarantee
correctness of this approach (see [I]), we do the following: we set up 10 check-
points during the query; when a checkpoint is reached, the node v is updated,
and the backward search queue is flushed and filled again using the updated ;.
We always pick v as the last node settled by the forward search before the check-
point. The checkpoints are calculated comparing the initial lower bound y(¢)
and the current distance from the source node, both for the forward search.

3 Time-Dependent Core-Based Routing

Core-based routing is a powerful approach which has been widely used for short-
est paths algorithms on static graphs [3]. The main idea is to use contraction [I§]:
a routine iteratively removes nodes and adds edges to preserve correct distances
between the remaining nodes, so that we have a smaller network where most of
the search can be carried out. Note that in principle we can use any contrac-
tion routine which removes nodes from the graph and inserts edges to preserve
distances. When the contracted graph Go = (Vir, Ac) has been computed, it is
merged with the original graph to obtain Gp = (V, AU A¢).

Suppose that we have a contraction routine which works on a time-dependent
graph: that is, Yu,v € V¢, for each departure time 79 € T there is a shortest
path between u and v in G¢ with the same cost as the shortest path between
u and v in G with the same departure time. We propose the following query
algorithm.

1. Initialization phase: start a Dijkstra search from both the source and the
destination node on Gp, using the time-dependent costs for the forward
search and the time-independent costs A for the backward search, pruning the
search (i.e. not relaxing outgoing arcs) at nodes € V. Add each node settled
by the forward search to a set S, and each node settled by the backward
search to a set T. Iterate between the two searches until: (i) SNT # 0 or
(77) the priority queues are empty.
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2. Main phase: (i) If SNT # @, then start an unidirectional Dijkstra search
from the source on G until the target is settled. (i¢) If the priority queues
are empty and we still have SNT = (), then start TDALT on the graph G¢,
initializing the forward search queue with all leaves of S and the backward
search queue with all leaves of T', using the distance labels computed during
the initialization phase. The forward search is also allowed to explore any
node v € T, throughout the 3 phases of the algorithm. Stop when ¢ is settled
by the foward search.

In other words, the forward search “hops on” the core when it reaches a node
u € SN Ve, and “hops off” at all nodes v € T N V. Note that landmark
distances need be computed and stored only for vertices in Ve (see [3]). This
means that the landmark potential function cannot be used to apply the forward
A* search on the nodes in T'. However, we can use the backward distance labels
computed with Dijkstra’s algorithm during the initialization phase, which are
valid distances on Gx. We call this algorithm TIME-DEPENDENT CORE-BASED
ALT (TDCALT).

Proposition 3.1. TDCALT is correct.

Since landmark distances are available only for nodes in Vi, the ALT potential
function cannot be used “as is” whenever the source or the destination node do
not belong to the core. In order to compute valid lower bounds to the distances
from s or to ¢, proxy nodes have been introduced in [I9] and used for the CALT
algorithm (i.e. core-based ALT on a static graph) in [3]. We briefly report here
the main idea: on the graph G weighted by A, let ¢/ = argmin,ey, {d(t,v)} be
the core node closest to t. By triangle inequalities it is easy to derive a valid
potential function for the forward search which uses landmark distances for ¢’ as
a proxy for t: s (u) = maxeer {d(u, £)—d(t', £)—d(t,t"),d(¢,t')—d (¢, u)—d(t,t')}.
The same calculations yield the potential function for the backward search
using a proxy node s’ for the source s and the distance d(s’, s).

Contraction. For the contraction phase, i.e., the routine which selects which
nodes have to be bypassed and then adds shortcuts to preserve shortest paths,
we use the same algorithm proposed in [16]. We define the expansion [19] of a
node u as the quotient between the number of added shortcuts and the number
of edges removed if u is bypassed, and the hop-number of a shortcut as the
number of edges that the shortcut represents. We iterate the contraction routine
until the expansion of all remaining nodes exceeds a limit ¢ or the hop-number
exceeds a limit h. At the end of contraction, we perform an edge-reduction step
which removes unnecessary shortcuts from the graph (cf. [I6] for details).

Outputting Shortest Paths. TDCALT adds shortcuts to the graph in order to
accelerate queries. Hence, if we want to retrieve the complete shortest path (and
not only the distance) we must expand those shortcuts. In [20], an efficient un-
packing routine based on storing all the edges a shortcut represents is introduced.
However, in the static case a shortcut represents exactly one path, whereas in the
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time-dependent case a shortcut may represent a different path for each different
traversal times. We solve this problem by allowing multi-edges: whenever a node
is bypassed, a shortcut is inserted to represent each pair of incoming and outgo-
ing edges, even if another edge between the two endpoints already exists. With
this modification each shortcut represents exactly one path, so we can directly
apply the unpacking routine from [20].

4 Dynamic Time-Dependent Costs

Up to now, time-dependent routing algorithms assumed complete knowledge of
the time-dependent cost functions on arcs. However, since the speed profiles on
which these functions are based are generated using historical data gathered
from sensors (or cams), it is reasonable to assume that also real-time traffic in-
formation is available through these sensors. Moreover, other technologies exist
to be aware of traffic jams even without having access to real-time speed in-
formation (e.g., TM). In the end, a procedure to update the time-dependent
cost functions depending on real-time traffic information would be desirable for
practical applications. Since we use piecewise linear functions stored as a list of
breakpoints, we will consider modifications in the value of these.

Update procedure. Let (Vo, Ac) be the core of G. Suppose that the cost function
of one arc a € A is modified; the set of core nodes V& need not change, as long
as A¢ is updated in order to preserve distances with respect to the uncontracted
graph G = (V, A) with the new cost function. There are two possible cases: either
the new values of the modified breakpoints are smaller than the previous ones, or
they are larger. In the first case, then all arcs on the core Az must be recomputed
by running a label-correcting algorithm between the endpoints of each shortcut,
as we do not know which shortcuts the updated arc may contribute to. In the
second case, then the cost function for core arcs (i.e. shortcuts) may change for
all those arcs a’ € A¢ such that o’ contains a in its decomposition for at least
one time instant 7. In other words, if a contributed to a shortcut a’, then the
cost of @’ has to be recomputed. As the cost of a has increased, then a cannot
possibly contribute to other shortcuts, thus we can restrict the update only to
the shortcuts that contain the arc. To do so, we store for each a € A the set
S(a) of all shortcuts that a contributes to. Then, if one or more breakpoints of
a have their value changed, we do the following.

Let [1,Tn—1] be the smallest time interval that contains all modified break-
points of arc a. If the breakpoints preceding and following [r1, 7,,—1] are, respec-
tively, at times 79 and 7, the cost function of a changes only in the interval
[T0, Tn]. For each shortcut o’ € S(a), let aj, ..., a}, with a} € AVi, be its decom-
position in terms of the original arcs, let A; = 370 A(a}) and p; = 377 pu(a’),
where Va € A we define p(a) = max,er c(a,7), i.e., u(a) is an upper bound on
the cost of arc a. If a is the arc with index j in the decomposition of a’, then
a’ may be affected by the change in the cost function of a only if the departure
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time from the starting point of @’ is in the interval [ro — wj, 7, — A;]. This is
because a can be reached from the starting node of a’ no sooner than A;, and
no later than p;. Thus, in order to update the shortcut @', we need to run a
label-correcting algorithm between its two endpoints only in the time interval
[To — 145, Tn — A;], as the rest of the cost function is not affected by the change. In
practice, if the length of the time interval [rg, 7,,] is larger than a given threshold
we run a label-correcting algorithm between the shortcut’s endpoints over the
whole time period, as the gain obtained by running the algorithm over a smaller
time interval does not offset the overhead due to updating only a part of the
profile with respect to computing from scratch.

The procedure described above is valid only when the value of breakpoints
increases. In a typical realistic scenario, this is often the case: the initial cost
profiles are used to model normal traffic conditions, and cost updates occur
only to add temporary slowdowns due to unexpected traffic jams. When the
temporary slowdowns are no longer valid we would like to restore the initial cost
profiles, i.e. lower breakpoints to their initial values, without recomputing the
whole core. If we want to allow fast updates as long as the new breakpoint values
are larger than the ones used for the initial core construction, without requiring
that the values can only increase, then we have to manage the sets S(a)Va € A
accordingly. We provide an example that shows how problems could arise.

Example 4.1. Given a € A, suppose that the cost of its breakpoint at time 7 € T'
increases, and all shortcuts € S(a) are updated. Suppose that, for a shortcut
a’ € S(a), a does not contibute to a’ anymore due to the increased breakpoint
value. If @’ is removed from S(a) and at a later time the value of the breakpoint
at 7 is restored to the original value, then a’ would not be updated because
a' ¢ S(a), thus o’ would not be optimal.

Our approach to tackle this problem is the following: for each arc a € A, we
update the sets S(a) whenever a breakpoint value changes, with the additional
constraint that elements of S(a) after the initial core construction phase cannot
be removed from the set. Thus, S(a) contains all shortcuts that a contributes to
with the current cost function, plus all shortcuts that a contributed to during the
initial core construction. As a consequence we may update a shortcut o’ € S(a)
unnecessarily, if a contributed to a’ during the initial core construction but ceased
contributing after an update step; however, this guarantees correctness for all
changes in the breakpoint values, as long as the new values are not strictly smaller
than the values used during the initial graph contraction. From a practical point
of view, this is a reasonable assumption.

Since the sets S(a)Va € A are stored in memory, the computational time
required by the core update is largely dominated by the time required to run the
label-correcting algorithm between the endpoints of shortcuts. Thus, we have a
trade-off between query speed and update speed: if we allow the contraction rou-
tine to build long shortcuts (in terms of number of bypassed nodes, i.e. “hops”,
as well as travelling time) then we obtain a faster query algorithm, because we
are able to skip more nodes during the shortest path computations. On the other
hand, if we allow only limited-length shortcuts, then the query search space is
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larger, but the core update is significantly faster as the label-correcting algo-
rithm takes less time. In Section Bl we provide an experimental evaluation for
different scenarios.

5 Experiments

In this section, we present an extensive experimental evaluation of our time-
dependent ALT algorithm. Our implementation is written in C++ using solely
the STL. As priority queue we use a binary heap. Our tests were executed on
one core of an AMD Opteron 2218 running SUSE Linux 10.3. The machine is
clocked at 2.6 GHz, has 16 GB of RAM and 2 x 1 MB of L2 cache. The program
was compiled with GCC 4.2, using optimization level 3.

We use 32 avoid landmarks [I0], computed on the core of the input graph using
the lower bounding function A to weight edges, and we use the tightened potential
function m; described in Section[2] as potential function for the backward search,
with 10 checkpoints. When performing random s-t queries, the source s, target
t, and the starting time 7y are picked uniformly at random and results are based
on 10000 queries. In the following, we restrict ourselves to the scenario where
only distances — not the complete paths — are required. However, our shortcut
expansion routine for TDCALT needs less than 1 ms to output the whole path;
the additional space overhead is = 4 bytes per node.

Input. We tested our algorithm on the road network of Western Europe provided
by PTV AG for scientific use, which has approximately 18 million vertices and
42.6 million arcs. A travelling time in uncongested traffic situation was assigned
to each arc using that arc’s category (13 different categories) to determine the
travel speed. Since we are not aware of a large publicly available real-world road
network with time-dependent arc costs we used artificially generated costs. In or-
der to model the time-dependent costs on each arc, we developed a heuristic al-
gorithm, based on statistics gathered using real-world data on a limited-size road
network, which is described in [I] and ensures spatial coherency for traffic jams.

Contraction Rates. Table [Il shows the performance of TDCALT for different
contraction parameters (cf. Section [B)). In this setup, we fix the approximation
constant K to 1.15, which was found to be a good compromise between speed
and quality of computed paths (see [I]). As the performed TDCALT queries
may compute approximated results instead of optimal solutions when K > 1, we
record three different statistics to characterize the solution quality: error rate,
average relative error, maximum relative error. By error rate we denote the
percentage of computed suboptimal paths over the total number of queries. By
relative error on a particular query we denote the relative percentage increase of
the approximated solution over the optimum, computed as w/w* — 1, where w is
the cost of the approximated solution computed by our algorithm and w* is the
cost of the optimum computed by Dijkstra’s algorithm. We report average and
mazimum values of this quantity over the set of all queries. Note that contraction
parameters of ¢ = 0.0 and A = 0 yield a pure TDALT setup.
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Table 1. Performance of TDCALT for different contraction rates. ¢ denotes the max-
imum expansion of a bypassed node, h the hop-limit of added shortcuts. The third
column records how many nodes have not been bypassed applying the corresponding
contraction parameters. Preprocessing effort is given in time and additional space in
bytes per node. Moreover, we report the increase in number of edges and interpolation
points of the merged graph compared to the original input.

CORE PREPROCESSING ERROR QUERY
param. core |time space increase in relative #settled time
¢ h nodes |[min] [B/n] #edges #points| rate avg. max| nodes [ms]
0.0 0100.0%| 28 256 0.0%  0.0%[40.1% 0.303% 10.95%| 250248 188.2
0.5 10 35.6%| 15 99 9.8% 21.1%|38.7% 0.302% 11.14%| 99622 78.2
1.0 20 6.9%| 18 41 12.6% 69.6%|34.7% 0.288% 10.52%| 19719 21.7
2.0 30 32%| 30 45 9.9% 114.1%34.9% 0.287% 10.52% 9974 13.2
25 40 25%| 39 50 9.1% 138.0%|34.1% 0.275% 8.74% 8093 11.4
3.0 50 2.0%| 50 56 87% 161.2%|32.8% 0.267% 9.58% 7090 10.3
35 60 1.8%| 60 61 85% 181.1%(33.8% 0.280% 8.69% 6227 9.2
4.0 70 1.5%| 88 74 85% 223.1%(32.8% 0.265% 8.69% 5896 8.8
50 90 1.2%| 134 89 8.6% 273.5%|32.6% 0.266% 8.69% 5812 8.4

As expected, increasing the contraction parameters has a positive effect on
query performance. Interestingly, the space overhead first decreases from 256
bytes per node to 41 (¢ = 1.0, h = 20), and then increases again. The reason for
this is that the core shrinks very quickly, hence we store landmark distances only
for 6.9% of the nodes. On the other hand, the number of interpolation points
for shortcuts increases by up to a factor ~ 4 with respect to the original graph.
Storing these additional points is expensive and explains the increase in space
consumption.

It is also interesting to note that the maximum error rate decreases when we
allow more and longer shortcuts to be built. We believe that this is due to the fact
that long shortcuts decrease the number of settled nodes and have large costs,
so at each iteration of TDCALT the key of the backward search priority queue
0 increases by a large amount. As the algorithm switches from phase 2 to phase
3 when p/f < K, and [ increases by large steps, phase 3 starts with a smaller
maximum approximation value for the current query p/3. This is especially true
for short distance queries, where the value of p is small.

Query speed. Table[reports the results of TDCALT for different approximation
values K using the European road network as input. In this experiment we used
contraction parameters ¢ = 3.5 and h = 60, i.e. we allow long shortcuts to be
built to favour query speed. For comparison, we also report the results on the
same road network for the time-dependent versions of Dijkstra, unidirectional
ALT, TDALT and the time-dependent SHARC algorithm [16].

Table 2l shows that TDCALT yields a significant improvement over TDALT
with respect to error rates, preprocessing space, size of the search space and
query times. The latter two figures are improved by one order of magnitude.
For exact queries, TDCALT is faster than unidirectional ALT by one order of
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Table 2. Performance of time-dependent Dijkstra, unidirectional ALT, SHARC,
TDALT and TDCALT with different approximation values K

PREPROC. ERROR QUERY

time space relative 7 settled  time
technique|| K|[min] [B/n]| rate av. max| nodes [ms]
Dijkstra - 0 0| 0.0% 0.000% 0.00%| 8877158 5757.4
uni-ALT -l 28 256| 0.0% 0.000% 0.00%]| 2056190 1865.4
SHARC -| 511 112| 0.0% 0.000% 0.00%| 84234 75.3

TDALT ||1.00] 28 256| 0.0% 0.000% 0.00%| 2931080 2939.3
1.15| 28 256(40.1% 0.303% 10.95%| 250248 188.2
1.50] 28 256|52.8% 0.734% 21.64%| 113040 71.2
TDCALT||1.00 60 61| 0.0% 0.000% 0.00% 60961 121.4
1.05 60 61| 2.7% 0.010% 3.94% 32405 62.5
1.10 60  61(16.6% 0.093% 7.88% 12777 21.9
1.15 60  61(33.0% 0.259% 8.69% 6 365 9.2
1.20 60  61(39.8% 0.435% 12.37% 4707 6.4
1.30 60  61|43.0% 0.611% 16.97% 3943 5.0
1.50] 60  61|43.7% 0.679% 20.73% 3786 4.8
2.00] 60  61|43.7% 0.682% 27.61% 3781 4.8

Table 3. CPU time required to update the core in case of traffic jams for different
contraction parameters. The length of shortcuts is limited to 20 minutes of travel time
(10 minutes for the values in parentheses).

cont. || space single traffic jam batch update (1000 jams) query

¢ hH [B/n] || av.[ms] max[ms] av.[ms] max|[ms] H time [ms]
0.0 0}|256 (256)|] 0 (0) 0 (0) 0 (0) 0 (0){|188.2 (188.2)
0.5 10{|100 (103)|| 1 (1) 49 (49) 820 (619) 1200 (799)|| 76.8 (85.2)
1.0 20| 45 (50)|| 37 (21) 2231 (778)| 30787 (20329) 39470 (22734)|| 22.8 (27.1)
2.0 30| 51 (56){|220 (90) 5073 (3868)|187595 (79092) 206569 (85259)| 16.4 (22.8)

magnitude, and the improvement over Dijkstra’s algorithm is of a factor = 50.
Comparing TDCALT to SHARC, we see that for exact queries SHARC yields
better query times by a factor =~ 1.6, although preprocessing time and space
for SHARC are larger. However, SHARC cannot efficiently deal with dynamic
scenarios. If we can accept a maximum approximation factor K > 1.05 then
TDCALT is faster than SHARC, by one order of magnitude for K > 1.20. The
size of the search space decreases by even larger factors, but in terms of time
spent per node SHARC is faster than TDCALT, as we observed in [I].

Dynamic Updates. In order to evaluate the performance of the core update pro-
cedure (see SectionHl) we generated several traffic jams as follows: for each traffic
jam, we select a path in the network covering 4 minutes of uncongested travel
time on motorways. Then we randomly select a breakpoint between 6AM and
9 PM, and for all edges on the path we multiply the corresponding breakpoint
value by a factor 5. As also observed in [12], updates on motorway edges are
the most difficult to deal with, since those edges contribute to a large number
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of shortcuts. In Table Bl we report average and maximum required time over
1000 runs to update the core in case of a single traffic jam, applying differ-
ent contraction parameters. Moreover, we report the corresponding figures for a
batch-update of 1000 traffic jams (100 runs), in order to reduce the fluctuations
and give a clearer indication of required CPU time when performing multiple
updates. Note that for this experiment we limit the length of shortcuts to 20
minutes (10 for the values in parentheses) of uncongested travel time. This is be-
cause in the dynamic scenario the length of shortcuts plays the most important
role when determining the required CPU effort for an update operation, and
if we allow the shortcuts length to grow indefinitely we may have unpractical
update times. Hence, we also report query times with K = 1.15.

As expected, the effort to update the core becomes more expensive with in-
creasing contraction parameters. However, for ¢ = 1.0, h = 20 with maximum
shortcut length of 20 minutes, we have reasonable update times together with
query times of 22.8 ms: an update of 1000 traffic jams can be done in less than
40 seconds, which should be sufficient in most applications. In most cases, the
required time to update the core for a single traffic jam is of a few milliseconds,
and query times are fast even with limited length shortcuts. We observe a clear
trade off between query times and update times depending on the contraction
parameters, so that for those applications which require frequent updates we can
minimize update costs while keeping query times < 100 ms, and for applications
which require very few or no updates we can minimize query times. If most of the
graph’s edges have their cost changed we can rerun the core edges computation,
which takes less than 15 minutes.

6 Conclusion

We have proposed a bidirectional ALT algorithm for time-dependent graphs
which uses a hierarchical approach: the bidirectional search starts on the full
graph, but is soon restricted to a smaller network in order to reduce the number
of explored nodes. This algorithm is flexible and allows us to deal with the dy-
namic scenario, where the piecewise linear time-dependent cost functions on arcs
are not fixed, but can have their coefficients updated. Extensive computational
experiments show a significant improvement over existing time-dependent algo-
rithms, with query times reduced by at least an order of magnitude in almost all
scenarios, and a faster and less space consuming preprocessing phase. Updates in
the cost functions are dealt with in a practically efficient way, so that traffic jams
can be added in a few milliseconds, and we can parameterize the preprocessing
phase in order to balance the trade off between query speed and update speed.
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