
Parallel Computation of Best Connections in Public Transportation Networks

Daniel Delling
Microsoft Research Silicon Valley,

1065 La Avenida, Mountain View, CA 94043.
dadellin@microsoft.com

Bastian Katz
Department of Computer Science,
Karlsruhe Institute of Technology,

76128 Karlsruhe, Germany.
katz@kit.edu

Thomas Pajor
Department of Computer Science,
Karlsruhe Institute of Technology,

76128 Karlsruhe, Germany.
pajor@kit.edu

Abstract—Exploiting parallelism in route planning algo-
rithms is a challenging algorithmic problem with obvious
applications in mobile navigation and timetable information
systems. In this work, we present a novel algorithm for the so-
called one-to-all profile-search problem in public transportation
networks. It answers the question for all fastest connections
between a given station S and any other station at any
time of the day in a single query. This algorithm allows
for a very natural parallelization, yielding excellent speed-
ups on standard multi-core servers. Our approach exploits the
facts that first, time-dependent travel-time functions in such
networks can be represented as a special class of piecewise
linear functions, and that second, only few connections from
S are useful to travel far away. Introducing the connection-
setting property, we are able to extend DIJKSTRA’s algorithm
in a sound manner. Furthermore, we also accelerate station-to-
station queries by preprocessing important connections within
the public transportation network. As a result, we are able to
compute all relevant connections between two random stations
in a complete public transportation network of a big city (Los
Angeles) on a standard multi-core server in less than 55 ms on
average.

I. INTRODUCTION

Research on fast route planning algorithms has been un-
dergoing a rapid development in recent years (cf. [1] for an
overview). The fastest techniques for static time-independent
road networks yield query times of a few microseconds [2].
Recently, the focus has shifted to time-dependent transporta-
tion networks in which the travel time assigned to an edge
is a function of the time of the day. Thus, the quickest route
depends on the time of departure. In general, two interesting
questions arise for time-dependent route planning: compute
the best connection for a given departure time and the
computation of all best connections during a given time
interval, e. g., a whole day. The former is called a time-
query while the latter is called a profile-query. Especially
in public transportation, the use of time-queries is limited:
specifying some fixed departure time will most probably lead
to an awkward itinerary when a fast connection was just
missed, thus, forcing the passenger to wait for a long time
or letting him use a lot of slow trains. In this case using
the slightly earlier train would significantly improve the

Partially supported by the DFG (project WA 654/16-1). Part of this work
was done while the first author was at the Karlsruhe Institute of Technology.

overall travel time. Hence, especially in public transportation
networks we are interested in the fast computation of profile-
queries. Previous algorithms for computing profile-queries
augment DIJKSTRA’s algorithm by propagating travel-time
functions instead of scalar values through the network [3].
However, due to the fact that travel-time functions cannot
be totally ordered, these algorithms lose the label-setting
property, meaning that nodes are inserted into the priority
queue multiple times. This implies a significant performance
penalty, making the computation of profile-queries very
slow. Furthermore, state-of-the-art algorithms typically do
not involve parallel computation, and in fact, route planning
is one of the rare large-scale combinatorial problems where
parallelism seemed to be of limited use to speed up single
queries in the past.

Related Work: Modeling issues and an overview of
basic route planning algorithms in public transportation
networks can be found in [4], while [5] deals with time-
dependent route planning in general. Basic speed-up tech-
niques like goal-directed search have been applied to time-
dependent railway networks in [6], while SHARC has been
tested on such networks as well [7]. However, most of the
algorithms fall short as soon as they are applied to bus
networks [8], [9]. Most efforts in developing parallel search
algorithms address theoretical machines such as the PRAM
[10], [11] or the communication network model [12], [13].
Even in these models, no algorithm is known that is able
to exploit parallelism beyond parallel edge relaxations and
parallel priority queuing without doing substantially more
work than a sequential Dijkstra implementation in general
networks. There also have been a few experimental studies
of distributed single-source shortest path algorithms for
example based on graph partitioning [14], [15] or on the so-
called ∆-stepping algorithm proposed in [16], e. g. [17]. For
an overview on many related approaches, we refer the reader
to [18]. All these approaches have in common that they
do provide good speed-ups only for certain graph classes.
Search algorithms for retrieving all quickest connections in
a given time interval have been discussed in [3]. However,
none of those algorithms have been parallelized and used
for retrieving all quickest connections of a day in realistic
public transportation networks.

Our Contribution: We present a novel parallel algo-
rithm for the so-called one-to-all profile-search problem
asking for the set of all relevant connections between a
given station S and all other stations, i. e., all connections
that at any time constitute the fastest way to get from
S to some other station. The key idea is that the num-
ber of possible connections is bounded by the number of
outgoing connections from the source station S, and all
time-dependent travel-time distances in such networks are
piecewise linear functions that have a representation that is
at most linear in this number of connections. Moreover, only
few connections prove useful when traveling sufficiently far
away. The algorithm we present in this work greatly exploits
this fact by pruning such connections as early as possible.
To this extent, we introduce the notion of connection-
setting, that can be seen as an extension of the label-setting
property of DIJKSTRA’s algorithm, which usually is lost
in profile-searches, e. g., in road networks. The main idea
regarding parallelism in transportation networks is that we
may distribute different connections outgoing from S to the
different processors. Furthermore, we show how connections
can be pruned even across different processors. While one-
to-all queries are relevant for the preprocessing of many
speed-up techniques [19], [20], we also accelerate the more
common scenario of station-to-station queries explicitly.
Therefore, we propose to utilize the very same algorithm for
valuable preprocessing. The key idea is that we select a small
number of important stations (called transfer stations) and
precompute a full distance table between all these stations,
which then can be used to prune the search during the query.
We show the feasibility of our approach by running extensive
experiments on real-world transportation networks. It turns
out that our algorithm scales very well up to 4 cores. As an
example, we are able to perform a parallel one-to-all profile-
search in less than 515 ms and station-to-station queries in
less than 190 ms in all of our networks.

This work is organized as follows: in Section II we briefly
explain necessary definitions and preliminaries. Section III
then introduces our parallel one-to-all algorithm. Therefore,
we first introduce the concept of connection-setting and
show how some connections dominate others. In Section IV
we present how our algorithm can be utilized to accelerate
station-to-station queries. A detailed review of our exper-
iments can be found in Section V. We conclude our work
with a brief summary and possible future work in Section VI.

II. PRELIMINARIES

A directed graph is a tuple G = (V,E) consisting of a
finite set V of nodes and a set of ordered pairs of vertices,
or edges E ⊆ V × V . The node u is called the tail of an
edge (u, v), v the head. The reverse graph

←−
G = (V,

←−
E) is

obtained from G by flipping all edges, i. e., (u, v) ∈ ←−E ⇔
(v, u) ∈ E.

Timetables: A periodic timetable is defined as a tuple
(C,S,Z,Π, T) where S is a set of stations, Z a set of trains,
C a set of elementary connections and Π := {0, . . . , π − 1}
a finite set of discrete time points (think of it as a day’s
minutes or seconds). We call π the periodicity of the
timetable. Note that durations and arrival times can take
values greater than π (think of a train arriving after mid-
night). Moreover, T : S → N0 assigns each station a
minimum transfer time required to change between trains.
An elementary connection from c ∈ C is defined as a
tuple c := (Z, Sdep, Sarr, τdep, τarr) and is interpreted as train
Z ∈ Z going from station Sdep ∈ S to station Sarr ∈ S ,
departing at Sdep at time τdep ∈ Π and arriving at τarr ∈ N0.
For simplicity, given an elementary connection c, X(c)
selects the X-entry of c, e. g. τdep(c) refers to the departure
time of c. Due to the periodic nature of the timetable,
the length ∆(τ1, τ2) between two time points τ1 and τ2 is
computed by τ2 − τ1 if τ2 ≥ τ1 and π + τ2 − τ1 otherwise.
Note that ∆ is not symmetric.

Models: For route planning, the timetable is modeled as
a directed graph. Several approaches have been proposed [4],
[9]. In our work we use the realistic time-dependent model as
introduced in [4]. Given a timetable, the graph G = (V,E)
of the realistic time-dependent model is constructed as
follows. First, the set Z of trains is partitioned into routes,
where two trains Z1, Z2 ∈ Z are considered equivalent, if
they run through the same sequence of stations. Regarding
the nodes, for each station S ∈ S, a station node is
created. Moreover, for each route that runs through S, a
route node is created. Route nodes are connected by edges to
their respective station nodes with time-independent weights
depicting the transfer time T (S). Furthermore, for each
route and for each two subsequent stations S1 and S2 on that
route, a time-dependent route-edge (u, v) is inserted between
the route nodes u and v of the respective route at the stations
S1 and S2. By these means, the time-dependent route-edges
e get exactly those elementary connections c ∈ C assigned,
where Z(c) relates to a train of the respective route (between
the two given stations). See Figure 1 for an illustration.

Piecewise Linear Functions: In general, there are two
types of distances in a public transportation network: first,
the distance between two stations S and T for a given depar-

S1 S2

Z3

Z1, Z2

Figure 1. Illustration of the realistic time-dependent model [4], showing
two stations where two routes run through. Station nodes are blue, route
nodes are purple.

τ

f(τ)

πtrain 3train 2train 1

Figure 2. A piecewise linear function f with 3 connection points,
representing 3 relevant trains to start with.

ture time τ , denoted by dist(S, T, τ). The other type—which
we are especially interested in—is the distance between two
stations S and T for all departure times τ ∈ Π, denoted by
dist(S, T, ·). This type of query is called profile-search. In
profile-searches, distances or travel-times between any two
nodes are functions f : Π→ N0, such that f(τ) denotes the
travel-time when starting at time τ . This also includes the
time-dependent edges in the graph G. For the remainder
of this paper, it is a crucial observation that in public
transportation networks these functions can be represented
as piecewise linear functions of a special form: the travel-
time at time τ is composed of a waiting time for a good
connection c starting at some τdep(c) plus the duration of
the itinerary starting with c. Moreover, if the best choice at
time τ is to wait for a connection c, the same holds for any
τ ≤ τ ′ ≤ τdep in between. See Fig. 2 for an example. Hence,
it is possible to represent f by a set of connection-points
P(f) ⊂ Π×N0 such that f(τ) is f(τ) = ∆(τ, τf)+wf for
the (τf , wf) ∈ P(f) which minimizes ∆(τ, τf). From the
timetable, we can easily construct the travel-time functions
fe for the time-dependent edges between route nodes: for
each elementary connection c assigned to some route edge
e, we insert a connection point (τ, w) into P(fe) where
τ := τdep(c), and w := ∆(τdep(c), τarr(c)). Respecting
periodicity in a meaningful way, these travel-time functions
have the FIFO-property if for any τ1, τ2 ∈ Π, it holds that
f(τ1) ≤ ∆(τ1, τ2) + f(τ2). In other words: waiting never
gets you (strictly) earlier to your destination. Note that all
our networks fulfill the FIFO-property.

Computing Distances: The sequential computation of
dist(S, ·, τ) can be done by a time-dependent version of
DIJKSTRA’s algorithm which we call time-query. It visits all
nodes in the graph in non-decreasing order from the source
S. Therefore, it maintains a priority queue Q, where the
key of an element v is the tentative distance dist(S, v). By
using a priority queue, the algorithm makes sure that if an
element v is removed from Q, dist(S, v) cannot be improved
anymore. This property is called label-setting.

Determining the complete distance function dist(S, ·, ·),
called a profile-query, from a given station S to any other
station for all departure times τ ∈ Π can be computed by a

profile-search algorithm being very similarly to DIJKSTRA.
The main difference is that functions instead of scalars are
propagated through the network. By this, the algorithm may
lose its label-setting property since nodes may be reinserted
into the queue that have already been removed. Hence,
we call such an algorithm a label-correcting approach. An
interesting result from [3] is that the running time highly
depends on the number of connection points assigned to the
edges.

III. A PARALLEL SELF-PRUNING PROFILE SEARCH
ALGORITHM

In this section we describe our new parallel profile-
search algorithm tailored to public transportation networks.
A crucial observation in such networks is the fact that each
itinerary from a source station S to any other station has to
begin with an elementary connection originating at S. Let
this set of outgoing connections be denoted by conn(S) :=
{c ∈ C | Sdep(c) = S}. A naive and obvious way to compute
the full distance function dist(S, ·, ·) would be to compute
a time-query dist(S, ·, τ) for each elementary connection
c ∈ conn(S) with respect to its departure time τ = τdep(c).
However, such a connection does not necessarily contribute
to dist(S, T, ·). A connection ci with departure time τdep(ci)
may as well be dominated by a connection cj with later
departure time τdep(cj) > τdep(ci) in the following sense: if
the earliest arrival time at T starting with cj is not greater
than the earliest arrival time starting with ci, we can—and
must, for the sake of correctness—prune the result of the
search regarding connection ci, since starting with ci never
yields the shortest travel time. Note that this observation
implies that for any T ∈ S , the set of connection points
P(dist(S, T, ·)) of the distance function dist(S, T, ·) is a
subset of the set of connection points induced by conn(S)
and their distances to T . More precisely, the following holds:

P(dist(S, T, ·)) ⊆ {(τ, w) | ∃c ∈ conn(S) :

τ = τdep(c),

w = dist(S, T, τdep(c))}.
(1)

The problem to run |conn(S)| time-queries and then pruning
dominated connections from dist(S, T, ·) afterwards is an
embarrassingly parallel problem. Going much further, we
show how to extend the above observation to obtain a prun-
ing rule that we call self-pruning. It can be applied to elimi-
nate ‘unnecessary’ connections as soon as possible. Thereby,
we use self-pruning within the restricted domain of each
single thread, but also take advantage of communication
between the different threads yielding a rule we call inter-
thread-pruning. Therefore we require a fixed assignment
of the outgoing connections to the processors where each
processor handles a set of connections simultaneously.

The outline of our parallel algorithm is as follows: first,
we partition the set conn(S) to a given set of processors.
Second, every processor runs a single thread applying our

main sequential profile search algorithm restricted to its sub-
set of outgoing connections. In a third step, the partial results
by the different threads are combined, thereby eliminating
dominated connections that could not be pruned earlier, a
step we will refer to as connection reduction.

A. The Main (Sequential) Algorithm

From the point of view of a single processor that has some
subset of conn(S) as input, it basically makes no difference
to the profile-search algorithm that some of the connections
are ignored. We simply obtain distk(S, ·, ·) restricted to the
connections assigned to the particular processor k. Hence,
we describe the main algorithm as if it was a purely sequen-
tial profile-search algorithm, and turn toward the parallel
issues like merging the results from each processor, the
choice of the partitioning of conn(S), and the inter-thread-
pruning rule, afterwards.

The naive approach of running a separate time-query
for each c ∈ conn(S) by DIJKSTRA’s algorithm would
require an empty priority queue for every connection c. By
contrast, our algorithm maintains a single priority queue and
handles all of its connections simultaneously. Moreover, we
use tentative arrival-times as keys (instead of distances). By
these means, we enable both the connection-setting property
as well as our self-pruning rule.

Initialization: At first, the set conn(S) is determined
and ordered non-decreasingly by the departure times of the
elementary connections in conn(S). Thus, we may say that
a connection ci has index i according to the ordering of
conn(S). The elements of the priority queue are pairs (v, i)
where the first entry depicts a node v ∈ V and the second
entry a connection index 0 ≤ i < |conn(S)|. For each
node v ∈ V and for each connection i a label arr(v, i) is
assigned which depicts the (tentative) arrival time at v when
using connection i. In the beginning, each label arr(v, i) is
initialized with ∞. Then, for each connection ci ∈ conn(S)
we insert (r, i) with key τdep(ci) into Q, where r depicts the
route node where connection ci starts from. Note that in the
beginning the ‘arrival-time’ arr(r, i) equals the departure-
time τdep(ci).

Connection-Setting: Like DIJKSTRA’s algorithm, we
subsequently settle queue elements (v, i) assigning key(v, i)
as the final arrival time to arr(v, i). Then, for each edge
e = (v, w) ∈ E we compute a tentative label arrtent(w, i)
at w by arrtent(w, i) := arr(v, i)+fe(arr(v, i)) (for connec-
tion i). If w has not yet been discovered using connection
i, we insert (w, i) into the priority queue with key(w, i) :=
arrtent(w, i), otherwise, the element (w, i) is already in the
queue and we set key(w, i) to min(key(w, i), arrtent(w, i)).
Note that the following holds for every connection i: when
a queue item (v, i) is settled, the label arr(v, i) is final, thus,
the label-setting property holds with respect to each connec-
tion i which we call connection-setting. The algorithm ends
as soon as the priority queue runs empty. We end up with

labels arr(v, i) for each node v ∈ V and each connection
0 ≤ i < |conn(S)| depicting the arrival time at v when
starting with the i’th connection at S.

We would like to stress out two things. First, although
the computation is done for all connections simultaneously,
they can be regarded as independent, since the labels and
the queue items refer to a specific connection throughout
the algorithm. Second, the original variant of DIJKSTRA’s
algorithm uses distances instead of arrival times as keys.
However, this has no impact on the correctness of the
algorithm, since for each connection the arrival time is
obtained by adding the departure time to the distance which
is constant for all nodes.

Connection Reduction and Self-Pruning: For each node
v ∈ V the final labels arr(v, ·) induce a set of connection
points P̂ by P̂ := {(τdep(ci),∆(τdep(ci), arr(v, i))) | ci ∈
conn(S)}. Unfortunately, the function f represented by P̂
does not account for domination of connections and hence
does not necessarily fulfill the FIFO-property. Formally,
for two points (τi, wi), (τj , wj) ∈ P̂ with j > i it is
possible that τj + wj ≤ τi + wi. The aforementioned
connection reduction, which remedies this issue at the end
of the algorithm, reduces P̂ to obtain P(dist(S, T, ·)) by
eliminating those points which are dominated by another
point with a later departure time and an earlier arrival time.
More precisely, we scan backward through P keeping track
of the minimum arrival time τ arr

min := τimin + wimin along
the way. Each time we scan a connection point j < imin
with an arrival time τ arr

j ≥ τ arr
min, the connection point is

deleted. The remaining connection points are exactly those
of P(dist(S, T, ·)).

Performing this connection reduction after the algorithm
has finished results in the computation of many unnecessary
connections, and therefore many unnecessary queue oper-
ations. Recall that the keys in our queue are arrival times.
Thus, we propose a more sophisticated approach to eliminate
dominated connections during the algorithm: we introduce
a node-label maxconn : V → {0, . . . , |conn(S)| − 1}
depicting the highest connection index with which the node
v has been reached so far. Each time we settle a queue
element (v, i) with arr(v, i) := key(v, i), we check if
i > maxconn(v). If this is not the case, the node v has
already been settled earlier—but with a later connection
(remember that j > i⇒ τdep(cj) ≥ τdep(ci)), thus, implying
arr(v, j) ≤ arr(v, i). Therefore, the current connection does
not pay off, and we prune the connection i at v, i. e.,
we do not relax outgoing edges at v. Moreover, we set
arr(v, i) := ∞, depicting that the i’th connection does
not ‘reach’ v. In the case of i > maxconn(v), we update
maxconn(v) to i, and continue with relaxing the outgoing
edges of v regularly. Obviously, by applying self-pruning,
the set of connection points P(dist(S, v, ·)) at each node v
induced by arr(v, ·) fulfills the FIFO-property automatically
(labels with arr(v, i) =∞ have to be ignored).

Theorem 1. Applying self-pruning is correct.

Proof: Let v ∈ V be an arbitrary node. We show that no
optimal connection to v has been pruned by contradiction.
Let arr(v, i) be the arrival time at v of the (optimal) i’th
connection and assume that i has been pruned at v. Let j
denote the connection which was responsible for pruning i.
Then, it holds that arr(v, j) ≤ arr(v, i). Moreover, since
j pruned i, it holds that j > i, which implies τdep(cj) ≥
τdep(ci). Therefore, it holds that ∆(τdep(cj), arr(v, j)) ≤
∆(τdep(ci), arr(v, i)). This is a contradiction to i being
optimal: using the j’th connection results in an earlier arrival
at v by departing later at S.

Putting things together, the complete (sequential) algo-
rithm can be found in Algorithm 1 in pseudocode notation.

B. Parallelization

Unlike the trivial parallelization that would assign a
connection c ∈ conn(S) for an arbitrary idle processor
which then runs DIJKSTRA’s algorithm on c, our algorithm
needs a fixed assignment of the connections to the processors
beforehand. Let p denote the number of processors available.
In a first step, we partition conn(S) into p subsets where
each thread k runs our main algorithm on its restricted subset
connk(S).

After termination of each thread, we obtain partial dis-
tance functions distk(S, ·, ·) restricted to the connections that
were assigned to thread k. Thus, the master thread merges
the labels arrk(v, ·) of each thread k to a common label
arr(v, ·) while preserving the ordering of the connections.
This can be done by a linear sweep over the labels. Note
that the common label arr(v, ·) is not necessarily FIFO,
since we do not self-prune between threads so far. For that
reason, the connection points P(S, T, ·)) of the final distance
function are obtained by reducing the connection points
induced by the common label arr(v, ·) with our connection
reduction method described above. The pseudocode of the
main parallel algorithm is presented in Algorithm 2.

Choice of the Partition: The speed-up achieved by the
parallelization of our algorithm depends on the partitioning
of conn(S). As the overall computation time is dominated
by the thread with the longest computation time (for comput-
ing the final distance function, all threads have to be in a fin-
ished state), nearly optimal parallelism would be achieved if
all threads share the same amount of queue operations, thus,
approximately sharing the same computation time. However,
this figure is not known beforehand, which requires us to
partition conn(S) heuristically. We propose the following
simple methods.

The equal time-slots method partitions the complete time-
interval Π into p intervals of equal size. While this can
be computed easily, the sizes of conn(S)i turn out to be
very unbalanced, at least in our scenario. The reason for
this is that the connections in conn(S) are not distributed

Algorithm 1: Self-Pruning Connection-Setting (SPCS)
Input: Graph G = (V,E), source station S, outgoing

connections conn(S)
Side Effects: Distance labels arr(·, ·) for each node

and connection

// Initialization
Q← new(PQueue)1

maxconn(·)← −∞2

arr(·, ·)←∞3

discovered(·, ·)← false4

sort(conn(S))5

forall ci ∈ conn(S) do6

r ← route node belonging to ci7

Q.insert((r, i), τdep(ci))8

discovered(r, i)← true9

// Main Loop
while not Q.empty() do10

// Settle next node/connection
(v, i)← Q.minElement()11

arr(v, i)← Q.minKey()12

Q.deleteMin()13

// Self-Pruning Rule
if maxconn(v) > i then14

arr(v, i)←∞15

continue16

else17

maxconn(v)← i18

// Relax outgoing edges
forall outgoing edges e = (v, w) ∈ E do19

arrtent(w, i)← arr(v, i) + fe(arr(v, i))20

if not discovered(w, i) then21

Q.insert((w, i), arrtent(w, i))22

discovered(w, i)← true23

else if arrtent(w, i) < Q.key((w, i)) then24

Q.decreaseKey((w, i), arrtent(w, i))25

uniformly over the day due to rush hours and operational
breaks at night. The equal number of connections method
tries to improve on that by partitioning the set conn(S)
into p sets of equal size (i. e., containing equally many
subsequent elementary connections). This is also very easy
to compute and improves over the equal time-slots method
regarding the balance. Besides these simple heuristics, in
principle, more sophisticated clustering methods like k-
Means [21] can be applied. However, our experimental
evaluation (cf. Section V-A) shows that the improvement in
the query performance is negligible compared to the simple

Algorithm 2: Parallel SPCS (PSPCS)
Input: Graph G = (V,E), source station S, outgoing

connections conn(S), p processors
Side Effects: Distance labels arr(·, ·) for each node

and connection

// Initialization
{conn1(S), . . . , connp(S)} ← partition(conn(S))1

// Parallel Computation
for k ← 1 . . . p do in parallel2

arrk(·, ·)←∞3

// Invoke the sequential
self-pruning connection-setting
algorithm

SPCS(connk(S))4

// Connection-Reduction
arr(·, ·)← merge(arr1(·, ·), . . . , arrp(·, ·))5

forall v ∈ V do6

last←∞7

for i← |conn(S)| . . . 1 do8

if arr(v, i) < last then9

last← arr(v, i)10

else11

arr(v, i)←∞12

methods, thus, we use the equal number of connections
method as a reasonable compromise. We like to mention
that for the correctness of our algorithm it is not necessary
to partition conn(S) into cells of subsequent connections.
However, it is intuitive to see that the self-pruning rule is
most effective on neighboring (regarding the departure time)
connections.

Impact on Self-Pruning and Pruning between Threads:
When computing the partial profile functions independently
in parallel, the speed-up gained by self-pruning may de-
crease, since a connection j cannot prune a connections
i, if i is assigned to a different thread than j. Thus,
with an increasing number of threads, the effect achieved
by self-pruning vanishes to the extreme point where the
number of threads equals the number of connections in
conn(S). In this case, our algorithm basically corresponds
to computing |conn(S)| time-queries in parallel—without
any pruning. To remedy this issue, the self-pruning rule
can be augmented in order to make use of dominating
connections across different threads. In the case that the
partitioning of conn(S) is chosen such that each cell
conn(S)k only contains subsequent connections, we can
define a total ordering on the cells by conn(S)k ≺ conn(S)l
if for all connections c ∈ conn(S)k and all connections
c′ ∈ conn(S)l it holds that τdep(c) ≤ τdep(c′). Without loss

of generality, let k < l ⇔ conn(S)k ≺ conn(S)l. We
introduce an additional label minarrk : V → Π for each
thread k that depicts for every node v the earliest arrival
time at v using connections assigned to the k’th thread. In
the beginning, we initialize minarrk(v) = ∞ and update
minarrk(v) := min(minarrk(v), arr(v, i)) each time thread
k settles v for some connection i. Then, in addition to our
self-pruning rule, we propose the following inter-thread-
pruning rule: each time we settle a queue element (v, i) with
arr(v, i) = key(v, i) in thread k, we check if there exists a
thread l with l > k for which minarrl(v) ≤ arr(v, i). If this
is the case, we know by the total ordering of the partition
cells that there exists a connection j assigned to thread l
with τdep(cj) ≥ τdep(ci) but arr(v, j) ≤ arr(v, i). In other
words, connection i assigned to thread k is dominated by
a connection j assigned to thread l. Thus, we may prune i
at v the same way we do for self-pruning, i. e., we do not
relax outgoing edges of v for connection i. Correctness of
this rule can be proven analogue to the the self-pruning rule
described earlier.

In a shared memory setup like in multi-core servers, the
values of minarrk(·) can be communicated through the main
memory, thus, not imposing a significant overhead to the
algorithm. Moreover, for practical use it is sufficient to only
check a constant number c of threads {k + 1, . . . , k + c},
since dominating connections are less likely to be ‘far in
the future’, i. e., assigned to threads l � k. Furthermore,
we like to mention that our inter-thread-pruning rule does
not guarantee pruning of dominated connections since the
priority queue is not shared across threads. However, in
most cases connections j with small arrival times prune
connections i with high arrival time with respect to their
particular thread. Hence, j is likely to be settled before
i, thus, enabling pruning of i. An illustration of the inter-
thread-pruning rule is illustrated in Algorithm 3.

Algorithm 3: Inter-Thread-Pruning Rule
Input: Thread number k, number of processors p, . . .

. . .1

minarrk(·)←∞2

. . .3

while not Q.empty() do4

. . .5

// Inter-thread-pruning rule
if ∃l with k < l ≤ p for which6

minarrl(v) ≤ arr(v, i) then
arr(v, i)←∞7

continue8

minarrk(v)← min(minarrk(v), arr(v, i))9

. . .10

IV. STATION-TO-STATION QUERIES

DIJKSTRA’s algorithm can be accelerated by precomput-
ing auxiliary data as soon as we are only interested in point-
to-point queries [1]. In this section, we present how some of
the ideas, i. e., the so called stopping criterion, map to our
new algorithm. Moreover, we show how the precomputation
of certain connections improves the performance of our
algorithm. The enhancements introduced in this section refer
to the sequential algorithm (cf. Section III-A). Thus, all
results translate to our parallel algorithm naturally.

A. Stopping Criterion.

For point-to-point queries, DIJKSTRA’s algorithm can stop
the query as soon as the target node has been taken from
the priority queue. In our case, i. e., station-to-station, we
can stop the query as soon as the target station T has its
final label arr(T, i) for all i assigned. This can be achieved
as follows. We maintain an index Tm, initialized with −∞.
Whenever we settle a connection i at our target station T ,
we set Tm := max{i, Tm}. Then, we may prune all entries
q = (v, i) ∈ Q with i ≤ Tm (at any node v). We may stop
the query as soon as the queue is empty.

Theorem 2. The stopping criterion is correct.

Proof: We need to show that no entry q = (v, i) ∈ Q
with i ≤ Tm can improve on the arrival time at T for the
connection i. Let q′ = (v′, i′) be the responsible entry that
has set Tm. Since i ≤ Tm holds, we know that regarding the
departure times of the connections τdep(c′i) ≥ τdep(ci) holds
as well. Moreover, since q is settled after q′, we know that
arr(v′, i′) ≤ arr(v, i) holds. In other words, it does not pay
off to board train i at station S.

S

Figure 3. Local and via stations of a station S. Local stations are indicated
in blue, while via stations are marked thicker in red.

B. Pruning with a Distance Table

Next, we show how to accelerate our station-to-station
algorithm by pruning via a distance table. We therefore
consider the station graph GS = (S, ES) where an edge
(S1, S2) indicates at least one train running from S1 to
S2. For a node u of the timetable graph, st(u) denotes the
station a node belongs to. We are given a subset Strans ⊆ S
of stations (called transfer stations) and a distance table
D : Strans × Strans × Π → N0. The distance table returns,
for each pair of stations S, T ∈ Strans, the arrival time at
T when departing from S at τ ∈ Π (without any transfer
times at S and T). Before explaining the pruning rule in

detail, we need the notion of local and via stations. The
set of local stations local(S) ⊆ S of an arbitrary station S
includes all stations L such that there is a simple path from
L to S that contains only non-transfer stations in the station
graph GS . The set of transfer stations that are adjacent to
at least one local station of S are called the via stations
of S, denoted by via(S) ⊆ Strans. They basically separate
S ∪ local(S) from any other station in GS . Figure 3 gives
a small example. In the special case of S being a transfer
station, we set local(S) = ∅ and via(S) = {S}.

S A

B

Vj T

≥ µi,j

⇒ arr(Vj , i) + T (Vj) ≤ µi,j

Figure 4. Example for pruning via a distance table, given an S-T query.
A and B are transfer stations, Vj the via station of T . When settling a
node at station A, we obtain that the arrival time at Vj plus the transfer
time at Vj is smaller or equal to µi,j . Hence, we may prune the query
at B if the lower bound obtained from the distance table yields an arrival
time at Vj greater than µi,j .

In the following, we call an S-T station query local, if
S ∈ local(T), otherwise the query is called global. Note that
a best connection of a global query must contain a via station
of T . We accelerate global S-T queries by maintaining an
upper-bound µi,j , initialized with ∞, for each connection
i and each via station Vj of T . Whenever we settle a
queue entry q = (v, i) with st(v) ∈ Strans, we set µi,j :=
min{µi,j ,D(st(v), Vj , arr(v, i)+T (st(v)))+T (Vj)} for all
Vj ∈ via(T). In other words, µi,j depicts an upper bound on
the earliest train we can catch at Vj , even if we had to change
the train at Vj . So, we may prune the search regarding q if

∀Vj ∈ via(T) : D(st(v), Vj , arr(v, i)) > µi,j (2)

holds. In other words, we prune the search at v for a
connection i if the path through st(v) is provably not
important for the best path to any via station of Vj ∈ via(T).
Figure 4 gives a small example.

Theorem 3. Pruning based on a Distance Table is correct.

The proof can be found in Appendix A. It follows the
intuition that arriving at a time ≤ µi,j at Vj ensures catching
the optimal train toward T . Moreover, when we prune at v,
the path through v yields a later arrival time at Vj than µi,j .
Thus, the path at v can be pruned, since it is no improvement
over the path corresponding to µi,j .

Special Cases: Obviously, we may immediately stop
the search if S, T ∈ Strans since the distance table already
includes all best connections from S to T . However, we
may also apply an additional pruning rule if T ∈ Strans,
which we call target pruning. For each connection i, we

maintain a tentative lower bound γi on the arrival time
at T , initialized with ∞. Whenever we settle an element
q = (v, i) ∈ Q with st(v) ∈ Strans, we update γi
to min{γi,D(st(v), T, arr(v, i))}. As soon as all elements
q = (v, i) ∈ Q for a given connection i have a transfer
station as ancestor, γi is a feasible lower bound on the
arrival time at T . When we then remove a queue element
q = (v, i) ∈ Q with st(v) ∈ Strans, we may stop the search
for i if D(st(q), T, arr(v, i) + T (st(v))) = γi holds. We set
arr(T, i) = D(st(q), T, arr(v, i) + T (st(q))) and prune the
search for any q = (v, i) ∈ Q.

Theorem 4. Target pruning is correct.

The proof of Theorem 4 follows from the observation that
γi is a valid lower bound to the target station and that when
we prune the search, we already have found the optimal
arrival time at T (for i). The full proof can be found in
Appendix A.

Determining via(T): We determine the via stations of
T on-the-fly: During the initialization phase of the algorithm,
we run a DFS on the reverse station graph from T , pruning
the search at stations V ∈ Strans. Any station V ∈ Strans
touched during the DFS is added to via(T). Note that we
may distinguish local from global queries when computing
via(T): as soon as our DFS visits S, the query is local,
otherwise it is global.

Selection of Transfer Stations: The success of pruning
via a distance table highly depends on which stations are
selected for Strans. In [22], the authors propose to identify
important stations by a given “importance” value provided
by the input. However, such values are not available for
all inputs. Hence, we here propose to use the concept of
contraction [23] which proved useful in road networks. A
contraction routine iteratively removes unimportant nodes
from the graph and adds shortcuts to the graph in order
to preserve the distances between non-removed nodes. We
mark any station as important which has not been removed
after the contraction of c stations.

Another possibility to select important stations is via their
degree in the station graph. More precisely, we mark any
station as transfer station having a degree > k in the station
graph.

V. EXPERIMENTS

We conducted our experiments on up to eight cores of
a dual Intel Xeon 5430 running SUSE Linux 11.1. The
machine is clocked at 2.6 GHz, has 32 GiB of RAM and
2 × 1 MiB of L2 cache. The program was compiled with
GCC 4.3, using optimization level 3. Our implementation
is written in C++ using solely the STL and Boost at some
points. As priority queue we use a binary heap.

Inputs: We use five different public transportation
networks as input: the local networks of Oahu Transit
Services [24], Hawaii (3 896 stops and 207350 elementary

Figure 5. Excerpt of the station graph of one of our inputs: the Los
Angeles County Metro bus network [25]. Transfer stations are highlighted
in red (cf. Section IV-B). In this figure we used the contraction method to
select 5% of the stations as transfer station.

connections), Los Angeles County Metro [25] (15 581 stops
and 1046580 elementary connections), and the network
of Washington Metropolitan Area Transit Authority [26]
(10 228 stops and 645670 elementary connections). More-
over, we use railway networks of Germany and Europe. The
former has 6 822 stations and 554 996 elementary connec-
tions, while the latter has 30 517 stations and 1 775 533 ele-
mentary connections. The networks of Oahu, Los Angeles,
and Washington D.C. were created based on the timetable
of January 13, 2010. The German railway network is based
on the timetable of the winter period 2000/2001 and the
European railway network is based on the timetable of the
winter period 1996/1997. Note that the local networks are
much denser than the railway networks, i. e., the connections
per station ratio is significantly higher there.

The timetable data of the local city networks is publicly
available through Google Transit Data Feeds [27], while
the timetable data of the German and European railway
networks was kindly given to us by HaCon [28]. See
Figure 5 for a visualization of the Los Angeles station graph.

A. One-to-All Queries

Our first set of experiments focuses on the question how
well our parallel self-pruning connection-setting algorithm
(PSPCS) performs if executed on a varying number of
cores. Therefore, we run 1 000 one-to-all queries with the
source station picked uniformly at random. We report the
average number of connections taken from the priority queue
(sum over all cores) and the average execution time of a
query. Table I reports these figures for a varying number
(between 1 and 8) of cores and different load balancing

Table I
ONE-TO-ALL PROFILE-QUERIES WITH OUR PARALLEL SELF-PRUNING CONNECTION-SETTING ALGORITHM (PSPCS) ON 1,2,4, AND 8 CORES WITH

DIFFERENT LOAD BALANCING STRATEGIES, COMPARED TO A LABEL-CORRECTING APPROACH (LC). COLUMN spd-up INDICATES THE TIME SPEED-UP
OF A MULTI-CORE RUN OVER A SINGLE-CORE EXECUTION.

Oahu Los Angeles Washington D.C.
Settled Time Spd Std- Settled Time Spd Std- Settled Time Spd Std-

p Conns [ms] Up Dev Conns [ms] Up Dev Conns [ms] Up Dev
PSPCS: 1 636325 187.0 1.0 — 2584747 1209.0 1.0 — 1333120 548.4 1.0 —
EQUICONN 2 626710 113.4 1.7 10.3% 2551829 690.0 1.8 14.7% 1315825 315.4 1.7 9.0%

4 627737 73.0 2.6 16.3% 2551646 417.4 2.9 18.2% 1321809 208.8 2.6 17.5%
8 630559 46.8 4.0 20.3% 2559804 267.7 4.5 20.0% 1335867 130.9 4.2 16.6%

EQUITIME 2 626677 112.7 1.7 14.0% 2551986 698.2 1.7 13.0% 1315689 329.2 1.7 18.9%
4 646804 68.2 2.7 34.8% 2584659 426.6 2.8 40.0% 1368126 211.2 2.6 41.8%
8 649874 48.7 3.9 34.6% 2610774 281.7 4.3 38.4% 1401723 151.6 3.6 45.4%

k-MEANS 2 626667 110.9 1.7 7.0% 2552026 650.3 1.9 7.5% 1315784 366.4 1.5 7.7%
4 628853 66.8 2.8 31.9% 2551970 414.0 2.9 37.1% 1323119 244.1 2.3 46.1%
8 628853 45.1 4.1 29.4% 2560046 285.0 4.2 32.5% 1336411 134.5 4.1 32.1%

LC: 1 4727580 355.2 — — 18976300 1482.1 — — 6205400 448.0 — —

Germany Europe
Settled Time Spd Std- Settled Time Spd Std-

p Conns [ms] Up Dev Conns [ms] Up Dev
PSPCS: 1 1613354 858.0 1.0 — 3342318 2152.0 1.0 —
EQUICONN 2 1554704 462.5 1.9 18.0% 3148147 1054.2 2.0 16.1%

4 1557346 272.2 3.2 20.0% 3461400 673.8 3.2 24.4%
8 1607721 172.6 5.0 22.7% 4284597 510.9 4.2 23.8%

EQUITIME 2 1555488 460.7 1.9 15.3% 3162888 1061.7 2.0 17.7%
4 1578666 258.7 3.3 32.1% 3514933 616.6 3.5 28.7%
8 1645618 181.0 4.7 32.1% 4423343 489.4 4.4 30.0%

k-MEANS 2 1555225 448.8 1.9 11.9% 3151242 1062.3 2.0 18.1%
4 1573425 260.6 3.3 34.2% 3495109 649.7 3.3 31.8%
8 1621156 169.8 5.1 27.7% 4278333 511.8 4.2 23.9%

LC: 1 10166000 936.2 — — 17706000 2497.1 — —

Table II
PERFORMANCE OF OUR PARALLEL SELF-PRUNING CONNECTION-SETTING ALGORITHM WITH STOPPING CRITERION ENABLED. AS LOAD-BALANCING

STRATEGY WE USE THE EQUAL CONNECTIONS METHOD. MOREOVER, WE PRUNE BY A DISTANCE TABLE AS DESCRIBED IN SECTION IV. THE
NUMBER OF TRANSFER STATIONS IS GIVEN IN PERCENTAGE OF INPUT STATIONS.

Oahu Los Angeles Washington D.C.
PREPRO QUERY PREPRO QUERY PREPRO QUERY

Time Space Settled Time Spd Time Space Settled Time Spd Time Space Settled Time Spd
[m:s] [MiB] Conns [ms] Up [m:s] [MiB] Conns [ms] Up [m:s] [MiB] Conns [ms] Up

0.0% — — 443818 32.9 1.0 — — 1754195 188.2 1.0 — — 943912 95.3 1.0
1.0% 0:03 0.7 388356 38.3 0.9 0:59 12.0 1163256 144.9 1.3 0:18 5.2 781302 86.6 1.1
2.5% 0:07 4.1 236605 24.9 1.3 2:16 64.9 478532 70.4 2.7 0:46 36.2 526669 69.6 1.4
5.0% 0:12 13.4 169894 19.8 1.7 4:19 240.7 339444 59.1 3.2 1:31 133.5 526669 53.3 1.8

10.0% 0:22 45.6 139780 16.8 2.0 8:07 832.2 309927 59.0 3.2 2:55 445.8 305869 46.9 2.0
20.0% 0:47 155.7 131136 17.4 1.9 16:21 3006.0 289551 57.7 3.3 6:06 1529.2 272368 44.2 2.2
30.0% 1:09 335.7 128665 17.3 1.9 — — — — — — — — — —

deg > 2 0:59 247.7 113076 15.4 2.1 18:01 3263 255907 51.2 3.7 9:58 3560.7 226844 37.8 2.5

Germany Europe
PREPRO QUERY PREPRO QUERY

Time Space Settled Time Spd Time Space Settled Time Spd
[m:s] [MiB] Conns [ms] Up [m:s] [MiB] Conns [ms] Up

0.0% — — 1154240 131.2 1.0 — — 3110168 412.4 1.0
1.0% 0:16 0.6 1120447 142.1 0.9 3:32 5.9 2368930 386.2 1.1
2.5% 0:44 5.5 653183 92.1 1.4 10:01 55.2 1257104 235.6 1.8
5.0% 1:27 23.0 424442 63.8 2.1 20:13 214.3 907201 186.5 2.2

10.0% 2:51 86.4 297479 49.5 2.7 39:05 794.4 696364 151.2 2.7
20.0% 5:50 311.7 248935 43.7 3.0 75:35 2986.7 615961 132.1 2.9
30.0% 8:04 686.8 221372 37.7 3.5 — — — — —

deg > 2 8:39 793.8 204257 36.8 3.6 — — — — —

strategies. In order to evaluate the load balancing, we report
the standard deviation with respect to the the execution times
of the individual threads. In other words, a low deviation
shows a good balance, whereas a high deviation indicates
that some threads are often idle. For comparison, we also
report the performance of a label-correcting (LC) approach
(cf. Section II). For better comparability, the number of
connections figure here indicates the sum of the sizes of
the connection-labels taken from the priority queue.

We observe that our algorithm scales pretty well with
increasing number of cores. On all networks except Europe,
the number of settled nodes is almost independent of the
number of cores. So, on 4 cores we have a speed-up factor
of around 3 compared to an execution on one core. On 8
cores, the speed-up factor is between 4 and 5. The reason for
this is that memory management also plays a crucial role for
the scalability of a parallel algorithm. Still, on eight cores,
we are able to compute all quickest connections of a day
in less than 0.51 seconds. Note that this value is achieved
without any preprocessing, hence, we can directly use this
approach in a fully dynamic scenario as discussed in [29].

Regarding load balancing, we observe that using equal
number of connections (equiconn) yields (on average) lowest
query times (and deviation). In few occasions, equal time-
slots (equitime) or k-means yields better results, but over all
inputs and number of cores, equiconn seems to be the best
choice. Hence, we use equiconn as default strategy for all
further multi-core experiments. Another, not very surprising,
observation is that the deviation increases with increasing
number of cores. The more cores we use, the harder a perfect
balancing can be achieved.

Comparing our new connection-setting with the label-
correcting approach (cf. Section II), we observe that PSPCS
outperforms LC, even when PSPCS is executed on only
one core. The main reason for this is that the number of
connections investigated during execution is much smaller
for PSPCS than for LC. However, the number of priority
queue operations for LC is up to 4 times lower than for
PSPCS. Hence, the advantage of PSPCS in number of settled
connections does not yield the same speed-up in query times.

B. Station-to-Station Queries

Finally, we evaluate our algorithm in a station-to-station
scenario. We use 8 cores as default and evaluate the impact
of different distance table sizes. Since these tables need to
be precomputed, we also report the preprocessing time and
the size of the tables in Megabytes. The distance tables
are computed by running our parallel one-to-all algorithm
on 8 cores from every transfer station. As strategies for
selecting transfer stations, we use contraction with varying
number of removed stations and selection via degree in
the station graph. Table II gives an overview over the
obtained results. We observe that compared to Table I,
the stopping criterion accelerates queries by up to 42 %

(Oahu and Los Angeles). Moreover, we observe that the
size of the distance table has a high impact on the query
performance. While augmenting only 1 % of the stations
to transfer stations hardly accelerates queries, 5 % transfer
stations yields additional speed-ups between 1.7 and 3.2,
depending on the input. Larger distance tables hardly pay
off: the size of the table increases significantly, and the gain
in query performance is little. Hence, selecting 5 % of the
stations as transfer stations seems to be a good compromise.
Regarding the preprocessing effort, we observe that with
increasing number of transfer stations the size of the tables
and the preprocessing time increases as well. However, when
using 5 % transfer stations, we can compute the distance
tables between 12 Seconds and approximately 20 Minutes
while the tables consume less than 215 MiB space for all
of our inputs. For this scenario, we are able to compute all
quickest connections on all inputs in less than 190 ms time.

VI. CONCLUSION

In this work, we have presented a novel parallel algo-
rithm for computing all best connections of a day from a
given station to all other stations in a public transportation
network in a single query. To this extent, we exploited the
special structure of travel-time functions in such networks
and the fact that only few connections are useful when
travelling sufficiently far away. Introducing the concept of
connection-setting, we showed how to transfer the label-
setting property of DIJKSTRA’s algorithm to profile-searches
in transportation networks. By the fact that the outgoing
connections of the source station can be distributed to
different processors, our algorithm is easy to use in a
multi-core setup yielding excellent speed-ups on today’s
computers. Moreover, utilizing the very same algorithm to
precompute connections between important stations, we can
greatly accelerate station-to-station queries.

Regarding future work, it will be interesting to incorporate
multi-criteria connections, e. g., minimizing the number of
transfers or incorporating fee zones which is relevant es-
pecially in local networks. The main challenge here is to
keep up the connection-setting property and to find efficient
criteria for self-pruning in such a scenario. Moreover, our
algorithm can be seen as a replacement for DIJKSTRA’s
algorithm which is the basis for most of today’s speed-
up techniques, e. g., from [7]. Hence, we are interested in
applying those techniques to our new connection-setting
approach.

REFERENCES

[1] D. Delling, P. Sanders, D. Schultes, and D. Wagner, “Engi-
neering Route Planning Algorithms,” in Algorithmics of Large
and Complex Networks, ser. Lecture Notes in Computer Sci-
ence, J. Lerner, D. Wagner, and K. A. Zweig, Eds. Springer,
2009, vol. 5515, pp. 117–139.

[2] R. Bauer, D. Delling, P. Sanders, D. Schieferdecker,
D. Schultes, and D. Wagner, “Combining Hierarchical and
Goal-Directed Speed-Up Techniques for Dijkstra’s Algo-
rithm,” in Proceedings of the 7th Workshop on Experimental
Algorithms (WEA’08), ser. Lecture Notes in Computer Sci-
ence, C. C. McGeoch, Ed., vol. 5038. Springer, June 2008,
pp. 303–318.

[3] B. C. Dean, “Continuous-Time Dynamic Shortest Path Algo-
rithms,” Master’s thesis, Massachusetts Institute of Technol-
ogy, 1999.

[4] E. Pyrga, F. Schulz, D. Wagner, and C. Zaroliagis, “Effi-
cient Models for Timetable Information in Public Transporta-
tion Systems,” ACM Journal of Experimental Algorithmics,
vol. 12, p. Article 2.4, 2007.

[5] A. Orda and R. Rom, “Shortest-Path and Minimum Delay
Algorithms in Networks with Time-Dependent Edge-Length,”
Journal of the ACM, vol. 37, no. 3, pp. 607–625, 1990.

[6] Y. Disser, M. Müller–Hannemann, and M. Schnee, “Multi-
Criteria Shortest Paths in Time-Dependent Train Networks,”
in Proceedings of the 7th Workshop on Experimental Algo-
rithms (WEA’08), ser. Lecture Notes in Computer Science,
C. C. McGeoch, Ed., vol. 5038. Springer, June 2008, pp.
347–361.

[7] D. Delling, “Time-Dependent SHARC-Routing,” Al-
gorithmica, July 2009, special Issue: European
Symposium on Algorithms 2008. [Online]. Available:
http://www.springerlink.com/content/f464667j140jx36h

[8] R. Bauer, D. Delling, and D. Wagner, “Experimental Study on
Speed-Up Techniques for Timetable Information Systems,”
in Proceedings of the 7th Workshop on Algorithmic
Approaches for Transportation Modeling, Optimization,
and Systems (ATMOS’07), C. Liebchen, R. K. Ahuja,
and J. A. Mesa, Eds. Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl,
Germany, 2007, pp. 209–225. [Online]. Available: http:
//drops.dagstuhl.de/opus/volltexte/2007/1169/

[9] D. Delling, T. Pajor, and D. Wagner, “Engineering Time-
Expanded Graphs for Faster Timetable Information,” in Pro-
ceedings of the 8th Workshop on Algorithmic Approaches
for Transportation Modeling, Optimization, and Systems (AT-
MOS’08), ser. Dagstuhl Seminar Proceedings. Internationales
Begegnungs- und Forschungszentrum für Informatik (IBFI),
Schloss Dagstuhl, Germany, September 2008.

[10] R. C. Paige and C. P. Kruskal, “Parallel algorithms for shortest
path problems,” 1985, pp. 553–556.

[11] J. R. Driscoll, H. N. Gabow, R. Shrairman, and R. E. Tarjan,
“Relaxed heaps: An alternative to Fibonacci heaps with
applications to parallel computation,” Comm. ACM, vol. 31,
no. 11, pp. 1343–1354, 1988.

[12] K. M. Chandy and J. Misra, “Distributed computation on
graphs: Shortest path algorithms,” Comm. ACM, vol. 25,
no. 11, pp. 833–837, 1982.

[13] K. V. S. Ramarao and S. Venkatesan, “On finding and
updating shortest paths distributively,” J. Algorithms, vol. 13,
pp. 235–257, 1992.

[14] P. Adamson and E. Tick, “Greedy partitioned algorithms for
the shortest path problem,” International Journal of Parallel
Programming, vol. 20, pp. 271–298, 1991.

[15] J. L. Träff, “An experimental comparison of two distributed
single-source shortest path algorithms,” Parallel Computing,
vol. 21, pp. 1505–1532, 1995.

[16] U. Meyer and P. Sanders, “∆-Stepping : A Parallel Single
Source Shortest Path Algorithm,” in Proceedings of the 6th
Annual European Symposium on Algorithms (ESA’98), ser.
Lecture Notes in Computer Science, vol. 1461, 1998, pp. 393–
404.

[17] K. Madduri, D. A. Bader, J. W. Berry, and J. R. Crobak, “An
Experimental Study of A Parallel Shortest Path Algorithm
for Solving Large-Scale Graph Instances,” in Proceedings of
the 9th Workshop on Algorithm Engineering and Experiments
(ALENEX’07). SIAM, 2007, pp. 23–35.

[18] M. R. Hribar, V. E. Taylor, and D. E. Boyce, “Implementing
parallel shortest path for parallel transportation applications,”
Parallel Computing, vol. 27, pp. 1537–1568, 2001.

[19] D. Delling and D. Wagner, “Time-Dependent Route Plan-
ning,” in Robust and Online Large-Scale Optimization, ser.
Lecture Notes in Computer Science, R. K. Ahuja, R. H.
Möhring, and C. Zaroliagis, Eds. Springer, 2009, vol. 5868,
pp. 207–230.

[20] D. Delling, T. Pajor, and D. Wagner, “Accelerating Multi-
Modal Route Planning by Access-Nodes,” in Proceedings
of the 17th Annual European Symposium on Algorithms
(ESA’09), ser. Lecture Notes in Computer Science, A. Fiat
and P. Sanders, Eds., vol. 5757. Springer, September 2009,
pp. 587–598.

[21] J. MacQueen, “Some Methods for Classification and Analysis
of Multivariate Observations,” in Fifth Berkeley Symposium
on Mathematical Statistics and Probability, 1967, pp. 281–
297.

[22] F. Schulz, D. Wagner, and K. Weihe, “Dijkstra’s Algorithm
On-Line: An Empirical Case Study from Public Railroad
Transport,” in Proceedings of the 3rd International Workshop
on Algorithm Engineering (WAE’99), ser. Lecture Notes
in Computer Science, vol. 1668. Springer, 1999, pp.
110–123. [Online]. Available: http://portal.acm.org/citation.
cfm?id=720630

[23] R. Geisberger, P. Sanders, D. Schultes, and D. Delling, “Con-
traction Hierarchies: Faster and Simpler Hierarchical Routing
in Road Networks,” in Proceedings of the 7th Workshop on
Experimental Algorithms (WEA’08), ser. Lecture Notes in
Computer Science, C. C. McGeoch, Ed., vol. 5038. Springer,
June 2008, pp. 319–333.

[24] O’ahu Transit Services, Inc., “http://www.thebus.org,” 1971.

[25] Los Angeles County Metropolitan Transportation Authority,
“http://www.metro.net,” 1993.

[26] Washington Metropolitan Area Transit Authority, “http://
www.wmata.com,” 1967.

[27] Google Transit Data Feed, “http://code.google.com/p/
googletransitdatafeed/,” 2009.

[28] HaCon - Ingenieurgesellschaft mbH, “http://www.hacon.de,”
2008.

[29] M. Müller–Hannemann, M. Schnee, and L. Frede, “Efficient
On-Trip Timetable Information in the Presence of Delays,” in
Proceedings of the 8th Workshop on Algorithmic Approaches
for Transportation Modeling, Optimization, and Systems (AT-
MOS’08), ser. Dagstuhl Seminar Proceedings. Internationales
Begegnungs- und Forschungszentrum für Informatik (IBFI),
Schloss Dagstuhl, Germany, September 2008.

APPENDIX A.
PROOFS

Proof of Theorem 3

We are proving the overall correctness by showing the
correctness for each connection i separately. Thus, let i be
a fixed connection index and P = [S, . . . , T] the shortest
path of a global S-T -query of connection i. Note that if
S-T is a local query, no pruning is applied. Furthermore,
let arropt(T, i) denote the (optimal) arrival time at T when
using P . We show a series of lemmas before proving the
main theorem.

Lemma 1. For all tuples (v, Vj) ∈ V ×via(T) with st(v) ∈
Strans it holds that

arropt(T, i) ≤D(st(v), Vj , arr(v, i) + T (st(v)))︸ ︷︷ ︸
=: µi,v,j

+ T (Vj) + dist(Vj , T, µi,v,j).

(3)

Proof: Assume that the equation is false, and the right
hand side yields an arrival time at T which is earlier than
arropt(T, i). Then, the path induced by the right hand side
of the equation yields a shorter path to T , which is a
contradiction to arropt(T, i) being optimal.

Corollary 1. Let µi,j := minv∈V,st(v)∈Strans(µi,v,j), then it
holds that arropt(T, i) ≤ µi,j + dist(Vj , T, µi,j).

Lemma 2. For all tuples (v, Vj) ∈ V ×via(T) with st(v) ∈
Strans it holds that

arrVj
(T, i) ≥D(st(v), Vj , arr(v, i))︸ ︷︷ ︸

=: γi,v,j

+ dist(Vj , T, γi,v,j)

(4)

where arrVj
(T, i) depicts the arrival time of the combined

shortest S-v-Vj-T path.

Proof: Let us assume that the right hand side of
the equation evaluates to arr′Vj

(T, i) with arr′Vj
(T, i) <

arrVj
(T, i). But this is a contradiction to the correctness

of the distance table D yielding the earliest arrival time at
Vj , since dist(Vj , T, ·) fulfills the FIFO-property and γi,v,j
is the earliest possible arrival time at Vj (without transfer at
st(v)).

Lemma 3. Let v ∈ V be a node with st(v) ∈ Strans, and let
γi,v,j > µi,j . Then

γi,v,j + dist(Vj , T, γv,i,j) ≥ µi,j + dist(Vj , T, µi, j) (5)

holds.

Proof: This follows immediately from the FIFO-pro-
perty of dist(Vj , T, ·).

1) Proof of Theorem 3.: Given a global S-T -query with
via stations via(T). Let v ∈ V be a node with st(v) ∈ Strans,
where the pruning rule is potentially applied. Then from
Lemma (2), (3) and Corollary (1) we get for a via node
Vj ∈ via(T) that

γv,i,j > µi,j ⇒ arrVj (T, i) ≥ µi,j + dist(Vj , T, µi,j)︸ ︷︷ ︸
=: ψ

≥ arropt(T, i)

(6)

Since our algorithm keeps track of µi,j which is the min-
imum over all µi,x,j with st(x) ∈ Strans, the path which
corresponds to µi,j is not pruned. Hence, at the point where
v is pruned a path with arrival time ψ toward Vj is guar-
anteed to be found. Since v is only pruned if Equation (5)
holds for all Vj ∈ via(T), it follows that v /∈ P , thus, v not
being important for the shortest S-T -path.

Proof of Theorem 4

Similar to the proof of Theorem 3, we show correctness
of Theorem 4 for each connection i separately. Again, let i
be a fixed connection and P = [S, . . . , T] the shortest path
of a global S-T -query of connection i and let arropt(T, i)
denote the (optimal) arrival time at T when using P . We
know that for all nodes v with st(v) ∈ Strans, the inequation

arropt(T, i) ≤ D(st(v), T, arr(v, i) + T (st(v))︸ ︷︷ ︸
=: µi,v

(7)

holds. Moreover, for all nodes u ∈ P with st(u) ∈ Strans,
we know that arropt(T, i) ≥ D(st(v), T, arr(v, i)) =: γi,v
holds as well. From this follows that

min
st(v)∈Γ⊆Strans

∃ st(u)∈Γ:st(u)∈P

γi,v := γi ≤ arropt(T, i)

≤ min
st(v)∈Strans

µi,v

(8)

holds. In other words, as soon as a transfer station on the
shortest path has contributed to γi, γi is a feasible lower
bound on the arrival time at T . So, we have found the
optimal arrival time at T as soon as γi = µi holds. By
enabling target pruning only when all elements in the queue
have a node u with st(u) ∈ Strans as ancestor, we ensure
that a transfer station on the shortest path contributes to γi.
Hence, Theorem 4 is correct.

