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Abstract

Shortest-path computation is a frequent task in practice. Owing to ever-growing real-
world graphs, there is a constant need for faster algorithms. In the course of time, a large
number of techniques to heuristically speed up Dijkstra’s shortest-path algorithm have been
devised. This work reviews the multi-level technique to answer shortest-path queries ex-
actly [1, 2], which makes use of a hierarchical decomposition of the input graph and pre-
computation of supplementary information. We develop this preprocessing to the maximum
and introduce several ideas to enhance this approach considerably, by reorganizing the pre-
computed data in partial graphs and optimizing them individually.

To answer a given query, certain partial graphs are combined to a search graph, which
can be explored by a simple and fast procedure. The concept behind the construction of
the search graph is such that query times depend mainly on the number of partial graphs
included. This is confirmed by experiments with a road graph containing over 15 million
vertices. Our query algorithm computes the distance for any pair of vertices in no more
than 70 µs. However, a lengthy preprocessing is required to achieve this query performance.

1 Introduction

Computation of shortest paths is a central requirement for many applications, such as route
planning or search in huge networks. Facing real-world data of ever-growing size, the need for
speed remains unabated: collection of geographic information is enhanced constantly, result-
ing in increasingly comprehensive road graphs; public-transportation networks often comprise
datasets from different means of transportation, such as train, tram, ferry, and even airplane
schedules; and the graph representing the WWW is growing faster than ever. There are two
basic approaches to tackle this task: relying on approximate algorithms, or devising faster exact
ones. In this work, we opt for the second way.

Since its publication in 1959, Dijkstra’s famous algorithm for calculation of shortest paths
in a directed graph with nonnegative edge weights [3] has been subject to many improvements.
Due to enormous space requirement (quadratic in the number of vertices), we cannot afford
precomputing shortest paths between all pairs of vertices. However, graphs can be preprocessed
at an off-line step so that subsequent on-line queries take only a fraction of the time used by
Dijkstra’s algorithm. Recent preprocessing techniques [4, 5] yield for graphs of sizes similar to
ours considerable average query times of around 2 ms and just under 1 ms, respectively, while
maintaining optimality of the solution.

In this work, we present a further enhancement of the multi-level technique given in [1], which
is based on a hierarchical decomposition of the input graph and computation of an auxiliary
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graph with additional information. The use of this precomputed data at the on-line stage allows
for reduction in search space and, consequently, query time. We develop the preprocessing to
the maximum: Our new variant at hand outsources almost all of the effort needed to compute a
shortest path to the preprocessing stage. It therefore fits best into an environment where query
time is invaluable but long preprocessing times (and a fair amount of precomputed data) can
be afforded, such as car navigation systems or web-based route planners. While in [1, 2] the
multi-level approach was shown to be effective for graphs of up to 100 000 vertices, we are now
able to handle graphs that are comparatively huge within reasonable time.

During the preprocessing stage, instead of one single multi-level graph we compute a large
number of small partial graphs. The advantage of having multiple graphs is that each of them
can be optimized individually. This is achieved by two measures: first, omission of so-called
superseded edges, i.e., edges for which there exists a path in the partial graph with the same
length; and second, transformation of the partial graphs into equivalent graphs, i.e., graphs that
preserve all shortest paths but have fewer edges. What is more, we make use of the fact that
the preprocessing is parallelizable.

We show that for each possible query, there is a search graph combined of several partial
graphs that preserves the distance between two given vertices. This search graph is acyclic, and
we outline a simple, linear-time procedure to find a shortest path in it.

The trade-off between preprocessing effort and query time is adjustable. For fixed para-
meters, we can provide a guarantee for both the number of edges considered by the search
algorithm and the query time. With our implementation that keeps the preprocessed data in
secondary storage, we can answer a query through few random accesses to that storage. If
the preprocessed data fits entirely into main memory, the query performance of our technique
clearly outperforms other recent approaches: with our implementation, we obtain query times
of less than 70 µs for a graph with roughly 15 million vertices, representing parts of the Western
European road network.

In the remainder of this section we classify our approach in the context of other shortest-
path speed-up techniques. The next section briefly reviews the multi-level technique as presented
in [1], and shows the various refinements made. An experimental study is presented in Section 3,
and we conclude with some final remarks on future aspects to be addressed.

1.1 Related Work

There are a bulk of techniques to speed up single-pair shortest-path algorithms most of which
rely on Dijkstra’s shortest-path algorithm [3]. In this section, we focus on methods that require
a preprocessing step, in which some additional information is determined beforehand; for an-
swering a shortest-path query, the on-line search can then fall back on this data. We differentiate
between the following two types: first, speed-up techniques that precompute additional data
attached to the graph’s vertices or edges, permitting the on-line algorithm to quickly decide
which parts of the graph can be pruned [6, 7, 8, 9, 10, 11, 12, 4]; and second, techniques that
in a hierarchical fashion determine an auxiliary graph, a slender part of which typically suffices
at the on-line stage to answer a shortest-path query [1, 2, 13, 14, 15, 5].

We want to briefly review the latter papers and point out their relationship to ours. As
mentioned above, the method presented in this work uses the same basic concepts as the tech-
nique in [1, 2] (which we will occasionally refer to as classical multi-level technique), with the
following enhancements. The auxiliary data is distributed to many partial graphs, which can
afterwards be thinned out and optimized individually. Given start and destination vertices, we
combine several partial graphs to obtain an acyclic search graph; the on-line search can then be
reduced to a simple linear-time procedure on that acyclic graph.

The HiTi model by Jung and Pramanik [13] is very similar to the classical multi-level tech-
nique, except that it uses edge separators rather than vertex separators. Also with hierarchical
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encoded path views, presented by Jing, Huang, and Rundensteiner [14], various partial graphs
are computed, which are later combined appropriately to form a search graph for a given query.
No optimization for the single parts is applied, but a compression technique is used to also keep
track of the course of shortest paths.

Finally, a recent technique named highway hierarchies, introduced by Sanders and Schultes
[15, 5], computes a hierarchy of coarsenings of the input graph. The search algorithm proceeds
in a bidirectional fashion and during its course needs to consider vertices of only one layer at
a time. In a latest further development [16], this approach has been extended by a concept
very similar to ours to take advantage of precomputed distances between all vertices selected at
the topmost level(s). Moreover, this approach—transit node routing—has been generalized in
such a way that the basic concept behind our high-performance multi-level technique is covered
as well. The major differences include the fact that we use graphs rather than matrices to
represent the all-pairs distances, as the former naturally induce means for optimization. Also,
transit note routing is designed to deal with travel time as edge weights more efficiently than
with route lengths, which is not true for our technique.

2 Multi-Level Graphs

The formal description of our high-performance multi-level graphs is divided into two parts. The
first reviews the classical multi-level technique as well as points out several enhancements to it,
where the structure in general follows that of [1, Sect. 2]; modifications and additional concepts
applied are highlighted explicitly. In Section 2.2, we then present the main contribution of this
work, optimization of the multi-level graph to allow for even smaller search spaces and query
times.

2.1 Enhancing Multi-Level Graphs

A multi-level graph M extends a weighted digraph G = (V, E) by adding multiple levels of
edges. For a pair of vertices s, t ∈ V , a subgraph of M, called search graph, with the same
s-t distance as in G can be determined efficiently. As the search graph is substantially smaller
than G, it allows for answering the given query much faster. In addition to the classical variant,
the search graph can now be transformed into an acyclic graph, which permits computing
distances in linear time.

Separator Sets To create a multi-level graph, we use a sequence of vertex subsets, denoted
by S = 〈Si〉 with 1 ≤ i ≤ l. Each Si is called a separator set. The separator sets are decreasing
with respect to set inclusion: V ⊃ S1 ⊃ S2 ⊃ · · · ⊃ Sl. Best performance can be achieved when
the graph G− Si falls apart into many components of similar size, while |Si| is small compared
to |V |. Such separator sets can be obtained, for instance, through repeated application of the
Planar-Separator Theorem [17, 18]. For the decomposed graph G−Si, we shall use the following
definitions, for which Figure 1 gives an example.

• By Ci, we denote the set of maximal connected components at level i. A connected
component C ∈ Ci itself is a weighted graph, whose vertices are referred to by V (C).

• For a vertex v ∈ V \Si, let Cv
i ∈ Ci be the component with v ∈ Cv

i . We call Cv
i the home

component of v at level i. To simplify notation, we define Cv
i := {v} for i ∈ {0, . . . , l} and

v ∈ Si, and let S0 = V . (This is a slight difference to [1].)
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• We call a vertex v ∈ Si adjacent to a component C ∈ Ci if there is an edge between v

and a vertex in C in either direction. The set of all vertices adjacent to C is denoted by
Adj(C). For v ∈ Si (i.e., Cv

i = {v}), we define Adj(Cv
i ) := {v}.

• We now introduce a new term: A component Cv
i together with its adjacent vertices is

called the wrapped component Gv
i = G ∩ (V (Cv

i ) ∪ Adj(Cv
i )).
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Figure 1: Hierarchy.
Components (dark colors) and belonging wrapped
components (light colors) at level 1 (blue) and 2
(red), respectively. Note that vertex v4 is a sepa-
rator vertex of both level 1 and 2.

Multi-Level Graph Each level of the
multi-level graph M is determined by a set
of edges. For each i ∈ {1, . . . , l}, we construct
three sets of edges from the following candi-

date sets:

Level edges Ei ⊆ Si × Si.

Upward edges Ui ⊆ Si−1 × Si.

Downward edges Di ⊆ Si × Si−1.

The candidate sets for upward and down-
ward edges are somewhat larger in this work
than in [1], where they are restricted to Si−1×
(Si−1 \Si) and (Si−1 \Si)×Si−1, respectively.
This augmentation is necessary for the subse-
quent optimization.

Construction For a level i ∈ {1, . . . , l}, a candidate edge (v, w) is elected to be an upward
or downward edge only if there is a v-w path in G that does not contain any vertices in Si

besides v or w. In other words, both endpoint vertices must be contained in the same wrapped
component Gi. The weight of an upward or downward edge is set to the length of a shortest of
these paths. Note that this equals the v-w distance in the wrapped component Gi; there may
exist shorter paths in G that leave Gi.

A level edge at level i ∈ {1, . . . , l − 1} exists if both of its endpoints are contained in the
same wrapped component Gi+1 at level i + 1. For level l, we simply use all candidate edges:
El := Sl×Sl. The weight of a level edge matches the distance in G. This constitutes an essential
difference to [1], where level edges were defined similarly to upward and downward edges. The
purpose of this modification is query runtime: This allows to look up distances between ver-
tices in Si instantly, instead of plowing through all level edges, however, at the expense of an
increased number of level edges.

Constructing the level edge set näıvely would be too expensive in terms of preprocessing time
because determining the distance in G may in general require consideration of the whole input
graph. We suggest an efficient two-pass construction method. In the first, bottom-up, pass,
the upward and downward edge sets are computed, just as the classical multi-level technique
proposes: computation of Ui and Di, the upward and downward edges at level i, is performed
recursively using the corresponding edge sets at level i − 1. The second pass is carried out
top-down: To construct Ei, the set of level edges at level i, the level edges at level i + 1 are
used in order to restrict this computation to a bounded local search; the set El is computed
directly using Ul.

4



Parallelization Due to the hierarchical decomposition, the construction process does not
need to consider the whole input graph G at once. On the contrary, the work at hand explores
the fact that the preprocessing can be split up in tasks so that each task operates on exactly one
wrapped component. Potentially, each task can be assigned to a distinct processor, provided
that the data flow dependencies between the tasks are obeyed. The preprocessing speed-up
achievable by that is almost linear in the number of processors used. For details on both the
construction process and its parallelization, refer to [19, Sect. 5].

Component Tree The nesting of the separator sets is reflected by the component sets Ci:
each component Ci ∈ Ci is fully contained in exactly one parent component of Ci+1, i.e., Ci ⊆
C ′

i+1 for some C ′
i+1 ∈ Ci+1. In addition, we define the root or universe component Cl+1 := G

that serves as parent for all components in Cl, and a leaf component Cv
0 := {v} for every vertex

v ∈ V . For the leaf components, we use Cv
1 as parent. The parent relationship naturally induces

a tree of components.

Search graph For the remainder of this section, we focus on a given pair of vertices s, t ∈ V .
When simultaneously walking the component tree from Cs

0 and Ct
0 towards the root, the paths

eventually meet at some component Cs
L = Ct

L, the lowest common ancestor of Cs
0 and Ct

0.
With our notation, the path between Cs

0 and Ct
0 in the component tree is (Cs

0 , C
s
1 , . . . , C

s
L =

Ct
L, . . . , Ct

1, C
t
0). In fact, any s-t path must visit these components in this order.
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Figure 2: The search graph Mst.

Now we construct the search graph Mst,
a subgraph of M with the same s-t distance
as in G. The edge set of Mst is the union of
the following sets:

L := EL−1 ∩
(

Adj(Cs
L−1) × Adj(Ct

L−1)
)

,

Ui := Ui ∩
(

Adj(Cs
i−1) × Adj(Cs

i )
)

, and

Di := Di ∩
(

Adj(Ct
i ) × Adj(Ct

i−1)
)

,

where i ∈ {1, . . . , L − 1}.
Figure 2 shows an example, where edges

from the sets L , Ui, and Di are colored
brown, blue, and green, respectively. Owing
to the altered definition of the level edge set compared to [1], we can afford including only a
subset of EL−1 in the edge set of Mst. Note that L (and therefore also Mst) is defined only
for L > 1. These very modifications require a new proof of correctness.

Correctness In the following, we shall prove that Mst can be used for answering the s-t
shortest-path query in G. First notice that by definition every edge in Mst has a weight at
least as large as the distance between the corresponding vertices in G. Hence, any distance in
Mst cannot be smaller than the corresponding distance in G. It remains to prove that for a
shortest s-t path in G there is an equally long path in Mst.

Lemma 1. For i ∈ {0, . . . , L − 1}, the distance from s to any vertex v ∈ Adj(Cs
i ) in Mst

matches that in Gs
i , the wrapped component around s at level i. Conversely, the distance from

any vertex v ∈ Adj(Ct
i ) to t in Mst matches that in Gt

i.
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Figure 3: Illustration for Lemma 1.

Proof. (By induction.) We shall prove only
the first part, as the second follows immedi-
ately by symmetry. For i = 0, the claim is ob-
vious. For i > 0, any s-v path in G must con-
tain a vertex in Adj(Cs

i−1), let u be the first
such vertex. We can split a shortest s-v path
into two (possibly empty) subpaths at u. The
s-u subpath contains only vertices from Gs

i−1

and therefore has an equivalent path in Mst

by the induction hypothesis. On the other
hand, the edge (u, v) is contained in Ui and
its weight corresponds to the length of the u-
v subpath.

Theorem 2. If L > 1, the s-t distance is the same in the graphs G and Mst.
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Figure 4: Illustration for Theorem 2.

Proof. The value L is the level of the lowest
common ancestor of Cs

0 and Ct
0 in the com-

ponent tree. Therefore, the vertices s and t

reside in different home components at level
L − 1, and any s-t path must contain a ver-
tex in SL−1. Let vertex w ∈ Adj(Cs

L−1
) and

z ∈ Adj(Ct
L−1

) be the first or last such ver-
tex, respectively. Again, we split a shortest
s-t path at w and z. The s-w and z-t sub-
paths contain only vertices from Gs

L−1
and

Gt
L−1

, respectively. According to Lemma 1,
these subpaths have equivalent paths in Mst.
The edge (w, z) is part of L , its weight equals
the w-z distance in G.

Query The graph Mst can be transformed into an equivalent DAG by creating at most L

copies of each vertex; refer to [19] for details. For a DAG, an s-t shortest-path query can be
performed in O(V + E) time. In addition, the topological structure of our DAG is known in
advance and does not need to be computed separately for each query. The query algorithm can
be reduced to initialization of the vertex distance labels and update of the distance label of each
edge’s target vertex in the order imposed by the topological structure.

Nearby vertices Path lookup in Mst works only for L > 1, i.e., for source and target ver-
tices from different home components at level 1. For vertices from the same home component
C = Cs

1 = Ct
1, we fall back to Dijkstra’s algorithm. However, we avoid leaving the home

component in our search. Instead, we use the appropriate edges in E1 ∩ (Adj(C) × Adj(C))
as shortcut for paths that leave C. By keeping the components small, we can state a runtime
guarantee for this case, too.

2.2 Optimizing Partial Graphs

So far, we have described some adaptations to the classical multi-level technique; in what follows
we introduce the central modification. Instead of storing the multi-level graph as a whole, we
spread it over a great number of partial graphs: For each pair of vertices s and t, consider the

6



sets of upward, level, and downward edges determined during construction of Mst and for each
such edge set, store the graph induced by it separately. That given, any search graph requested
for can be constructed through union of a number of appropriate partial graphs.

After that, each partial graph can be optimized individually using two different techniques:
by removing so-called superseded edges and by constructing an equivalent graph with more
vertices but fewer edges.

Note that, in general, edges from M occur in more than one partial graph. Thus, the partial
graphs in total require about twice as much storage as M, which is more than absorbed by the
reduction in size after the optimization phase.
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Figure 5: Superseded edges.

Removing superseded edges For an edge
set Ui, the upward part at level i, let Gi

be the wrapped component that contains all
the vertices of Ui, and Ci−1 be the compo-
nent at level i − 1 whose adjacent vertices
make up the source vertices of each edge in
Ui. Consider an edge (w, v) ∈ Ui. If a
shortest w-v path in G passes another ver-
tex z ∈ Adj(Ci−1), then any s-v path via w

in any search graph that uses Ui has a path
via z that is no longer than the path via w.
That is, we can safely remove the edge (w, v)
from the upward part Ui; this edge is called
superseded by the edge (z, v). An example is shown in Figure 5.

To determine if an edge (w, v) is superseded by another edge, we only need to consider
distances between adjacent vertices of Ci−1, together with edge weights of the upward part Ui:
we can do without (w, v) if there is an edge (z, v) ∈ Ui with c(w, v) = d(w, z) + c(z, v) and
d(w, z) > 0 (here, c denotes the edge weight function in Ui, and d refers to the distance in
G). After removing a superseded edge from the upward part, there may be other superseded
edges. The order in which superseded edges are removed is arbitrary, as supersedement is a
strict partial order. We can therefore achieve an optimal result by applying a simple greedy
scheme.

Analogously, we can eliminate superseded edges in downward and level parts. All partial
graphs are optimized seperately: an edge that is superseded in one partial graph may or may
not be superseded in another partial graph. For details, cf. [19].
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Constructing equivalent graphs Another optimization technique is based on the following
idea. The number of edges of a partial graph can be reduced by introducing auxiliary vertices
and replacing many original edges with few edges through the new vertices. An example is given
in Figure 6. Edges highlighted in the left graph are contained in at least one shortest σ-δ path.
The edges in the corresponding partial graph are made up from the lengths of these shortest
paths. Without optimization this would lead to a complete bipartite graph with 16 edges, while
the optimized graph is shown at the right: The twelve edges from {σ1, . . . , σ4} to {δ1, . . . , δ3}
may be replaced with a star-like graph of seven edges, since the corresponding shortest paths
between the vertices in question contain a shared central vertex. This results in a partial graph
with eleven instead of 16 edges.

We have implemented a simple heuristic that adds a single, so-called central, vertex. Then
it decides in a greedy manner which of the original vertices to connect to the new central vertex
and balances the weight function for the new edges so that a maximal number of original edges
can be removed. In the best case, all underlying shortest paths contain at least one common
vertex, and the optimization results in a star-like graph.

3 Experiments

In this section, we present the results of our experimental evaluation. As input we used the road
map of Western Europe1,2, provided by the PTV AG, Karlsruhe. This graph has approximately
15.4 million vertices and 35.7 million edges, where edge lengths correspond to route lengths.
We used four different machines for our experiments, all of them running SUSE Linux 9.3: two
dual AMD Opterons 252, clocked at 2.6 GHz with 16 GB of RAM and 2 x 1 MB of L2 cache,
and two dual Opterons 248, clocked at 2.2 GHz with 4 and 8 GB of RAM, respectively, and
2 x 1 MB of L2 cache. The program was compiled with GCC 3.4, using optimization level 3
and the LEDA library (version 5.01). The queries were executed on an Opteron 248.

Preprocessing We separated our input graph as follows. To obtain an initial separation, we
selected those vertices from our dataset that are marked as border vertices. Each country was
then separated by recursively applying the Planar-Separator Theorem [17, 18]. In total, the
computation of this separation took 24 hours using all 8 CPUs. Note that different methods for
separation may be applied as well, for a systematic analysis see [2]. There it was shown that
Planar-Separator works well for multi-level techniques.

We used a three-level setup with granularities of 20, 40, and 80 for the maximum number of
adjacent vertices per component, respectively. These granularities yield a reasonable tradeoff
between preprocessing and query times. For the given separation, preprocessing took another
24 hours employing all 8 CPUs, generating partial graphs with a total amount of about 246.1
million edges for upward and downward graphs of level 1 and another 285.1 million edges for
the remaining upward, level, and downward graphs. For better debugging, we chose XML as
intermediate and output format, leading to a high overhead. A binary format would consume
only about 6 GB in total.

Using a 20–40–80 separation, we can guarantee search spaces of less than 80 · 80 + 2 · 80 ·
40 + 2 · 40 · 20 + 2 · 20 = 14 440 edges. However, we observed a maximum search space of
only about 6 000, which is mainly due to the optimization of the partial graphs. An evaluation
of the sparsification shows that about one quarter of the level graphs can be fully reduced to

1consisting of 13 countries: Austria, Belgium, Switzerland, Germany, Denmark, Spain, France, Italy, Luxem-
burg, Norway, the Netherlands, Portugal, and Sweden.

2The main focus of this investigation was realizability of employing our multi-level technique to answer
shortest-path queries with graphs of several million vertices. Therefore and due to the large experimental effort—
especially regarding the preprocessing—we settled for this graph.
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a star-like graph. On average, 40% of the edges are removed by supersedement and 31% by
equivalence. However, 20% of the edges are removed by both routines, leading to a total removal
of about 51%.

Queries We ran 40 000 random queries exponentially distributed by Dijkstra rank3, and com-
pared the search spaces achieved with both Dijkstra’s algorithm and our technique (we chose
an exponential distribution over the uniform distribution as the former captures the intuition
that in real scenarios, shorter distances are queried more often than longer ones).

In our setup, we measured the time needed to initialize an array of distance labels and to
relax all edges of all partial graphs the search graph consists of. Beforehand, the query algorithm
loads the partial graphs from external memory and flushes the L2 cache by performing copy
operations on two buffers as large as the cache. This setup accurately simulates a client-server
system that answers random source-target queries and holds all partial graphs in RAM: in
general, a partial graph needed for a query is not present in the L2 cache and must be fetched
from RAM. Note that to reduce the impact of outliers, we repeated three times the execution
of our set of queries in the same order and used the median of the three measurements.

Search Space Figures 7(a) and 7(b) show search space size and speed-up compared to Dijk-
stra’s algorithm, plotted against the Dijkstra rank. Here, the search space is measured by the
number of touched edges instead of settled vertices, because our technique is dominated by
touched edges. Nevertheless, experiments show that the dependency between rank and touched
edges is linear for Dijkstra’s algorithm. We have three horizontal clouds at approximately 100
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Figure 7: Search space for random queries.

(blue), 500 (purple), and 2 000 (red) touched edges for the search space. They derive from
the fact that the number of upward and downward graphs used for the search graphs varies be-
tween 1 and 3. Therefore, we have a search graph constructed from three, five, and seven partial
graphs. The number of touched edges highly depends on the number of partial graphs and is
nearly independent of the rank. Note that we can only guarantee a search graph with less than
14 440 edges in this setup but observe search graphs of sizes below 6 000 edges.4 Concerning
the search space, we have speed-ups of up to 20 000 for very high Dijkstra ranks.

3For an s-t query, the Dijkstra rank of vertex v is the number of vertices inserted in the priority queue before
v is reached.

4A rigorous analysis of the preprocessed data proves a maximum search graph size of 7 223, cf. [19].
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Figure 8: Relative frequency and density for random queries.

Figure 8 shows the relative density and frequency of the number of edges in the search graph.
For the relative frequency three peaks arise: the first at 100, the second at 500, and the third
at 2 000 edges. These three peaks derive from the number of partial graphs the search graph
is constructed of. Summing up, for 50% of our queries we have less than 1 600 edges in the
constructed search graph and with a probability of 85% we have less than 3 000 edges.

Query Times Figures 9(a) and 9(b) confirms that the main impact on the query time is the
number of partial graphs. For three parts (blue), we have query times below 11 µs, for five
parts (purple) between 7 and 23 µs, and for seven parts (red) the query time varies between 12
and 70 µs.5 Note, too, that query time never falls below 5 µs even for the smallest search
graphs. For our set of queries, we observe an average query time of 22 µs.
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Figure 9: Query times for random queries.

Figure 10 depicts the relation between the sizes of the search graphs and the query times
obtained using our technique. Again each blue, purple, and red dot represents one single query
using three, five, and seven partial graphs, respectively. The figure confirms a nearly linear

5There is only one query that took more than 60 µs in all three runs. However, there are queries that require
larger search graphs to be analyzed. The reason might be that the memory allocator has to perform some extra
work for this query: we measure the allocation time for the array of distance labels, too, and this seems to be
the only component in our query algorithm that is able to cause this behavior.
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relation. This is supported by the almost constant behavior of time per edge with increasing
size of the search graph. We plot only search graphs with more than 1 000 edges because for
sizes below 1 000 we observe some artifacts with high per-edge execution times that have an
adverse impact on the range of the y-axis.
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Figure 10: Relation between size of the search graph and query times.

Dijkstra rank For a more detailed analysis of the size of the search graph, Figure 11 gives
an overview of the dependency of number of partial graphs and search graph size compared to
the Dijkstra rank. For the search graph size we use a box plot showing the five quartiles. Since
we want to plot high ranks we start at a rank of 800 and double it until reaching a rank of 13.1
million. For each rank given, we ran 1 000 queries.
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Figure 11: Search graph sizes and distribution of number of partial graphs used for different
Dijkstra ranks.

As expected, the percentage of three partial graphs decreases with increasing rank, while
that of seven partial graphs increases. The percentage of five partial graphs stays quite the
same from rank 800 to 800 · 210.

We observe two significant jumps for the median. It doubles from 800 ·2 to 800 ·22 and from
800 · 26 to 800 · 27. Doublechecking with the left plot, we observe that at the first jump the
percentage of three partial graphs drops below 50% while at the second jump the percentage of
seven partial graphs exceeds 50%. Between these jumps the median increases only slightly. So,
it is confirmed again that the search space is more dependent on the number of partial graphs
than on the Dijkstra rank.
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4 Conclusion

We have shown how to enhance the classical multi-level approach for shortest-path computa-
tion [1] in such a way that an even greater deal of the effort to compute a shortest path can be
shifted to the preprocessing stage. The main developments concern distribution of the multi-
level graph to many small partial graphs as well as heavy optimization of these graphs. Note
that distance matrices instead of partial graphs could be used for maintaining the distances
between separators. The advantage of using partial graphs is that optimization directly leads
to a sparsification of the partial graphs and thus to a reduction of data.

In an experimental study with a road graph, our approach proved extremely useful in a
setting where an extensive preprocessing and storage of large amounts of additional data can
be afforded: query times are always less than 70 µs and 22 µs on average. For experiments on
different granularities we would like to refer the reader to [19]. We want to point out that since
the publication of the latter work we have been able to improve query runtime considerably by
optimizing the representation of the partial graphs and the query algorithm.

There are various issues left that we consider worth being investigated. For graph minimiza-
tion, we employed a heuristic that performs well in practice. As the sizes of the partial graphs
have an immediate impact on the search space, however, strategies that compress the graphs
even better would be helpful. In [20, 4], it was shown that combinations of certain speed-up
techniques perform better than the individual techniques. In particular, a bidirectional variant
of our query algorithm might be beneficial in that the number of touched level edges can be
reduced.

Another interesting question would be that of dynamization: due to the hierarchical nature
of our approach, we believe that only small parts of the preprocessed data need to be updated
upon an edge change in the input graph. Finally, storage and retrieval of the course of a shortest
path is a major requirement for practical applications. To allow for that, our preprocessing could
be, similarly to [14], enriched with path information.
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