Fully-Dynamic Hierarchical Graph Clustering
Using Cut Trees

Christof Doll, Tanja Hartmann, and Dorothea Wagner

Department of Informatics, Karlsruhe Institute of Technology (KIT)*
christof @doll.de.com, {t.hartmann,dorothea.wagner } @kit.edu

Abstract. Algorithms or target functions for graph clustering rarely admit qual-
ity guarantees or optimal results in general. However, a hierarchical clustering
algorithm by Flake et al., which is based on minimum s-t-cuts whose sink sides
are of minimum size, yields such a provable guarantee. We introduce a new de-
gree of freedom to this method by allowing arbitrary minimum s-¢-cuts and show
that this unrestricted algorithm is complete, i.e., any clustering hierarchy based
on minimum s-f-cuts can be found by choosing the right cuts. This allows for
a more comprehensive analysis of a graph’s structure. Additionally, we present
a dynamic version of the unrestricted approach which employs this new degree
of freedom to maintain a hierarchy of clusterings fulfilling this quality guarantee
and effectively avoid changing the clusterings.

1 Introduction

Graph clustering has become a central tool for the analysis of networks in general,
with applications ranging from the field of social sciences to biology and to the grow-
ing field of complex systems. The general aim of graph clustering is to identify dense
subgraphs (clusters) that are sparsely connected in networks, i.e., a good clustering con-
forms to the paradigm of intra-cluster density and inter-cluster sparsity. Countless for-
malizations thereof exist, however, the overwhelming majority of algorithms for graph
clustering relies on heuristics and do not allow for any structural guarantee on their out-
puts [1, 2]. Inspired by the work of Kannan et al. [6], Flake et al. [3] recently presented
a hierarchical clustering algorithm that does guarantee a very reasonable bottleneck-
property based on an input parameter and returns clusterings at different levels of gran-
ularity. Their elegant approach exploits properties of cut trees, pioneered by Gomory
and Hu [4]. It partially constructs those trees using minimum s-z-cuts whose sink sides
are of minimum size. Due to this restriction the returned clusterings are unique. How-
ever, the algorithm possibly misses convenient clusterings in graphs where minimum
s-t-cuts and cut trees are not unique (see Appendix A for a small example).

We show that a restriction to specific cuts is not necessary, i.e., permitting arbitrary
minimum s-z-cuts is a feasible degree of freedom. This makes the method more pow-
erful since construction may actually use the most appropriate cut, depending on the
application. We further prove that the unrestricted approach is even complete, i.e., any
clustering hierarchy based on minimum s-z-cuts can be returned by choosing the right

* This work was partially supported by the DFG under grant WA 654/15-2.

cuts. Additionally, we develop the first update algorithm that efficiently and dynami-
cally maintains a whole hierarchy of clusterings, as found by our unrestricted method,
for a dynamically changing graph. This algorithm allows arbitrary atomic changes, and
employs the new degree of freedom to save costs and keep consecutive clusterings on
the same level similar (a notion we call temporal smoothness).

We briefly give our notational conventions and two fundamental insights in Sec. 2.
Then, in Sec. 3, we revisit the static hierarchical algorithm by Flake et al. [3] and prove
correctness and completeness of this approach when using arbitrary minimum cuts. In
Sec. 4 we present our new update algorithm and its analysis, concluding in Sec. 5.

2 Preliminaries and Notation.

Throughout this work we consider an undirected, weighted graph G = (V,E,¢) with
vertex set V, edge set E and a non-negative edge weight function c. We write ¢(u,v) as a
shorthand for ¢({u,v}) with u ~ v, i.e., {u,v} € E. We reserve the term node (or super-
node) for compound vertices of abstracted graphs, which may contain several basic
vertices; however, we identify singleton nodes with the contained vertex without further
notice. Dynamic modifications of G will solely concern edges as vertex insertions and
deletions are trivial for a disconnected vertex. Thus, a modification of G always involves
an edge {b,d}, yielding G¥ if {b,d} is newly inserted into G, and G® if it is deleted
from G. We write G®° as a shorthand for G® or G®. Decreasing edge weights can be
handled by the same method as deletions, the techniques for edge insertions also apply
for increasing weights. We further assume G to be connected; otherwise one can work
on each connected component independently and the results still apply.

An edge er = {u,v} of a tree T(G) = (V,Er,cr) on V induces a cut in G by de-
composing 7(G) into two connected components. A weighted tree T(G) is called a
cut tree [4,5] if edge weights correspond to cut weights and if for any vertex pair
{u,v} € (g) the cheapest edge on the unique path between u and v induces a minimum
u-v-cut in G. Neither must this edge be unique, nor 7(G). Note that we sometimes
identify e with the cut it induces in G.

A contraction of G by N C V means replacing the set N in G by a single node,
denoted by [N], and leaving this node adjacent to all former adjacencies u of vertices of
N, with edge weight equal to the sum of all former edges between N and u.

Our understanding of a clustering C(G) of G is a partition of V into subsets C, which
define vertex-induced subgraphs, called clusters. In the context of dynamic graphs and
edge modifications of {b,d} we particularly designate C*, C? and C*“ containing b
and d, respectively. A hierarchy of clusterings is a sequence C;(G) < --- < C,(G) of
clusterings such that C;(G) < C;(G) implies that each cluster in C;(G) is a subset of a
cluster in C;(G). We say C;(G) < C;(G) are hierarchically nested.

We start by giving two fundamental insights about cuts in static and dynamic graphs.
Lemma 1 results from the basic properties of cut trees and is proven in Appendix B. We
will use Observation 2 without further notice.

Lemma 1. Let (U,V \U) denote a minimum u-v-cut in G, u € U and x € U. Then there
exists a minimum x-v-cut (X,V\X) in G, x € X, such that X C U.

Observation 2. Suppose edge {b,d} changes in G yielding G*“. Let 6 denote a min-
imum u-v-cut in G® and 6 a min-u-v-cut in G, both not separating b and d. Then
cP9(0) =c(0) =c(0) = cP9(0), i.e., B is a minimum u-v-cut in G¥°.

3 The Static Hierarchical Clustering Algorithm

Flake et al. [3] propose and evaluate a hierarchical algorithm, which clusters instances in
a way that yields a certain guarantee on the quality of the clusters. This quality guarantee
is inherited from a basic clustering procedure, which computes one clustering. Applying
this procedure iteratively to instances obtained by contracting foregoing clusters yields
a clustering hierarchy.

The Basic Clustering Procedure. The quality measure of the basic clustering proce-
dure bases on the expansion of a cut (S, 5) due to Kannan et al. [6]:

sc(u,v _
Y= ZMGLS(_) (expansion of cut (S,S5))
min{]S],[S[}

Inspired by a bicriterial approach for good clusterings by Kannan et al. [6], which bases
on the related measure conductance', Flake et al. [3] design a basic clustering procedure
that, given parameter ¢, asserts:2

c(C,V\C) c(P.Q)
S << ———=_ _ YCeC(G) VPQ#0 PUQ=C
VAC| min{|P/,|Q[}
—_————
inter-cluster cuts intra-cluster cuts

This quality guarantee is due to special properties of cut trees, which are used by the
procedure: Given a graph G and parameter o > 0, augment G by inserting an artificial
vertex ¢ and connecting ¢ to each vertex in G by an edge of weight o. Then compute a
cut tree T(Gg) of the resulting graph G,. Finally, remove 7 from 7 (G,), which decom-
poses T(Gg) into connected components, which are returned as clusters in C(G). In the
following we call a clustering that can be computed by this procedure a cut-clustering,
and we denote by G5, and G¢ the augmented and modified graphs.

Flake et al. further point out that, instead of constructing a whole cut tree, only
knowing the edges of T (G) incident to ¢ would suffice. According to Lemma 3, which
directly follows from a lemma introduced by Gusfield [5], Alg. 1 (SCC), with S = 0,
returns a cut-clustering by constructing such a partial cut tree, which is in fact a star
with center ¢ (not to be confused with Strongly Connected Components). The parameter
S will be used later for the dynamic approach. The number of cuts calculated in SCC
depends on the sequence of chosen sinks and the shape of the returned cuts. Already
known cuts might be covered by later cuts in line 7, i.e., possibly computed without
need.

! conductance is similar to expansion but normalizes cuts by total incident edge weight.
2 The disjoint union A UB with AN B = 0 is denoted by AUB.

Algorithm 1: SIMPLE CUT-CLUSTERING (SCC as a shorthand)

Input: Graph Go = (Vg,Eq,ca), set S

C(G) =8,V Vo \ ({1} UUcesC)

while 3u €V do

(U,Vq\U) < min-t-u-cutin G, withu € U // new degree of freedom

Ct:=U,r(C"):=u

forall C' € C(G) do
if #(C') € C* then // C"=:H covers C

| C*—C"ul’,C(G) —C(G)\{C'} // reshaping by Lem.3

else C* — C*\ C' // reshaping by Lem.3, C'=:Vo\H

9 | C(G)—C(G)U{C}.V —V\C"

N A N R W N =

=)

Lemma 3 (Gusfield [5], Lemma 1). Let (C',Vy, \ C') be a min-t-r(C')-cut in G, with
r(C") € C'. Let (H,Vq \ H) be a min-t-u-cut, with t,u € Vo \ C' and r(C') € H. Then the
cut (C'UH, (Vo \ CYN (Vo \ H)) is also a min-t-u-cut.

Line 3 in SCC represents the new degree of freedom. Whenever used in a hierarchi-
cal context, Flake et al. restricted this to minimum 7-u-cuts whose sink sides are of
minimum size and called the minimum sink side the community of u and u a represen-
tative of its community. Analogously, we call U a cut side with representative r(U) if
(U,Vg\U) is a minimum z-u-cut in G, with u € U. We assume, that the final clustering
C(G) found by SCC stores at least one representative per cluster. In the following we
identify t-u-cuts (U,Vy \ U) with vertex sets U, u € U and r ¢ U.

The Hierarchical Algorithm. Flake et Algorithm 2: HIERARCHICAL SCC

al. developed a h1era1ichlcal clusterlng ap- Input: G = (V,E,c), 01 > - > &,
proach (HSCC), which uses SCC itera- 1 Co(G) — {{v} [ve V) r({v}) —v
tively (see Alg. 2). On each level the re- fori=1,....rdo

turned hierarchy provides a cut-clustering forall C € Ci_1(G) do

Ci(G) of G with respect to a particular o, contract C in Gy,

ie., Ci(G) holds the quality guarantee. We L associate [C] with #(C)

call such a hierarchy a cut-clustering hi-
erarchy. Iterating a cut-clustering hierar- ¢ Ci(G) — SCC(Gg;. 0)
chy bottom-up the o;-values decrease, i.e.,
o; > o for i < j. For the proof of correctness of Alg. 2 Flake et al. employed spezial
nesting properties of communities. These properties guarantee that communities do not
change in line 7 and 8 and that communities in the contracted graph (line 4) corre-
spond to communities in the original graph. Thus, the restricted SCC applied to the
contracted graph also returns a valid cut-clustering for G, and the resulting hierarchy is
a cut-clustering hierarchy.

Correctness and Completeness of Unrestricted HSCC In the following we show
that HSCC remains correct if we apply SCC with arbitrary minimum 7-u-cuts, and that

this unrestricted approach is complete. We further characterize the set of cut-clustering
hierarchies.

Theorem 4. Unrestricted HSCC is correct and complete.

In order to prove the correctness of HSCC independently from special nesting properties
of communities, we state the following lemma and show that arbitrary minimum 7-u-
cuts in the contracted graph (Alg. 2,line 4) are also cut sides in the original graph.
Otherwise, SCC applied to the contracted graph would possibly not return a valid cut-
clustering for G.

Lemma 5. Let (U,Vo; \U) denote a min-t-u-cut in Go; with u € U, and for o; > a;
let (X, Vg, \ X) denote a minimum t-x-cut in Go, with x € X. Then it holds (a) X C U if
xeUand (b)XNU =0ifx¢ U andu ¢ X.

Figure 1 sketches X and U and the con-
clusions (dashed cuts) proven by contradic-
tion in App. C. Note that for our purpose the
case x ¢ U but u € X is irrelevant. Lemma 5
tells us the following: Consider a minimum
t-r(C)-cut 6 in the original graph Gg; with
r(C) a representative of a designated node
[C] in the contracted graph (line 4, Alg. 2),
and let [C’] denote an arbitrary node in the contracted graph. If r(C’) is in 6 then 6 also
contains [C']; in particular, 6 contains [C]. If #(C') is not in 6 then 8 NC' = 0. Thus,
0 is a proper cut in the contracted graph and contains [C]. Conversely, each minimum
#-[C]-cut in the contracted graph is a proper cut in Gg; and contains r(C). Consequently,
there exists a 1-1-correspondence between minimum #-r(C)-cuts in the original graph
and minimum #-[C]-cuts in the contracted graph, and SCC applied to the contracted
graph returns a valid cut-clustering for G.

According to the proof of correctness, by choosing the right cuts HSCC is capable to
return any cut-clustering hierarchy where the representatives of clusters on one level are
a subset of the representatives on the level below. The following lemma shows that this
property holds for any cut-clustering hierarchy. Thus, Lemma 5 and Lemma 6 together
witness the completeness of HSCC. The proof of Lemma 6 is in App. C.

(@ Itis X CU if (b)) XNU=0ifx¢
xeU. Uandu ¢ X.

Fig. 1. Sketch to proof of Lem. 5

Lemma 6. Let C;(G) and C;(G) denote two cut-clusterings with respect to o; > oj and
let C' € Ci(G) and C € Cj(G) denote two clusters with r(C') # r(C) but r(C) € C'. Then
it holds C' C C and r(C") is a representative of C in C;(G).

We further give the following simple characterization of all cut-clustering hierar-
chies and present Corollary 8, which we will apply later to prove temporal smoothness
and the feasibility of certain vertex contractions. For a proof of Theorem 7 see App. C.

Theorem 7. Given a sequence ¢y > --- > O, of parameter values each set of cut-
clusterings C1(G), . ..,C,(G) forms a hierarchy.

Corollary 8. A cluster C € Cj(G) separates G into C and V \ C such that both parts
are clustered independently with respect to o; > o, i.e., minimum cuts in G, With
representatives in C do not cover any vertex in V \ C and vice versa.

Otherwise there would exists a cut-clustering C;(G) that is not hierarchically nested in
C;(G) contradicting Theorem 7.

4 Update Algorithm for Dynamic Clustering Hierarchies

The second part of this work addresses a dynamic version of HSCC. We give a method
that employes the new degree of freedom for consecutively updating cut-clustering hier-
archies with respect to a given sequence of &’s. Based on Theorem 7 this can be already
done by simply updating each level independently using a dynamic approach of the ba-
sic clustering procedure given by Hartmann et al. [7]. Since the basic non-hierarchical
clustering procedure introduced by Flake et al. [3] is not restricted to communities, the
basic dynamic approach by Hartmann et al. also allows for the use of arbitrary cuts, and
thus, already achieves good temporal smoothness and some cost savings. However, in
the following we present a more efficient algorithm, which also exploits the hierarchical
structure to save costs and provide high temporal smoothness.

The Basic Clustering Procedure in a Dynamic Scenario. Hartmann et al. [7] devel-
oped an algorithm for dynamically updating single cut-clusterings. We will refer to this
algorithm by LU (for level update). Given a cut-clustering C(G), we distinguish four
cases of edge modification: inter-cluster deletion (inter-del), where the deleted edge is
incident to vertices in different clusters, intra-cluster deletion (intra-del), i.e., an edge
within a cluster is removed, and analogously, inter- and intra-cluster insertion (inter-ins,
intra-ins). LU reshapes cuts in order to prevent previous clusters from splitting. In this
way some clusters are guaranteed to remain clusters or at least subsets of clusters after
a change. Regarding different modification cases the following facts hold [7]:

a) all clusters in C(G) \ {C?,C?} (for inter-ins) and in {C”,C¢} (for inter-del) are still
cut sides in G5 with respect to their previous representatives.

b) if C?4 (for intra-del) or C? and C? (for inter-ins) are still cut sides with respect to any
representative after the change, C(G) is still a cut-clustering for G®°. We call this
the copy-property of C(G). However, the previous representatives of C*, C? C?
possibly become invalid.

¢) for intra-ins, C(G) fulfills the copy-property retaining all representatives.

d) for inter-del, LU computes at most |C(G)| —2 minimum cuts, and updating C(G)
by LU yields C(G) = C(G®) with valid representatives if C(G) fulfills the copy-
property.

e) for any deletion, consider C € C(G) with b,d ¢ C. There exists a minimum ¢-r(C)-cut
X in G5 with C C X.

An Intelligent Hierarchical Approach from Scratch. The naive way to compute a
new hierarchy after a change in G is to apply HSCC from scratch. In Sec. 3 we showed
that HSCC allows for the use of arbitrary cuts, i.e., construction may use the most
appropriate cut, depending on the application. Given an appropriate initial hierarchy
we present a hierarchical approach that still calculates a new hierarchy from scratch

but adopts appropriate cuts applied before. To this end we modify HSCC by improving
SCC: When computing a new min-¢-u-cut 6 (¢ may be a node) let C denote the cluster
that contains r(u) in the old clustering on the same level. If ¢ (8) = ¢®°(C) in G&°,
SCC takes C as new minimum ¢-u-cut.

Lemma 9. In the situation described above it is u C C and C is a minimum t-u-cut in the
contracted graph (Alg. 2, line 4) resulting from G4°. Thus, the intelligent hierarchical
approach is correct.

For a proof see App. D. In the following we will refer to the improved SCC by intelligent
SCC (or ISCC). We will further express the costs of our new update algorithm in terms
of costs of the intelligent hierarchical approach: Given a hierarchy for G and a new
hierarchy from level 1 to level i — 1 we denote the costs for extending the hierarchy to
level j by 7 ([i, j],G"°).

For one level, 7 ([i,i], G®) consists of the costs for contracting the clusters on level
i — 1 and the costs of ISCC applied to the contracted graph. The latter depend on the
size of the contracted graph, which influences the runtime of the cut computations, and
the number of calculated cuts.

Reusable Parts of the Hierarchy in a Dynamic Scenario. Given an edge modification
a cut-clustering hierarchy decomposes into two parts. Levels where the modification
induces an inter-cluster event form the lower part, intra-event levels build the upper part.
The first idea in this paragraph considers levels of intra-cluster events. According to Fact
¢) each intra-ins level can be copied to a new hierarchy. An intra-del level can be copied
if C®“ remains a cut side, cf. Fact b). The following lemma gives a further indicator for
an intra-del level fulfilling the copy property. We sketch the proof in App. D.

Lemma 10. Let C(G) denote an intra-del cut-clustering with b,d € C*“. If no cut-
clustering C(G®) exists with b,d in different clusters, C(G) fulfills the copy-property.
If there exists a cut-clustering C;(G®) with b,d € Cf’d, each cut-clustering C;(G) with
o; > «; fulfills the copy-property.

According to Lemma 10 and Fact c) we get the following:

Theorem 11. Given a cut-clustering hierarchy, let k denote the lowest intra-del level
that fulfills the copy-property (deletion) or just the lowest intra-ins level (insertion).
Then all levels i > k can be reused as part of a new hierarchy (however, in case of
deletion some repres. possibly become invalid, cf. Fact b)).

A second idea is to consider subtrees of clusters. A subtree of a cluster C on level i
consists of C and all clusters on lower levels in the hierarchy that are nested in C.
Lemma 12 (proof in App. D) and Theorem 13 attest that in some cases we can preserve
the whole subtree of a cluster after a change in G.

Lemma 12. Let C # b,d denote a cluster in Cj(G) that remains a cut side for r(C)
(which is equivalent to any representative) in Ggf\j@. Let further denote C' C C a cluster

in Ci(G), i < j. Then C' remains a cut side for r(C') in Gg°.

Algorithm 3: UPDATE INTRA-DEL LEVEL

Input: Graph DS, cut-clustering C(G) 3 C?4

1 if 3C € C(G) that is not a proper union of nodes in'V then // V:=V(Dg)
2 C(G®) « ISCC(DY, 0) // ISCC takes nodes containing...
3 | return (C(G®), false) // ...representatives in C(G) first

4 while 3u € V withu C C>? do // start with u> r(CP9)
5 U « community of u in Dy

6 if 3x € U with x C” then apply line 4 to 9 of Algo 1, goto line 9

7 if ¢©(U) = ¢(C"?) then C(G®) «— C(G), r(C*?) — u, return (C(G®), true)

8 apply line 4 to 9 of Algo 1 (ISCC)

9 while 3u cV do // ISCC takes nodes containing rep. in C(G) first
0 | apply line 3 to 9 of Algo 1 (ISCC)

1 return (C(G®), false)

[y

-

If C in Lemma 12 even remains a cluster in a new cut-clustering C;(G*“), according to
Corollary 8 the following holds:

Theorem 13. In a cut-clustering hierarchy let C # b,d denote a cluster in Cj(G) that
is also a cluster in a cut-clustering C;(G®). Then the whole subtree of C can be used
as part of a new hierarchy (representatives remain valid).

We define the root of a (inclusion-) maximal reusable subtree as a highest root.

Our New Update Approach. Our new update approach treats the two parts of inter
and intra-event levels of the hierarchy differently. We start by applying Theorem 11
and Theorem 13 to intra-event levels and estimate the costs in terms of costs of the
intelligent HSCC.

In case of insertion Theorem 11 tells us that we can just copy each intra-ins level to
a new hierarchy without further costs (cf. upper shaded area in Fig. 2).

In case of deletion we search for the lowest intra-del level k that fulfills the copy
property. To this end, beginning at the lowest intra-del level £ we iteratively apply Alg. 3
until the first copy-property level k is found. Alg. 3 takes an intra-del clustering C;(G)
and a graph DSI. obtained from Ggi by contracting clusters on level i — 1. Line 2 catches
a case where C;(G) obviously does not fulfill the copy-property and applies ISCC in
this case. If C;(G) fulfills the copy-property, according to Fact b) it suffices to find a
valid representative for Cf’d. Thus, line 4 ff. search for such a representative and return
Ci(G) together with the representative if one is found and continue ISCC otherwise.
Lemma 17 in App. D shows that Alg. 3 finds a valid representative of Cl.b’d if there is
one. The costs for updating level ¢ to k — 1 are about 7 ([¢,k — 1],G°) since Alg. 3 is
just a modified SCC (see Fig. 2, area (1)).

After we found level k we can actually copy all levels i > k according to Theorem 11,
apart from the representatives of Cf’ 'd, i=k+1,...,r. Hence, we apply the while-loop
in line 4 of Alg. 3 instead of copying the levels, since this additionally returns valid
representatives. This costs about Y./, 7 ([Li],Cf’d) also including the costs for level k
(see area (2), Fig.2).

2]
[cod L 00
L | 00
S i
chd }— .
Do lowest intra-level
old hierarchy edge insertion edge deletion

Fig. 2. Sketch of costs for updating a hierarchy using our first update approach. Shaded areas
represent saved costs compared to a hierarchical construction from scratch.

However, in order to apply Alg. 3 the first time on level ¢ we need to compute a
clustering Cy_1(G®) on the highest inter-del level acting as a base for contracting the
initial instance. To this end, we contract Cé’fl and Cgfl in G%i . and associate the nodes

with 7(C?) and r(C?). Then we apply LU to the obtained graph, which is feasible and
costs about 7 ([l — 1,/ — 1],G); see App. E.

In both cases, insertion and deletion, we can further reuse the subtrees of all clusters
C e G (G)\ {C,l:’d} by Theorem 13 (see lower shaded area in Fig. 2). This already up-
dates parts of inter-event levels. In case of deletion the clusters of subtrees overlapping
levels £ — 1 to k — 1 already exist in C;_1(G®),...,Cx_1(G®) since Alg. 3 and LU con-
struct reusable subtrees, apart from highest roots, by default according to Corollary 8
(see also Lemma 18 and Lemma 19 in App. D).

Observation 14. Each level i > /¢ (intra-del) or i > k (intra-ins) that fulfills the copy-
property and each reusable subtree that is rooted on level i > k is part of the new hier-
archy (with valid repres.) resulting from our update approach.

By updating the intra-event levels with this approach, we reduce the problem of
updating a cut-clustering hierarchy of r levels to an update of k — 1 levels (insertion)
or { —2 levels (deletion), regarding an instance just as big as C,f’d (cf. boxed question
mark in Fig. 2).

Strategies for Completing the Hierarchy on Inter-Event Levels. After our first up-
date step we still need to fill in the question marks in Fig. 2, i.e., construct a hierarchy
based on the vertices in C,l;’d. According to Corollary 8, CZ’d and V \C,ljd in G are clus-
tered independently on the missing levels. Thus, when updating level i in the following,
we consider Gg@ with V \C,l(”d contracted into a node representing the subtrees already
used.

In case of insertion we iterate the missing levels bottom-up contracting Gg, as the
hierarchical approach does. On each level we apply Alg. 4, which is a modified SCC.
It takes an inter-ins clustering C;(G) and a graph Geo’z, contracted as described above.
Line 1 further contracts Ga, which, together with line 2, enables the algorithm to save
the costs for explicitly constructing reusable trees, as we will see later. The contraction
is as follows: Contract each C € C;(G) \ {C?,C%} that is a proper union of nodes in
the current instance Gy, . Associate a new node [C] with 7(X), where X € C;_1(G¥)

Algorithm 4: UPDATE INTER-INS LEVEL

Input: Graph G, partial clustering P := {C € C(G) | C C C,?’d} o {ct,cd}
1 DY —contract some C € P\ {C?,C%} in G according to text description

d

2 S« {CeP|[C]in DY formed in line 1} //identify V:=V(GE) with C
3 if 3C € P that is not a proper union of nodes in'V then
4 | C(G®) —ISCC(DY,), return (C(G?),false)
5 C(G®) — S,V «—V\UcesC, b — false, d — false /] v=ctucd
6 while 3u €V do // start with u, 3 r(C?) and ug > r(C?)
7 U « community of u in DY
8 if 3x € U with x € C? or x € C? then skip line 9 in later iterations
9 if c®(U) = ¢(C?) or ¢?(U) = ¢(C?) then

10 b «—true, r(C?) « u, U « CP (if currently u C C* =: Z)

11 d «true, r(Cd) —u, U — C? (if currently u C C? =: Z)

12 in later iterations only consider u Z Z, in line 6

13 if b and d then C(G?) « P, return (C(G?), true)

14 apply line 4 to 9 of Algo 1 (ISCC)

p—

5 return (C(G?),false)

contains r(C). In Lemma 21, found in App. E, we prove that applying ISCC to the
obtained graph D?Ei is correct, i.e., returns a cut-clustering for G®. Line 9 catches a
case where C;(G) obviously does not fulfill the copy-property and applies ISCC in this
case. If C;(G) fulfills the copy-property according to Fact b) it suffices to find a valid
representative for Cf’ and Cfi. Thus, line 6 ff. search for those representatives and return
the part of C;(G) that is nested in C,i”d together with the representatives if some are
found or continue ISCC otherwise. The proof that Alg. 4 finds valid representatives of
Cl-b and Cfi if some exist is analog to Alg. 3. Although Alg. 4 detects each level that
fulfills the copy-property, when updating inter-ins levels we can not directly benefit
from their copy-property. Thus, applying Alg. 4 to k — 1 inter-ins levels costs about
T(1,k— 1}7C,f’d); see App. E.

Furthermore, the bottom-up iteration makes the reuse of subtrees impossible. How-
ever, Alg. 4 counterbalances the missing subtree conservation. Using the same tech-
niques as Alg. 3, Alg. 4 returns all reusable subtrees by default, apart from highest
roots. It even saves the costs for explicitly constructing such trees, due to lines 1 and 2
as follows: By Corollary 8 each cluster of a reusable subtree is contracted in line 1
and added to S in line 2. Due to Fact a) the nodes in S are considered as cut sides
that are already known, and thus, omitted when choosing sinks for cut computations
in ISCC. Particularly, Alg. 4 avoids cut computations for clusters in reusable subtrees.
Consequently, we deduct the costs T for explicitly constructing reusable subtrees (see
Fig. 3(a)).

In case of deletion a bottom-up approach would not allow the reuse of subtrees.
Thus, we iterate the old hierarchy top-down updating each level in the same way as
level £ — 1 in the first update step, but using a smaller instance due to already known
subtrees. As we have seen before, this method detects each reusable subtree, possi-

10

arbitrary hierarchy hierarchy remains valid
general costs lowest possible costs
insertion| 7 ([1,k—1],c7) —T 2(k—1) cpe

o Abd
{:k T([l7 ILC[) +T([l - l7k_ ILG@)

+T([1,1-2,c0 —T

deletion (r—k+1) +Z;:11 IC} (G)| cpe

Table 1. Sketch of costs, cpc = costs per cut. C; (G) := {C € C;(G) | C C C} } with C} | := chd

b y i+1
* Py—
or Ci+1 = CiJrl UCi+1'

edge insertion edge deletion edge insertion edge deletion

(a) Costs regarding an arbitrary hierarchy. (b) Lower bounds if hierarchy still valid.

Fig. 3. Sketch of costs for updating a hierarchy applying our new update approach. Shaded areas
represent saved costs compared to a hierarchical approach from scratch.

bly apart from highest roots. Thus, we copy those subtrees to the new hierarchy and
merge the found roots with the node in Goecl- that represents previously found subtrees in
order to save costs. Hence, completing the hierarchy in case of deletion costs about
T(1,£— 2],C,f’d) — T (see Fig. 3(a)). Since for inter-cluster deletions LU bases on
ISCC, it further respects the copy-property (cf. Fact d)).

Observation 15. Each level i < ¢ — 1 (inter-del) or i < k — 1 (inter-ins) that fulfills the
copy-property and each reusable subtree that is rooted on level i < k — 1 is part of the
new hierarchy (with valid repres.), possibly apart from highest roots.

Performance. In the following we just sum up the costs and the observations regarding
temporal smoothness already given with the description of our new update approach.
The latter—which we left unformalized— in parts synergizes with cost saving, an ob-
servation foremost reflected in the first update step.

Theorem 16. Each level fulfilling the copy-property and each reusable subtree (possi-
bly apart from highest roots) is part of the new hierarchy (with valid representatives)
build by our update algorithm. In particular, our algorithm returns the previous hierar-
chy if this is still a cut-clustering hierarchy after the change.

We sketch the general costs for updating an arbitrary hierarchy in Table 1 and visualize
them in Fig. 3(a). Furthermore, we consider the—possibly rather common—case that
the old hierarchy is still valid after some graph modification. For this case we list the
lowest possible costs in Table 1, which occur if on each inter-ins level Alg. 4 in line 6
chooses valid representatives for C? and C? as first nodes, or if on each intra-del level
Alg. 3 in line 4 hits a representative for CP4 at the beginning (see Fig. 3(b)).

11

5 Conclusion

The hierarchical clustering algorithm by Flake et al. [3] returns a set of clusterings
at different levels of granularity. The striking feature of graph clusterings computed
by this method is that they are guaranteed to yield a certain expansion—a bottleneck
measure—within and between clusters, tunable by an input parameter ¢c. However, their
method, which is based on minimum s-z-cuts, was restricted to the use of communities,
and hence, was not complete. We have proven that the hierarchical approach by Flake
et al. [3] remains correct if we introduce a new degree of freedom by permitting the use
of arbitrary minimum s-z-cuts instead of communities. This makes the method more
powerful since construction may actually use the most appropriate cut, depending on the
application. We have further given a simple characterization of the set of all clustering
hierarchies based on minimum s-t-cuts and have shown that the unrestricted approach
is complete, i.e., any clustering hierarchy in this set can be found by choosing the right
cuts. This allows for a more detailed analysis of a graph’s structure.

Furthermore, we have presented an algorithm which efficiently and fully-
dynamically maintains an entire hierarchy of clusterings, as computed by the unre-
stricted method. Clusterings in the updated hierarchy fulfill the same quality guarantee
regarding expansion and, as a secondary criterion, we encourage temporal smoothness,
i.e., changes to the clustering hierarchies are kept at a minimum, whenever possi-
ble. Thereby, our update algorithm employs the new degree of freedom which allows
to reuse clusters independently of their special shape, and thus, saves computational
costs and increases temporal smoothness. We also conjecture our new update algo-
rithm, by implementing some small modifications, to be a correct dynamic version of
the restricted hierarchical clustering algorithm by Flake et al., i.e., when restricted to
maintaining clusters that are communities (see [8] for a first study).

Future work includes the proof of the conjecture, a systematic comparison of our
algorithm to other dynamic clustering techniques and the analysis of batch updates.

References

1. U. Brandes and T. Erlebach, editors. Network Analysis: Methodological Foundations, vol-
ume 3418 of LNCS. Springer, February 2005.

2. U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hofer, Z. Nikoloski, and D. Wagner. On
Modularity Clustering. IEEE TKDE, 20(2):172—-188, February 2008.

3. G. W. Flake, R. E. Tarjan, and K. Tsioutsiouliklis. Graph Clustering and Minimum Cut
Trees. Internet Mathematics, 1(4):385-408, 2004.

4. R.E. Gomory and T. Hu. Multi-terminal network flows. Journal of the Society for Industrial
and Applied Mathematics, 9(4):551-570, December 1961.

5. D. Gusfield. Very simple methods for all pairs network flow analysis. SIAM Journal on
Computing, 19(1):143-155, 1990.

6. R. Kannan, S. Vempala, and A. Vetta. On Clusterings - Good, Bad and Spectral. In Proc. of
FOCS’00, pages 367-378, 2000.

7. R. Gorke and T. Hartmann and D. Wagner. Dynamic Graph Clustering Using Minimum-Cut
Trees. In Proc. of WADS 09, pages 339-350, 2009.

8. C. Doll. Hierarchical Cut Clustering in Dynamic Scenarios. Student Research Project,
Karlsruhe Institute of Technology (KIT), Department of Informatics, February 2011.

12

Appendix

A Discussion on Incompleteness of Restricted Approach

Fig. 4. Cut-clustering hierarchy of one level as example of incomleteness and missing smoothness
in case of restriction on cuts.

The left side of Fig. 4 shows graph G, together with the (unique) cut-clustering
C(G) ={{a,b},{c,d}} (shaded). Now assume the weight on edge {a, b} to decrease, as
shown on the right side. For the modified graph G{, exist now two valid cut-clusterings.
The previous clustering C(G) = C(G®) = {{a,b},{c,d}} is still valid, since the red
dashed cut is still a minimum f-a-cut in Gg; but this cut is no community. Thus,
this clustering can not be returned by the restricted clustering approach, i.e., this ap-
proach is not complete. The shaded clustering C'(G®) = {{a},{b},{c,d}} is a valid
cut-clustering whose clusters are communities. Thus, the restricted approach returns
C'(G®) although C(G®) = C(G) would be the better choice regarding high temporal
smoothness.

B Omitted Proofs in Section 2

Proof. (of Lemma 1) Consider a cut tree T(G) that represents ¢, := (U,V \ U). Note,
that for any minimum u-v-cut in G there exists such a cut tree. Let further denote e,
an edge representing a minimum x-v-cut in 7(G). With x € U it is c(ey) < c(e,). If
c(ex) = c(ey) then (U,V \ U) is also a minimum x-v-cut. Otherwise, consider the path
from v to x, which is segmented by e,. If e, was in the segment between v and e, it
would separate v and u and e, would not represent a minimum u-v-cut. Thus, e, is in
the segment between e, and x and induces a cut (X,V \ X) with X C U. O

C Onmitted Proofs in Section 3

Proof. (Lemma 5) Consider 6; := (X,Vy, \ X) and 6, := (U,Vq,; \ U). We distinguish
two cases depending on the shape of 8;. Case (a) is characterized by x € U, case (b) by
x€X\U and u € U\ X (see also Fig. 5, which is the same as Fig. 1).

(a): We assume X \ U # 0 and show that then (U UX, Vg, \ (UUX)) in G, is
cheaper than 6;. This contradicts 6; being a minimum 7-u-cut in G¢; and we conclude

U —— o X\U
(@ XCUifxelU. b)) XNU=0ifx¢U
andu ¢ X.

Fig. 5. Sketch to Lem. 5
X\U =0, i.e., 6; does not cut through X (red dashed). In the following we compare
different costs expressing them in terms of costs in G and an addend depending on .
For 6; and (U NX,Vy, \ (UNX)) we get:

Cay(87) = o, (X, Ve, \X) = c(X\U,V\ (UUX)) +c(UNX,V\ (UUX))

+c(X\U,U\X) +c(UNX,U\X)
+ 04| X|

ca,(UNX, Ve \ (UNX)) = ¢(X\U,UNX) +c(UNX,V\ (UUX))
+ oy UNX| +c(UNX,U\X)

Since 6; is a minimum z-x-cut in G, it holds cq, (U NX, Vg, \ (UNX)) > cq,(6;) and
we get c(X\U,UNX) > c(X\U,V\ (UUX))+c(X\U,U\X) + 04X \ U|. With
¢(X\U,U\X) > 0it holds in particular

(i) c(X\U,UNX) + c(X\U,U\X) > ¢(X\U,V\ (UUX)) + s X \ U]
For 8; and (U UX, Ve, \ (UUX)) we get

ca;(0) = cq;(U,Ve,; \U) = c(U\X,V\ (UUX)) + c(UNX,V\ (UUX))
+c(X\U,UNX) +c(X\U,U\X)
+o|U|
co;(UUX,V\(UUX)) =c(U\X,V\(UUX))+c(UNX,V\(UUX))
+c(X\U,V\ (UUX)) + a;|UUX]|
and finally

ca;(UUX,V\(UUX)) —cq;(8;) = [c(X\U,V\(UUX))+o;|X\U|]
— [e(X\U,UNX)+c(X\U,U\X)]
<0

since ¢(X \U,V\(UUX))+ ;| X\U| <c(X\U,UNX)+c(X\U,U\X) with ot; < o4;
applied to (i) and the assumption that X \ U # 0.

(b): We assume X NU # 0 and show that then (U \ X, Vg, \ (U \ X)) in G, is cheaper
than 6;. This contradicts 6; being a minimum 7-u-cut in G¢; and we conclude X NU =0,
i.e., 6; does not cut through X (red dashed). In the following we compare different
costs expressing them in terms of costs in G and an addend depending on «. For 6; and
(X\ U, Ve, \ (X \U)) we get:

co;(0) = cq;(X, Vg, \X) = c(XNU, U\ X) +c(X\U,U\X)
+e(XNU,V\ (UUX)) +c(X\U,V\ (UUX))
+ | X|

o (X\U, Ve, \ (X \U)) = c(XNU,X\U) +c(X\U,U\X)
+ o)X \U| +c(X\U,V\ (UUX))

14

Since 6; is a minimum 7-x-cut in G, it holds ¢, (X \ U, Vg, \ (X \U)) > ¢, (6;) and we
get ¢(XNU,X\U) > ¢(XNU,U\X)+c(XNU,V\ (UUX))+ X NU|. With ; > @
and the assumption that X NU # 0 it further holds ¢(X NU,X\U) > c¢(XNU,U\X) +
cXNU,V\(UUX))+«;|XNUJ; and with ¢c(XNU,V\ (UUX))+ ;|XNU| >0t
holds in particular

(ii) c(XNU,X\U) + c(XNU,V\ (UUX)) + o;|XNU| > c(XNU,U\X)
For 8; and (U \ X, Vg, \ (U \ X)) we get
ca;(0)) = cq;(U,Va; \U) = c(U\X,V\ (UUX)) + c(XNU,V\ (UUX))

+c(U\X,X\U) +c(XNU,X\U)
+ 0;|U]|

ca;(U\X,Vo; \ (U\X)) =c(jU\X,V\(UuX)) +c(XNU,U\X)
+c(U\X,X\U) +o|U\X|

and finally, due to (ii)

Cay(U\X, Ve, \ (U\X)) —cq, (8)) = c(XNU,U\X)
—c(XNU,V\ (UUX))
—c(XNU,X\U)—aj|XNU|
<0

O

Proof. (of Lemma 6) If r(C') € C then C’' C C holds by Lemma 5(a). Now assume
r(C') € C'\ C and let C denote the cluster in C;(G) containing r(C'). By Lemma 1
there exists a minimum 7-r(C")-cut (X, Vy; \ X) in G, with 7(C") € X and X C C. This
contradicts Lemma 5(a) (applied to r(C’) and X and C’) since r(C) € C’\ X, and thus,
C' < X. Hence, r(C') € C and C' C C must hold.

By Lemma 5(a) any minimum -r(C")-cut in G contains C' 5 r(C), and thus, sep-
arates ¢ and r(C). On the other hand, C 3 r(C’) separates ¢ and r(C’). Consequently, C
is also a minimum 7-r(C")-cut in G, 0

Proof. (of Theorem 7) Consider two cut-clusterings C;(G) and C;(G) with respect to
o; > o;. Let further denote C € C;(G) a cluster with representative r(C). By Lemma 5
C does not cut through any cluster C' € C;(G) with r(C) € C'. By Lemma 6 C covers
C € Ci(G) with r(C) € C. Thus, Ci(G) < Cj(G). 0

D Omitted Proofs in Section 4

Proof. (of Lemma 9) Let C;(G) and C;(G®®) denote two cut-clusterings with &; > a;.
Let Dﬂ?j@ denote the graph resulting from Gg?j@ by contracting each cluster C’ € C;(G®®)
into a node [C'] and associating [C'] with r(C’). In this situation the improved SCC
is applied in order to compute a new cut-clustering C;(G®). Hence, u is a node in
DY, 0 is a minimum f-u-cut in ng@ and C € C;(G) contains r(u). Now assume that
cP9(0) = cP°(C) in ng@_

15

By Lemma 5 (and the deduced 1-1-correspondence of minimum #-u-cuts in Dﬁfje
and t-r(u)-cuts in Gg”) 6 is a minimum #-r(u)-cut in G, and C is also a minimum
t-r(u)-cut in Gg}e due to r(u) € C and the assumption above. Thus, again by Lemma 5,
C is a minimum ¢-u-cut in ng@ withu C C. a

Proof. (of Lemma 10) Consider M := C(G) \ {C”?}. We decompose M into a set A of
clusters C that are still minimum #-r(C)-cuts in G, and into a set B of clusters C for
which a new minimum ¢-r(C)-cut 0 exists that is cheaper than C. Note that 0 separates
b and d. Conserning the clusters in B, by a result in [7] all corresponding cuts 8 can be
adjusted such that they do neither cross each other nor the clusters in A and such that
each 0 contains its cluster C (for the latter cf. Fact €)). Thus, there exists a run of SCC
that reaches a set X C (V\ Ucep C) = CP in line 2 while in the intermediate clustering
C(G®) b and d are still in different clusters C' and C? which cover all vertices in C?“\
X. Note that the vertices in X are not clustered yet. Since in all cut-clusterings C(G®)
b,d share a cluster by precondition, there must exist a vertex x € X with a minimum 7-x-
cut 8’ in G5, containing b and d, i.e., containing C' UC?. This is, 7(C?*?) is either in 6’ or
in the remaining set of free vertices not clustered yet. Since 8’ is also a minimum ¢-x-cut
in Gy, in the first case it follows that 6’ is at most as cheap as CP4 (as r(C”’d) € 0’y and
with x € C?¢ we get ¢©(CP?) = ¢(C"¥) = ¢(0") = ¢°(8'), and thus, C*“ is a minimum
t-x-cut in G§. Otherwise, r(C?9) is still free and there exists a minimum ¢-r(C”¢)-cut
in Gg that does not separate b and d since 8’ covers these vertices. Thus, Ch4 is still a
minimum ¢-r(C*4)-cut in G5.

The second assertion follows directly since there exits no cut-clustering C;(G%)
with b and d in diffrerent clusters if b,d share a cluster in C;(G®), by Theorem 7. O

Proof. (of Lemma 12) Since C induces a minimum 7-r(C)-cut in Gﬂ?j@ with r(C") € C,
by Lemma 1 there exists a minimum ¢-7(C’)-cut 0 in Gf‘;j9 nested in C. Thus, 6 does
not separate b and d and all minimum ¢-r(C’)-cuts 6’ in GEO%,@ do also not separate b and
d since they are nested in @ by Lemma 5(a) (consider u = x). This is, each 0’ has the
same weight as C' in G, and G~ and thus, C’ induces a minimum #-r(C’)-cut in G~
by Observation 2.

We can even show that C remains a cut side in G%},@ with respect to r(C) iff C
remains a cut side in G?XDJQ with respect to any representative xin Cj(G).

(=): Since C does not separate b and d it has the same weight in both graphs G%?je
and Gg;. According to Lemma 1 there exists a minimum 7-x-cut in Ggfje that is nested
in C and thus, does not separate b and d. As a result C is still a cut side in G%@ with
respect to x.

(«<): Assume x being the representative designated in C;(G). Apply (=). Finally,
the representatives of C in Go, and G, are the same. 0

Lemma 17. Let C(G) be an intra-del clustering fulfilling the copy-property and let
Dy, result from Gy by contracting clusters of a cut-clustering for G° with respect to
a parameter value bigger than a. Then Algorithm 3 returns C(G) with an updated
representative for C> (the other representatives are still valid, cf. Fact b)).

16

Proof. Clustering C(G) is valid for G° on level o and D, represents a cut-clustering
for G on a lower level. Hence, each cluster in C(G) is a proper union of nodes in D
according to Theorem 7. Thus, Algorithm 3 reaches the while-loop in line 4.

For each u in D with u C C”? there exists a minimum z-r(u)-cut in G, that is
nested in C”?, by Lemma 5 (1-1-correspondence of z-u-cuts in D§ and ¢-r(u)-cuts in
G,) and Lemma 1. In particular, the community U of u in D, equals the community of
r(u) in Gy, and is nested in Ch4. Consequently, Algorithm 3 skips line 6. Furthermore,
itis ¢©(U) < c®(CP4) = c(CP).

Let y denote a node in D§ containing a representative of C*“ regarding G©. If
y € U (regarding the current u in line 4) it is ¢©(U) = ¢®(C??) = ¢(C"4). Thus, C?4
is a minimum z-u-cut in D, and a minimum #-r(«)-cut in G5, In this case, Algorithm 3
returns C(G) with u as representative of C?“.

Otherwise, if y ¢ U, y is still a free node in DY, not clustered yet in the next iteration
of the while-loop. By induction we finally conclude that there exists an iteration step
where y is covered by the current community U and the former case applies.

Due to the above arguments we further see that, given a cut-clustering C(G) fulfill-
ing the copy-property, the while-loop by itself copies C(G) and updates the representa-
tive of C*. a

Lemma 18. Ler C;(G) denote an intra-del clustering on level i, and let further denote
Cec i(G) a cluster on a higher level j inducing a reusable subtree according to Theo-
rem 13. Consider cluster C € C;(G)\ C®“ being part of this subtree. Then Algorithm 3
returns a new cut-clustering C;(G®) that contains C as cluster.

Proof. 1f C;(G) fulfills the copy-property the assertion holds by Lemma 17. Otherwise,
Algorithm 3 reaches the second while-loop in line 9 or it applies line 2 or line 6. Ac-
cording to Theorem 7 C and C are proper unions of nodes in Da, and the nodes in C
are clustered independently by Corollary 8. Thus, in all tree cases mentioned above the
nodes in C are still free nodes not clustered yet when Algorithm 3 turns into ISCC. For
each node in C considered as a sink in intilligent SCC the new cut is a subset of é,
and thus, does not separate b and d and has the same weight as the previous minimum
cut. Since ISCC is supposed to take the nodes containing the representatives of clusters
in C;(G) first the intelligent version finds and reconstructs all clusters in C;(G) covered
by C. ad

Lemma 19. Ler C;(G) denote an inter-del clustering on level i, and let further denote
Ce C;(G) a cluster on a higher level j inducing a reusable subtree according to Theo-
rem 13. Consider cluster C € Ci(G)\ C*“ being part of this subtree. Then LU applied
to Dg resulting from Gi’i by contraction strategy I returns a new cut-clustering C;(G®)
that contains C as cluster.

Proof. We expect the reader to have [7] at hand since we omit a renewed description of
LU in the case of inter-cluster deletion.

According to strategy 1 applied in an inter-del case C and C are proper unions of
nodes in DO%, and the nodes in € are clustered independently by Corollary 8. For each
node in € considered as a sink by LU the new cut is a subset of C, and thus, does
not separate b and d and has the same weight as the previous minimum cut. Since LU

17

to take the nodes containing the representatives of clusters in C;(G) first LU finds and
reconstructs all clusters in C;(G) covered by C. O

E Discussion on Different Contraction Strategies

When constructing a cut-clustering on level i HSCC contracts clusters on the level be-
low in order to speed up the computation: contractions shrink the instance for cut com-
putations in SCC and reduce the risk of computing unnecessary cuts. Our new update
approach also contracts clusters in Gge, however, depending on properties of the differ-
ent modification cases and the parts of a new hierarchy known so far. The two strategies
we describe in the following provide about the same speed up as traditional contractions
and do not change costs compared to an intelligent hierarchical approach. However, we
prefer those in order to afford temporal smoothness. Lemma 20 confirms that LU ap-
plied with strategy 1 returns a valid cut-clustering. The correctness of (intelligent) SCC
applied with strategy 2 is given by Lemma 21.

If no clustering is known on the level below, we contract each cluster in C € C;(G)
that remains a cut side according to Fact a) and associate [C] with r(C) (strategy 1).
We will use this strategy only for inter-del levels, which we update by applying LU.
According to Fact d) this needs at most |C;(G)| — 2 cut computations.

The instances constructed by this strategy, without any knowledge about the level
below, differ from the corresponding instances in a hierarchical approach in size and
structure of nodes; in particular the representatives in both instances are not compa-
rable. However, the number of cuts used for an inter-del update also develops hierar-
chically regarding several levels, and the considered representatives already induced
clusters before the change. In all likelyhood, they are again a good choice such that
we expect only a low risk of computing cuts without need. Thus, we estimate the costs
for constructing inter-del level i using this strategy together with LU by 7 ([i,i],G°),
ignoring the missing speed-up for cut computations due to a bigger instance.

If we already know a new clustering C;—;(G%), we contract the clusters X €
Ci—1(G%°) as the hierarchical approach does. Additionally, we contract each cluster
in C € C;(G) that corresponds to a proper union of nodes in the graph contracted so far
and withal remains a cut side according to Fact a). We associate [C] with r(X), where
X € C;_1(G®®) contains r(C) (strategy 2). The final graph is at most as big as a tradi-
tionally contracted instance and uses a subset of its representatives. Thus, we estimate
the costs of (intelligent) SCC using the new instance by 7 ([i,i], G¥®), ignoring the
additional cost for contracting the cut sides.

Lemma 20. Let C;(G) denote an inter-del clustering and let Dg‘i denote the graph re-
sulting from Ga by contracting vertices according to strategy 1. Then LU applyed to
Dy, still returns a cut-clustering for G°.

Proof. We expect the reader to have [7] at hand since we omit a renewed description of
LU in the case of inter-cluster deletion. We show that LU applied to Da does exactly
the same as LU applied to Gy,

The only difference between D, and Gy, is that C” and C? form nodes in Dj,. For
inter-cluster deletion, LU applied to Ga considers C? and C? as cut sides of #(C?) and

18

r(C?) that are included in a tentative clustering from beginning until they are covered

by another cut. Thus, for the run of LU it is irrelevant whether C? and C? are contracted

or not. Vice versa, in Dy, the nodes [C?] and [C¥] are associated with #(C?) and r(C?).
O

Lemma 21. Let Dy~ denote the graph resulting from Gg° by contracting vertices
according to strategy 2. Then (intelligent) SCC applyed 10 DQB6 still returns a cut-
clustering for G¥°.

Proof. Let u denote a node in Dee We show that there exists a minimum ¢-r(u)-cut in
Gebr that contains u and respects ‘all nodes in D%r i.e., does not cut through any node
in D@\' Then each minimum z-u-cut in Dg“ is also a minimum ¢- r(u)-cutin Gg° and it
holds that applying SCC is feasible. Flnally we confirm that also ISCC works correctly
on Dg“. Let A denote the set of nodes in Dg,” that correspond to a cut sides in C;(G)
and B the set of nodes that correspond to clusters in C;_1(G%®) and are not in A.

— If uis a cut side C € A define 0 := u which is a minimum z-r(C)-cut in Gee Since
r(u) = r(X) with r(C) € X € C;_1 (G®®) 8 is also a minimum 7-r(u)-cut. Obviously
6 contains u and respects the nodes in Dg°.

— If wis a cluster X € B there exists a minimum z-r(X)-cut 6 in G, that contains X
and respects the clusters in C;_1(G®®), according to Lemma 5. If 6 cuts through a
cut side C € A, we can reshape 6 according to Lemma 3 since r(X) ¢ C. This yields
a minimum 7-r(X)-cut that further respects all nodes in A since the reshaping does
not cause any new conflicts. With X = u and r(X) = r(«) 0 is a minimum 7-r(u)-cut
that contains u.

Finally, consider a minimum #-u-cut in D and let C' € C;(G) denote the cluster
containing r(u). If u € B the proof is analog to Lemma 9. If u € A we know from above
that u = C' is a minimum 7-u-cut in Dy~ Thus, also ISCC works correctly on Dg,”. O

19

