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Abstract. Shortest-path computation is a frequent task in practice. Owing
to ever-growing real-world graphs, there is a constant need for faster algo-
rithms. In the course of time, a large number of techniques to heuristically
speed up Dijkstra’s shortest-path algorithm have been devised. This work re-
views the multi-level technique to answer shortest-path queries exactly [24, 9],
which makes use of a hierarchical decomposition of the input graph and pre-
computation of supplementary information. We develop this preprocessing to
the maximum and introduce several ideas to enhance this approach consider-
ably, by reorganizing the precomputed data in partial graphs and optimizing
them individually.

To answer a given query, certain partial graphs are combined to a search
graph, which can be explored by a simple and fast procedure. The concept
behind the construction of the search graph is such that query times depend
mainly on the number of partial graphs included. This is confirmed by ex-
periments with different road graphs, each containing several million vertices,
and time, distance, and unit metrics. Our query algorithm computes the dis-
tance between any pair of vertices in no more than 40 µs, however, a lengthy
preprocessing is required to achieve this query performance.

1. Introduction

Computation of shortest paths is a central requirement for many applications,
such as route planning or network search. Facing real-world data, the need for speed
remains unabated: collection of geographic information is enhanced constantly, re-
sulting in increasingly comprehensive road graphs; public-transportation networks
often comprise datasets from different means of transportation, such as train, tram,
ferry, and even airplane schedules; and the graph representing the WWW is grow-
ing faster than ever. There are two basic approaches to tackle this task: relying on
approximate algorithms, or devising faster exact ones. We opt for the latter.
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Since its publication in 1959, Dijkstra’s famous algorithm for calculation of
shortest paths in a directed graph with nonnegative edge weights [4] has been sub-
ject to many improvements. Due to enormous space requirement (quadratic in the
number of vertices), we cannot afford precomputing shortest paths between all pairs
of vertices. However, graphs can be preprocessed at an off-line step so that subse-
quent on-line queries take only a fraction of the time used by Dijkstra’s algorithm.
One recent speed-up technique [1, 22], which also relies on a preprocessing, yields
for the European road network that we also use for our experiments a considerable
average query time of 4 µs when travel times as edges weights are used, but of
comparatively high 38 µs for travel distances.

In this work, we present a further enhancement of the multi-level technique
given in [24], which is based on a hierarchical decomposition of the input graph
and computation of an auxiliary graph containing additional information. The use
of this precomputed data allows, at the on-line stage, for reduction in search space
and, consequently, query time. We develop the preprocessing to the maximum: our
new variant outsources almost all of the effort needed to compute a shortest path
to the preprocessing stage. It therefore fits best into an environment where query
time is invaluable but long preprocessing times (and a fair amount of precomputed
data) can be afforded, such as car navigation systems or web-based route planners.
While in [24, 9] the multi-level approach was shown to be effective for graphs of
up to 100 000 vertices, we are now able to handle much bigger graphs still within
reasonable time.

The main differences to the former multi-level technique concern the following
issues. During the preprocessing stage, instead of one single multi-level graph we
compute a large number of small partial graphs. We show that for each possible
query, there is a search graph combined of several partial graphs which preserves
the distance between the dedicated vertices. This graph is acyclic, and we give a
simple linear-time procedure to search it. The advantage of dealing with multiple
graphs is that each of them can be optimized individually, which is achieved by
two measures: first, omission of edges whose relaxation will never create a shorter
path; and second, transformation of the partial graphs into equivalent graphs that
preserve all shortest paths but have fewer edges. What is more, we make use of the
fact that the preprocessing is parallelizable.

The trade-off between preprocessing effort and query time is adjustable. For
fixed parameters, we can provide a guarantee for both the number of edges consid-
ered by the search algorithm and the query time. With our implementation, keep-
ing the preprocessed data in secondary storage, we can answer a query through
few random accesses to that storage. If the preprocessed data fits entirely into
main memory, our query performance is competitive to that of other recent ap-
proaches: we obtain query times of less than 40 µs (except for very few outliers)
for graphs with up to 24 million vertices, representing the Western European and
US road networks. Moreover, our approach yields equal performance for all metrics
investigated (travel times, travel distances, and unit edge lengths).

In the remainder of this section, we classify our approach in the context of other
shortest-path speed-up techniques. The next section briefly reviews the multi-level
technique as presented in [24], and shows the various refinements made. An exper-
imental study is presented in Section 3, and we conclude in Section 4 addressing
some aspects to be explored in the future.
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1.1. Related Work. This paper is strongly based on [18], which is the mas-
ter’s thesis by one of the authors. It can be seen as a further development in
that, e.g., preprocessing time could be improved through refinement of our code.
Other pieces of information, however, such as details on some proofs or algorithmic
aspects, can, in this work, not be displayed in full length, so we may refer the
interested reader to [18].

There are a large number of other techniques to speed up single-pair shortest-
path algorithms, most of which rely on Dijkstra’s algorithm [4]. In the following
survey, we focus on methods that in a preprocessing step compute some addi-
tional information, which is used at the on-line step for answering a shortest-path
query. We differentiate between techniques that attach the precomputed data to
the graph’s vertices or edges, permitting the on-line algorithm to quickly decide
which parts of the graph can be pruned [23, 26, 27, 7, 15, 17, 14, 5], and such
that precompute a hierarchical auxiliary graph, a slender part of which suffices to
answer a given shortest-path query [24, 9, 12, 11, 20, 21]. We want to briefly
review the latter works and point out their relationship to ours.

As mentioned above, the method presented in this work uses the same basic
concepts as the one described in [24, 9] (which will occasionally be referred to
as the classic multi-level technique), where the following enhancements are made.
The auxiliary data is distributed to many partial graphs, which can afterwards be
thinned out and optimized individually. Given start and destination vertices, we
combine several partial graphs to obtain an acyclic search graph, which can be
explored by the on-line stage in linear time.

The HiTi model by Jung and Pramanik [12] is similar to the classic multi-
level technique, except that it uses edge separators rather than vertex separators.
Also with hierarchical encoded path views, presented by Jing, Huang, and Runden-
steiner [11], various partial graphs are computed, which are combined appropriately
to form a search graph for a given query. No graph optimization is used, but a com-
pression technique to also keep track of the course of shortest paths is given.

Finally, the highway hierarchies technique, introduced by Sanders and Schul-
tes [20, 21], computes a hierarchy of coarsenings of the input graph, where the
search algorithm proceeds in a bidirectional fashion and needs to consider vertices
of only one level of hierarchy at a time. In a further development [2], highway
hierarchies have been extended to transit node routing, which also takes advantage
of precomputed all-pair distances of a selection of vertices; the difference to our
approach is that these distances are not represented by graphs but matrices, which
do not seem to induce as simple means for optimization. The given description of
highway node routing is generic enough so that it also covers the basic concept be-
hind our approach. One further difference concerns the way of determining selected
vertices; second, transit node routing is designed to yield better speed-ups with the
travel time instead of distance metric, which is not true for our technique.

2. Multi-Level Graphs

The formal description of our high-performance multi-level technique (HPML)
is divided into two parts. The first one reviews the classic multi-level technique [24]
and points out the major modifications and enhancements made to it. In the second
part, we present the core ingredient to achieve massive reduction in search space
and query time, optimization of the partial search graph.
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2.1. Enhancing Multi-Level Graphs. A multi-level graph M extends a
weighted digraph G = (V, E) through multiple levels of edges, depending on a
sequence of vertex subsets. For a pair of vertices s, t ∈ V , a subgraph Mst of M,
called search graph, with the same s-t distance as in G can be determined efficiently.
As the search graph is substantially smaller than G, it allows for answering the given
query much faster.

The description of our model is organized as follows. We first fix some notation
needed to define multi-level graphs, show how to construct these, and briefly address
the issue of parallelizing the preprocessing step. To extract from the whole search
graph a search graph Mst sufficent to answer a given query (s, t), we have to
define an auxiliary datastructure called component tree, and give a formal proof
that shortest s-t paths in G and Mst are of equal length. The search graph Mst

can be transformed into an acyclic graph, which property yields a simple and fast
search algorithm compared to Dijkstra’s algorithm. Finally, due to construction of
our model, short-distance queries have to be treated differently.

2.1.1. Notation. To create a multi-level graph, we use a sequence of vertex
subsets, denoted by S = 〈Si〉 with 1 ≤ i ≤ l. Each Si is called a separator set.
The separator sets are decreasing with respect to set inclusion: V ⊃ S1 ⊃ S2 ⊃
. . . ⊃ Sl. Best performance can be achieved when the graph G− Si falls apart into
‘many’ components of similar size, while |Si| is ‘small’ compared to |V |. For the
decomposed graph G − Si, we shall use the following definitions.

• By Ci, we denote the set of maximal connected components at level i. A
connected component C ∈ Ci itself is a weighted graph, whose vertices
are referred to by V (C).

• For a vertex v ∈ V \ Si, let Cv
i
∈ Ci be the component with v ∈ Cv

i
.

We call Cv

i
the home component of v at level i. To simplify notation, we

define Cv

i
:= {v} for i ∈ {0, . . . , l} and v ∈ Si, and let S0 = V .

• We call a vertex v ∈ Si adjacent to a component C ∈ Ci if there is an edge
between v and a vertex in C in either direction. The set of all vertices
adjacent to C is denoted by Adj(C). For v ∈ Si (i.e., Cv

i
= {v}), we define

Adj(Cv

i
) := {v}.

• A component Cv

i
together with its adjacent vertices is called the wrapped

component Gv
i

= G ∩ (V (Cv
i
) ∪ Adj(Cv

i
)).

Figure 1 shows two components (darker shades) and their belonging wrapped
components (lighter shades) at levels 1 (smaller components) and 2 (larger compo-
nents), respectively, as an example for the above definitions. The adjacent vertex
sets are {v1, v2, v4} and {v3, v4}. Note that vertex v4 is adjacent to both compo-
nents, as it is a separator vertex at both levels 1 and 2.

The above definition requires the components Cv

i
to be connected; however,

we do not rely on this property. If two components Cv

i
and Cw

i
share the same

parent component, we can merge these two components into one new component
Cvw

i
= Cv

i
∪ Cw

i
. The adjacent vertices of the merged component are the verti-

ces that are adjacent to at least one original component. If Adj(Cw

i
) ⊆ Adj(Cv

i
),

merging reduces the total number of components without increasing the number
of adjacent vertices for any component. It is advisable to do so, as reducing the
total number of components also reduces preprocessing time. For our test instance,
merging components leads to a reduction of the total number of components by up
to two orders of magnitude.
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Figure 1. Hierarchy due to graph decomposition: components
(darker shades) with belonging wrapped components (lighter
shades) at levels 1 (smaller components) and 2 (larger compo-
nents).

2.1.2. Multi-Level Graph. Each level of the multi-level graph M is determined
by a set of edges. For each i ∈ {1, . . . , l}, we construct three sets of edges from the
following candidate sets :

Level edges: Ei ⊆ Si × Si.
Upward edges: Ui ⊆ Si−1 × Si.
Downward edges: Di ⊆ Si × Si−1.

For a level i ∈ {1, . . . , l}, a candidate edge (v, w) ∈ Ui, Di is elected to be an
upward or downward edge only if there is a v-w path in G that does not contain
any vertices in Si besides v or w (in other words, both endpoints must be contained
in the same wrapped component Gi). The weight of an upward or downward edge
is set to the length of a shortest such paths. Note that this equals the v-w distance
in the wrapped component Gi; there may exist shorter paths in G that leave Gi.

A level edge at level i ∈ {1, . . . , l − 1} exists if both of its endpoints are con-
tained in the same wrapped component Gi+1 at level i + 1. For level l, we simply
use all candidate edges: El := Sl × Sl. The weight of a level edge matches the dis-
tance in G. This constitutes an essential difference to [24], where level edges were
defined similarly to upward and downward edges. The purpose of this modification
is query runtime, allowing to look up distances between vertices in Si instantly
instead of plowing through all level edges, however, at the expense of an increased
number of level edges.

Constructing the level edge set näıvely would be too expensive in terms of
preprocessing time because determining distances in G may in general require con-
sideration of the whole input graph. We suggest an efficient two-pass construction
method. In the first, bottom-up, pass, the upward and downward edge sets are com-
puted: computation of Ui and Di is performed iteratively using the corresponding
edge sets at level i − 1. The second pass is carried out top-down: to construct Ei,
the set of level edges at level i help restrict this computation to a bounded local
search; the set El is computed directly using Ul.

2.1.3. Parallelization. Due to the different levels of hierarchy induced by the
vertex subsets S , this construction process does not need to consider the whole
input graph G at once. On the contrary, the preprocessing can be split up into
tasks so that each one operates on exactly one wrapped component (potentially,
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Figure 2. The search graph Mst: edges from L , Ui, and Di are
shown as thick lines with solid, dotted, and dashed styles, respec-
tively.

each task could be assigned to a distinct processor, provided that the data flow
dependencies between the tasks are obeyed, which would yield speed-up almost
linear in the number of processors).

2.1.4. Component Tree. The nesting of the separator sets is reflected by the
component sets Ci: each component Ci ∈ Ci is fully contained in exactly one
parent component of Ci+1, i.e., Ci ⊆ C′

i+1 for some C′

i+1 ∈ Ci+1. In addition,
we define the root or universe component Cl+1 := G that serves as parent for all
components in Cl, and a leaf component Cv

0 := {v} for every vertex v ∈ V . For the
leaf components, we use Cv

1 as parent. The parent relationship naturally induces a
tree of components.

2.1.5. Search Graph. When for a given pair of vertices s, t ∈ V simultaneously
walking up the component tree from Cs

0 and Ct
0 towards the root, the paths even-

tually meet at some component Cs

L
= Ct

L
, the lowest common ancestor of Cs

0 and
Ct

0. With our notation, the path between Cs
0 and Ct

0 in the component tree is
(Cs

0 , Cs
1 , . . . , Cs

L
= Ct

L
, . . . , Ct

1, C
t
0). In fact, any s-t path must visit these compo-

nents in this order.
Now we construct the search graph Mst, a subgraph of M with the same s-t

distance as in G. The edge set of Mst is the union of the following sets:

L := EL−1 ∩
(

Adj(Cs

L−1) × Adj(Ct

L−1)
)

,

U
i
:= Ui ∩

(

Adj(Cs

i−1) × Adj(Cs

i
)
)

, and

D
i
:= Di ∩

(

Adj(Ct

i
) × Adj(Ct

i−1)
)

,

where i ∈ {1, . . . , L − 1}.
Figure 2 shows an example, where edges from the sets L , Ui, and Di are

shown as thick lines with solid, dotted, and dashed styles, respectively. Owing to
the altered definition of the level edge set compared to [24], we can afford including
only a subset of EL−1 in the edge set of Mst. Note that L (and therefore also Mst)
is defined only for L > 1. These modifications require a new proof of correctness.

2.1.6. Correctness. In the following, we shall prove that Mst can be used for
answering the s-t shortest-path query in G. First notice that by definition every
edge in Mst has a weight at least as large as the distance between the corresponding
vertices in G. Hence, any distance in Mst cannot be smaller than the corresponding
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Figure 3. Illustration for Lemma 1 (left) and Theorem 2 (right):
A shortest path in G (highlighted thin lines) has a corresponding
path, of the same length, in Mst (thick lines).

distance in G. It remains to prove that for a shortest s-t path in G there is a path
in Mst of equal length.

Lemma 1. For i ∈ {0, . . . , L − 1}, the distance from s to any vertex v ∈
Adj(Cs

i
) in Mst matches that in Gs

i
, the wrapped component around s at level i.

Conversely, the distance from any vertex v ∈ Adj(Ct
i
) to t in Mst matches that

in Gt

i
.

Proof. (By induction.) We shall prove only the first part, as the second
follows immediately by symmetry. For i = 0, the claim is obvious. For i > 0, any
s-v path in G must contain a vertex in Adj(Cs

i−1), let u be the first such vertex.
We can split a shortest s-v path at u into two (possibly empty) subpaths. The s-u
subpath contains only vertices from Gs

i−1 and therefore has an equivalent path in
Mst by the induction hypothesis. On the other hand, the edge (u, v) is contained
in Ui and its weight corresponds to the length of the u-v subpath. �

Theorem 2. If L > 1, the s-t distance is equal in the graphs G and Mst.

Proof. The value L is the level of the lowest common ancestor of Cs
0 and Ct

0

in the component tree. Therefore, the vertices s and t reside in different home
components at level L − 1, and any s-t path must contain a vertex in SL−1. Let ver-
tex w ∈ Adj(Cs

L−1) and z ∈ Adj(Ct

L−1) be the first or last such vertex, respectively.
Again, we split a shortest s-t path at w and z. The s-w and z-t subpaths contain
only vertices from Gs

L−1 and Gt

L−1, respectively. According to Lemma 1, these
subpaths have equivalent paths in Mst. The edge (w, z) is part of L , its weight
equals the w-z distance in G. �

2.1.7. Query. The search graph Mst can be transformed into an equivalent
DAG by creating at most L copies of each vertex. Recall that the edges of Mst are
the union of the edge sets L , Ui and Di. We call the graph induced by such an
edge set a partial graph, and distinguish between level, upward, and downward parts,
accordingly. A partial graph is a directed bipartite graph, apart from some twofold

vertices that have both incoming and outgoing edges. We can unfold any partial
graph into an equivalent directed bipartite graph by creating a copy of each twofold
vertex, directing the edges with a twofold vertex as target to the corresponding
copies, and adding a zero-cost edge from each original twofold vertex to its copy.
In the example in Figure 2, vertex v4 of the upward part U2 is twofold, because it
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has an incoming edge (v1, v4) and an outgoing edge (v4, v3). Unfolding this partial
graph generates a copy v4

′ of v4 with new edges (v1, v4
′), (v3, v4

′) and (v4, v4
′), the

latter having a length of zero.
After that, each vertex of the unfolded partial graph has either only outgoing

or only incoming edges; we distinguish between source and drain vertices. An
unfolded version of the search graph can be created by joining the unfolded partial
graphs. The drain vertices of one partial graph match the source vertices of another
partial graph. As such, the join can be interpreted as a stacking of partial graphs.
All paths traverse this stack in the same direction, thus no cycles exist. Refer to
[18] for a formal proof.

For a DAG, an s-t shortest-path query can be performed in O(V + E) time.
Since the topological structure of our DAG is known in advance, the query algorithm
can be reduced to initialization of the vertex distance labels and update of the
distance label of each edge’s target vertex in the order imposed by the topological
structure.

2.1.8. Nearby Vertices. Path lookup in Mst works only for L > 1, i.e., for
source and target vertices from different home components at level 1. For vertices
from the same home component C = Cs

1 = Ct
1, we fall back to Dijkstra’s algorithm.

However, we avoid leaving the home component in our search. Instead, we use the
appropriate edges in E1 ∩ (Adj(C) × Adj(C)) as shortcut for paths that leave C.
By keeping the components small, we can state a runtime guarantee for the case of
nearby vertices, too.

2.2. Optimizing Partial Graphs. In contrast to the classic variant, where
a multi-level graph is stored as a whole, we spread it over a large number of partial
graphs (as seen before, any search graph can be constructed through the union of
a number of appropriate partial graphs). The foremost advantage is that each of
them can be optimized individually using two different techniques: pruning of edges
that cannot contribute to a shortest path and conversion of a partial graph into an
equivalent one with more vertices but fewer edges.

2.2.1. Pruning Superseded Edges. Consider an upward part Ui at level i >
1. This partial graph connects the adjacent vertices of two related components
Ci−1 and Ci at neighboring levels; let Gi−1 and Gi be the corresponding wrapped
components, and consider a fixed edge (w, v) ∈ Ui. Now, if a shortest w-v path
in Gi passes another vertex z ∈ Adj(Ci−1) and the w-z subpath does not leave
Gi−1, then for any s-v path via w there is a path via z that is no longer. This also
holds for any search graph that uses Ui: for any s-v path via edge (w, v) there is
a path via edge (z, v) that is no longer. That is, we can safely remove the edge
(w, v) from the upward part Ui; this edge is called superseded by the edge (z, v).
An example is shown in Figure 4.

To determine if an edge (w, v) ∈ Ui is superseded by another edge, we only
need to check local distances between adjacent vertices of Ci−1, together with edge
weights of the upward part Ui. Edge (w, v) is superseded by edge (z, v) ∈ Ui, if
c(w, v) = d(w, z) + c(z, v) and d(w, z) > 0.1

The pruning algorithm simply checks each pair of edges in Ui sharing the
same target vertex for supersedement, and removes the superseded ones on the fly.
Because supersedement is a strict partial order, the algorithm finds and removes all

1Here, c denotes the edge weight function in Ui, and d refers to the local distance in Gi−1.



HIGH-PERFORMANCE MULTI-LEVEL ROUTING 9

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

w z

v

v4

v5

Figure 4. Superseded edges. Edge (w, v) (double-dotted line) is
superseded by (z, v) (dotted line), because there is a shortest w-v
path via z in the input graph (highlighted thin lines).

desired edges (cf. [18] for a formal proof). Analogously, we can eliminate superseded
edges in downward and level parts. All partial graphs are optimized separately: an
edge superseded in one may or may not be superseded in another partial graph.

The pruning algorithm can be further refined by determining superseded verti-

ces in a first pass. For upward parts, a vertex w is superseded by another vertex z
iff all edges starting at w are superseded by the corresponding edge starting at z.
Superseded vertices can be omitted completely in the further processing, because
all edges connected to this vertex are superseded. To remove superseded verti-
ces, we iterate over the pairs of source vertices (those with outgoing edges) and
check for supersedement by iterating over all outgoing edges. Downward and level
parts are handled likewise. For the partial graphs obtained in our experimental
evaluation, this first pass takes only a fraction of the time needed for removing all
superseded edges, and usually removes many candidate edges, significantly reducing
the execution time for the main pruning algorithm.

2.2.2. Constructing Equivalent Graphs. A further optimization technique is
based on the following idea. The number of edges of a partial graph can be re-
duced by introducing auxiliary vertices and replacing many original edges with few
edges through the new vertices such that distances are preserved. An example is
given in Figure 5. Edges highlighted in the left graph are contained in at least
one shortest σ-δ path. The edges in the corresponding partial graph are made up
from the lengths of these shortest paths. Without optimization this would lead
to a complete bipartite graph with 16 edges, while an optimized equivalent graph
needs only eleven edges, as shown at the right: the twelve edges from {σ1, . . . , σ4}
to {δ1, . . . , δ3} may be replaced with a star-like graph of seven edges, since the cor-
responding shortest paths between the vertices in question contain a shared central
vertex. In the best case, all underlying shortest paths contain at least one common
vertex, and the optimization results in a star-like graph.

We have implemented a simple heuristic that adds a single, so-called central,
vertex, decides in a greedy manner which of the original vertices to connect to the
central vertex, and balances the weight function for the new edges. The goal of
the balancing is to remove a maximal number of original edges: if a path via the
central vertex is of equal length as the corresponding original edge, the latter can
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Figure 5. Constructing equivalent graphs. Left: sample graph;
highlighted edges are contained in a shortest σ-δ path. Right:
belonging search graph with edge compression applied; dotted and
dashed edges are contained in the graph.

be removed. The balancing must be distance preserving; in particular, no newly
introduced path may be shorter than the corresponding original edge.

3. Experiments

As input data to our experimental evaluation, we use road networks of Western
Europe, provided by PTV AG for scientific use, and the USA, taken from the
TIGER/Line Files [25], with around 18 million vertices and 42.6 million edges and
23.9 million vertices and 58.3 million edges, respectively. For both graphs, both
distances and travel times are available for each edge; in order to compare our
approach to similar ones, we test our graphs also with the unit edge metric.

For the test runs, we used a machine with two AMD Opteron 2218 processors,
32 GB of shared RAM, and 2 × 1 MB of L2 cache, where each processor features
two cores clocked at 2.6 GHz; the time measurements given refer to execution on
a single core. The program was compiled with the GCC 3.4, using optimization

Table 1. DIMACS Challenge benchmarks: query times in ms for
subgraphs of the US network and different metrics.

metric
graph time dist
NY 25.4 23.0
BAY 29.9 29.0
COL 43.2 38.8
FLA 119.3 112.0
NW 143.6 143.0
NE 193.2 195.4
CAL 254.5 248.8
LKS 396.6 377.5
E 607.1 558.5
W 1343.9 1 115.4
CTR 5892.9 4 778.0
USA 7 741.4 5 908.5
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level 3 and the LEDA library (version 5.01). Results on the DIMACS Challenge
benchmarks can be found in Table 1.

The subsequent presentation of our results is structured along the two ways of
obtaining a hierarchical decomposition of the input graphs, planar separators and
METIS, the latter being a freely available tool for graph partitioning.

Decomposition. To determine for a given graph sets of selected vertices, the
graph is first decomposed in a hierarchical fashion. This process is governed by
two parameters, the number of levels and granularity, the latter being fixed either
through the maximum component size allowed or a maximum number of adjacent
vertices per component for each level. Both options have their advantages: limit-
ing the component size generates a balanced decomposition in the sense that each
higher-level component contains roughly the same number of lower-level compo-
nents, while limiting the number of adjacent vertices yields a smaller variance in
the search graph sizes and thus allows for predicting the maximum search graph
size even before starting the preprocessing. Given an input graph, a hierarchical
decomposition is obtained by declaring, iteratively for each level to be generated,
vertices selected so long until the granularity criterion for that level is reached. For
the next-lower level, repeat this process applied to the decomposition found so far
with the specific granularity.

3.1. Planar-Separator Theorem. Decomposing our graphs by means of the
planar-separator theorem (PST) [16, 8] requires some preparatory step: due to
their nature, road graphs are but almost planar since they account for bridges,
highway ramps, etc., incurring crossings in those very places. We therefore planarize
the input graph first by adding vertices at edge crossings, and eventually have to
appropriately retranslate the separation found for the planarized graph into one
satisfying the original graph. The planarized input graph is recursively split into
two parts so long until the granularity condition holds. Our experiments involve
a three-level decomposition with a granularity of 80-40-20 adjacent vertices per
component. Note that such a granularity naturally induces an upper bound of
802 + 2 · 40 · 80 + 2 · 20 · 40 + 2 · 20 = 14 440 edges in the search graph, which can
be stated even before running our preprocessing.

3.1.1. Preprocessing. Decomposition with PST takes about a week for the Eu-
rope graph (distance metric),2 but our implementation caches the course of the
computation, and this cache can be reused to create decompositions with any given
granularity with just little computational effort. Preprocessing requires about 24
hours on one core and about 8 hours on four cores, resulting in 543 million edges,
288 million of which belong to upward and downward graphs at level 1.

Each edge in a partial graph can be encoded using six bytes (four for the length
assigned to it and one each for source and target vertices). Hence, the space needed
to store the whole preprocessed data amounts to an overhead of 181 additional bytes
per vertex (543 million edges · 6 bytes per edge / 18 million vertices) of the input
graph. If we skipped the optimization of the partial graphs, the preprocessing
would contain 3 210 million edges; in other words, the optimization step reduces
the preprocessing size to 17 %.

For each kind of partial graphs, optimization has a different impact. For all
higher-level partial graphs, roughly half of the edges are removed by supersedement.

2We used METIS to create an initial decomposition into components of about 500 000 vertices
each, as our PST implementation is unable to process the input graph as a whole.
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However, superseded vertices only exist in level graphs. For most level graphs much
smaller equivalent graphs can be found, reducing the total size of the level graphs
to 7.5 % in combination with supersedement when the distance metric is used.
Note that with time or unit metric, this figure drops to 4.9 % and 5 %, respectively.
Our heuristics for computing equivalent graphs has almost no effect for upward and
downward graphs. Summarizing, our edge reduction heuristics work very well for
level graphs, but yield only moderate results for upward and downward graphs.

Recall that the granularity of the preprocessing naturally induces an upper
bound of 14 440 edges in the search graph. However, an analysis of the preprocessed
data reveals that due to optimization, the largest search graph contains only 5 262
edges.

3.1.2. Query Performance. Unless otherwise stated, we use the road network of
Europe, applying the distance metric. We evaluate 10 000 queries picked at random
according to an exponential distribution, with a Dijkstra rank3 of between 100 and
|V | (we chose an exponential over a uniform distribution as the former captures
the intuition that with real-world information systems, short-distance occur more
frequently than long-distance queries). Note that only those queries are reported
that can be handled by our approach, i.e., s-t queries with s and t in different
home components. However, the entry and exit graphs of our technique propose
distances from and to all boundary vertices within one component, which could be
used as landmark data for low-range queries, i.e., queries within one component.
As observed in [6, 3], landmark-based routing performs very well for those types
of queries (below 1 ms, except for outliers).

We measured the time needed to initialize an array of distance labels and to
relax all edges of all partial graphs the search graph consists of. Prior to this, the
query algorithm loads the partial graphs from external memory and flushes the L2
cache by performing copy operations on two memory buffers, each as large as the
cache. This setup accurately simulates a client-server system that answers random
source-target queries and holds all partial graphs in RAM: in general, a partial
graph needed for a query is not present in the L2 cache and must be fetched from
RAM. (Note that to reduce the impact of outliers, we repeated three times the
execution of each query and used the median of the three measurements.)

Figure 6(a) shows the search space size, plotted against the Dijkstra rank, where
each dot represents a query. Because our technique is dominated by relaxed edges,
search space is measured in these terms rather than by settled vertices (experiments
show that the dependency between rank and relaxed edges is indeed linear for
Dijkstra’s algorithm).

There are three horizontal clouds discernible, at approximately 100, 500, and
2 000 of relaxed edges. They correlate with the number of upward and downward
graphs in the search graphs of between 1 and 3, resulting in search graphs con-
structed from three, five, or seven partial graphs. This observation is supported
by Figure 6(b), which depicts the number of partial graphs depending on Dijkstra
rank. As expected, with increasing rank the search graphs tend to comprise more
partial graphs. Altogether, is seems as if the number of relaxed edges depends more
on the number of partial graphs from which the search graph is constructed than
on the pure rank of a query.

3For an s-t query, the Dijkstra rank of vertex v is the number of vertices settled before v is
settled.
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Figure 6. Results for our approach using the road network of
Europe as input. As metric, distances are applied.

In terms of search space, we achieve speed-ups of up to 100 000 for higher
Dijkstra ranks (cf. Figure 6(c)). However, a couple of small-rank queries lead to
factors of less than 1: such a slow-down occurs when source and target vertices are
close to each other in the input graph, but belong to different home components
at level 2 or even 3 so that relatively big five- or seven-level search graphs have to
explored.

Figure 6(d) depicts search graph size depending on query time: we observe an
almost linear relationship. In general, all queries are executed in less than 40 µs.
Moreover, for search graphs with 2 000 edges or more, we can state a query runtime
of roughly 12 ns per edge.

3.1.3. Robustness. Up to now, we have shown that our approach performs very
well with the distance metric. In order to prove robustness to the metric applied, we
ran a larger series of experiments with both the Europe and the US networks and
travel times, distances, and unit lengths. To facilitate comparison of our approach
to similar ones, we now employ queries distributed uniformly at random. Table 2
reports average running times as well as the percentages of queries executed.
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Table 2. Preprocessing and (uniform) random queries perfor-
mance for different metrics on the European and US network. The
size of the preprocessing is given in number of edges in all gener-
ated partial graphs. The search space is given in number of relaxed
edges within search graph. Note that only those queries are re-
ported which can be performed by our approach. The percentage
of executed queries is given in column 6.

Prepro Query
size search space time executed

graph metric [# edges] [# relaxed edges] [µs] [%]
time 469 M 1494 18.8 99.90

Europe dist 543 M 1617 20.3 99.96
unit 470 M 1485 19.3 99.93
time 782 M 1462 19.3 99.94

USA dist 848 M 1547 20.0 99.94
unit 774 M 1441 19.2 99.97

We observe that the metric chosen has almost no impact on query times or
preprocessing. Regarding partial-graph optimization, there are no significant dif-
ferences in the number of additional edges between the various metrics, either. Of
all queries, more than 99.9 % were executed; assuming an average time of about
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Figure 7. Comparison of the query times for different metrics
(travel times, distances and unit lengths) using the Dijkstra rank
methodology [20] on the road network of Europe. The results
are represented as box-and-whisker plot [19]: each box spreads
from the lower to the upper quartile and contains the median, the
whiskers extend to the minimum and maximum value omitting out-
liers, which are plotted individually. Note that only those queries
are reported that can be performed by our approach.
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Table 3. Preprocessing and (uniform) random queries perfor-
mance for subgraphs of the US networks, taken from the DIMACS
homepage. As metric, we apply travel times. Our current imple-
mentation cannot handle small graphs. Thus, no results for NY,
BAY, and COL are given. The search space is given in number of
edges within the partial graphs. In addition to the columns given
in Table 2 we also report the ratio of additional edges per node in
the original graph (column 4). Note that only those queries are
reported which can be performed by HPML. The percentage of
executed queries is given in column 7.

Preprocessing Query
time size #edges search time executed

graph [min] [# edges] /|V | space [µs] [%]
FLA 8 19 M 17.8 331 8.6 90.00
NW 7 22 M 18.2 243 8.9 71.40
NE 444 141 M 92.8 291 8.4 98.60
CAL 324 136 M 72.0 596 11.2 98.40
LKS 320 130 M 47.1 1 071 14.8 99.30
E 39 71 M 19.7 1 824 21.0 99.60
W 89 133 M 21.3 1 440 18.6 99.80
CTR 260 354 M 25.1 1 847 21.6 99.97

1 ms for the remaining 0.1 % of (low-range) queries, the average query times as of
Table 2 would increase by 1 µs. Hence, we wind up with an overall average time
of less than 22 µs for all inputs.

In order to check whether this robustness with respect to metrics holds for all
types of queries (low-, mid-, and long-range), Figure 7 shows the performance of our
approach using the Dijkstra rank methodology [20]. As input we use the European
instance. Strikingly, the performance of our approach is (almost) independent of
the applied metric for all types of queries.

All of the above-said is confirmed by experiments with different subgraphs of
the US network and distance metric, the results being summarized in Table 3.
However, on smaller graphs the number of executed queries drops to values of
71.4%. Preprocessing times differ greatly from that for the whole graph as now
only two instead of three levels are used.

3.1.4. Comparison. Table 4 contrast the results of our approach to the most
prominent speed-up techniques presented at the DIMACS workshop applied to all
graphs and metrics, with queries distributed uniformly at random.

The results show clearly that in terms of preprocessing time, HPML cannot
compete with any other technique. Comparing query times with the time metric,
our approach as well as the TNR-variants all yield values of less than 20 µs, where
the latter techniques still outperform ours. The very strength of our approach
unfolds when the distance metric is used: HPML query times do not change signif-
icantly, while with transit node routing they increase by factors of up to 26. Using
the unit metric, all of these approaches yield similar performance. To sum up, our
findings corroborate the robustness of our approach regarding edge metric, which
does not hold for transit node routing.
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Table 4. Performance of the most prominent speed-up techniques
in comparison to our high-performance multi-level (HPML) ap-
proach. More precisely, we report preprocessing and query times
for highway hierarchies star (HH∗) [3], REAL [6], grid-based tran-
sit node routing (grid-TNR) [1], and transit node routing based on
highway hierarchies (HH-TNR) [22].

Europe USA
Prepro Query Prepro Query

metric technique [h:mm] [µs] [h:mm] [µs]
HH* 0:22 550.0 0:28 600.0
REAL 2:20 1110.0 2:01 1050.0

time HH-TNR 1:15 4.3 1:25 3.3
Grid-TNR 58:00 13.0 7:00 17.8
HPML ≈ 24:00 18.8 ≈ 36:00 19.3
HH* 0:49 1950.0 0:59 1740.0
REAL 1:30 1160.0 2:18 1800.0

dist HH-TNR 2:42 37.6 3:37 86.1
Grid-TNR 29:00 56.0 9:00 69.4
HPML ≈ 24:00 20.3 ≈ 36:00 20.0
HH* 0:27 990.0 0:32 890.0
REAL 3:49 1140.0 2:27 1160.0

unit HH-TNR 0:53 13.1 3:59 19.8
Grid-TNR 17:00 12.0 9:00 30.3
HPML ≈ 24:00 19.3 ≈ 36:00 19.2

3.2. METIS. As an alternative to compute graph decompositions we also
use the METIS collection [13]. These tools allow to divide graphs into a given
number of partitions of roughly equal size, where the edge cut, i.e., the number of
edges with source and target vertex located in different partitions, is minimized.
Since our preprocessing technique requires a selection of vertices instead of edges,
we subsequently compute a greedy vertex cover on the edge cut obtained from
METIS. This procedure can be carried out recursively to obtain a hierarchical
decomposition.

METIS runs amazingly fast for our test instances: decomposition into any
number of components requires less than one minute compared to one week for
PST; thus, a hierarchical decomposition can be obtained in about ten minutes.
As a further advantage, the input graph does not have to be planar. On the
other hand, METIS produces separators that are about 20 % larger than those
generated by PST; similar results were reported in [8]. While a decomposition
with limited component sizes can be obtained quite naturally using METIS, we
cannot easily create a decomposition with limited maximum number of adjacent
vertices per component; to achieve the latter, we have to perform recursive two-way
partitioning, as described for PST.

For our evaluation, we settled for a decomposition into three levels, as prelim-
inary experiments showed that two levels would consume too much space, while
employing a fourth level would not pay off. Further tests suggested granularities
of 120 000-4 000-360 of adjacent vertices for the Europe and 120000-3 300-300 for
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the US network. To compare METIS with PST, we used the very same granularity
also for PST: compared to the granularity used in Section 3.1, the preprocessing
time for the Europe graph and distance metric is slightly smaller, whereas search
graph size doubles on average.

Unfortunately, the overall results were not as promising as with adjacent-vertex
granularities. When METIS is used, the size of preprocessed data grows by 50 %
and the average search graph size doubles. For all preprocessings, the maximal
search graph was more than ten times larger than the average; this is unfavorable
if a tight guarantee for query times is required. Summing up, the quality of the
decomposition is of utmost importance for the efficiency of our speed-up technique.

4. Conclusion

We have shown how to enhance the classic multi-level approach [24] in such
a way that an even greater deal of the effort to compute a shortest path can be
shifted to the preprocessing stage. The main developments concern distribution of
the multi-level graph to many partial graphs. These permit to be sparsified fairly
easily, which leads to massive reduction of the total amount of precomputed data
and hence of query times.

In an experimental study with road graphs, where an extensive preprocessing
as well as larger amounts of additional data could be afforded, our approach proved
highly effective: speed-ups achieved over Dijkstra’s algorithm reach factors of up to
around 3 000. Furthermore, our approach has shown to be robust to different edge
metrics with respect to both preprocessing and query performance: except for very
few outliers, query time does not exceed 40 µs.

For future work, we see the following points of improvement: concerning our
implementation, use of custom-tailored data structures as well as of locality, as
exploited in [6, 3]; at an algorithmic level, development of alternative heuristics
to construct equivalent graphs, and combination with other speed-up techniques
(in [10, 5], certain combinations were shown to perform better than the individual
techniques). Another interesting question would be that of dynamization: due
to the hierarchical nature of our approach, we believe that only small parts of
the preprocessed data need to be updated upon an edge change in the input graph.
Finally, storage and retrieval of the course of a shortest path is a major requirement
for practical applications, which could be solved through similar concepts as in [11].
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