Generating Significant Graph Clusterings*

Daniel Delling, Marco Gaertler, and Dorothea Wagner

Faculty of Informatics, Universitat Karlsruhe (TH),
{delling,gaertler,wagner}@informatik.uni-karlsruhe.de

Abstract. Many applications such as experimental evaluations of clustering algorithms re-
quire the existence of a significant reference clustering. This task is dual to finding significant
clusterings of a given graph. We present several generators for pre—clustered graphs based
on perturbation and geometry. In an experimental evaluation we confirm the applicability
of our generators. Furthermore, the presented results lead to a better understanding of the
correlation between the degree of perturbation and significance.

1 Introduction

Clustering, which consists of finding meaningful groups of elements in datasets, is an
important technique in the exploration and analysis of data. It arises naturally in the fields
of data mining [1], network analysis [2], biochemistry [3] and social studies [4] etc. Due
to the large variety of these applications, the optimization criteria differ a lot. However,
most applications share aspects of the founding clustering model, i. e., the required intrinsic
properties of clusters or the type of connection between clusters. The general situation can
be handled by blockmodels [5], while we restrict ourselves to the widely used paradigm of
intra—cluster density versus inter—cluster sparsity [6,7,8].

Most research has been focused on finding the decomposition of a given graph into
natural clusters. We consider the dual problem, namely generating a graph such that
a given partition is significantly represented by the graph structure. The experimental
comparison of clusterings is one scenario where this problem arises naturally. In the case
of validating clustering algorithms, it is beneficial to know a significant clustering as a
reference point. Measuring the significance is essentially founded on an implementation
of an associated quality paradigm. These paradigms favor different ideal situations and
generally agree only on the collection of disjoint cliques.

As mentioned previously, benchmark applications for clustering algorithms adopt the
concept of pre—clustered graphs [7,9]. For example, the significance of a calculated clus-
tering can be related to the reference. Since benchmarks comprise only a restricted scope,
their testbed consists only of a few generators, thus making it hard to judge if the obtained
results hold in general.

We present several generators and an experimental evaluation of them. The generators
are based on the idea of perturbed disjoint cliques. In general, the collection of input
parameters represent the amount of perturbation from the ideal case. The experimental
evaluation confirms the intuitive connection between the parameters and the achieved

* This work was partially supported by the DFG under grant WA 654/14-3 and EU under grant DELIS
(contract no. 001907) and CREEN (contract no. 012864).

quality. Furthermore, this results in a better understanding of the correlation between the
amount of perturbation and the implementation of the quality paradigm.

This paper is organized as follows: We introduce the necessary preliminaries about
graph clustering in Section 2. In Section 3, we define the generators used in the evaluation.
The description and results of the performed evaluation are given in Section 4. We conclude
the paper with a summary and a short outlook in Section 5.

2 Preliminaries

We assume that G = (V, F) is an undirected and unweighted graph. Let n := |V|,m = |E|,
and C := {C4,...,Cp} be a partitioning of V. We call C a clustering and the C; clusters
of the graph. Let E(C) := {{u,v} € E | u,v € C;} be the set of intra-cluster edges
of C and E(C) := {{u,v} € E | u € C;,v € Cj,i # j} the set of inter-cluster edges
of C. The cardinalities are indicated by m(C) := |E(C)| and m(C) := |E(C)|. The graph
G[C;i] := (C;, E(C;)) denotes the node-induced subgraph of the cluster C;. We call G a
clustergraph (with respect to C), if every cluster induces a complete graph and no inter-
cluster edges are present. For an arbitrary clustering C, the cluster editing set Fg contains
all edges that need to be added or deleted in order to transform G into a clustergraph
with respect to C.

In the following, we introduce some indices measuring the quality of clusterings. More
precisely, we consider five indices, namely, coverage, performance, intra- and inter-cluster
conductance, and modularity. All have been used for various graph clustering applications.
For more details on these measures see [8]. Two basic indices coverage, cov (C) := m(C)/m,
and performance, perf (C) :=1— 2 |F¢|/(n(n — 1)), are based on counting edges. Intra-
and inter-cluster conductance are two indices founded on the concepts of bottlenecks,
i.e., a cluster should not have a sparse cut separating non-trivial parts and in contrast,
the connection of a cluster to the remaining graph should be sparse. To measure sparse
cuts, we use conductance from random walk theory; the formula is given in Equation (1)

with C = {C,V \ C}.
m (C)
min (ZUEC’ degv,), zc deg v)

This can be extended to general clusterings yielding intra- and inter-cluster conductance
defined by a (C) := mingec mingrce ¢aie)(C’) and 6 (C) == 1 — maxgec ¢ (C).

An index that also incorporates statistical properties is modularity [10], defined by
mod (C) := cov (C) — 1/(4m?) 3" occ (deg v)?. It measures the trade-off between the cov-
erage of the clustering and the expected coverage when edges are rewired randomly and
only the expected degree of a node remains fixed.

va (C) = (1)

3 Generators

Here, we present our generators for creating pre—clustered graphs. The generators in Sec-
tion 3.1 are based on initially creating a partition and adding edges afterwards, while in
Section 3.2 we provide a generator using geometric properties to assign nodes to clusters.

3.1 Random Partition Generators

A random partition generator uses an integer array P and two probabilities pi,, pout as
parameters. The integer array indicates the partition of the nodes, where |P| is the number
of clusters and each entry of the array indicates the size of the corresponding cluster. The
generator connects each pair in the same cluster with probability pi, and a pair in different
clusters with probability poyut. Note, that pi, = 1.0 and poyt = 0.0 leads to a clustergraph,
i.e., an unperturbed graph, while an uniform random graph is obtained for py, = pout-

Gaussian Generators The gaussian generator uses the approximate number of nodes
n instead of a partition P as a parameter. However, the generator initially creates a
partition P and calls the above described random partition generator with parameters
P, pin, and poyt. For generating a gaussian partition, we pick |P| uniformly at random
between log,(n) and /n. The mean of the entries of P is a = |[n/|P|] and the standard
deviation d is d = |a/4]. Note, that the sum of all entries of P approximately equals
|P| - |n/|P||, which approximates n quite well.

Significant Gaussian Generators For increasing n and a fixed pair (pin, pout) the
growth of inter—cluster edges exceeds the growth of intra—cluster edges. Thus, we introduce
the significant gaussian generator that substitutes the parameter pout by an edge—ratio
p = E(m(C))/E(m(C)). Note, that p is highly dependent on the number of clusters. The
generator initially creates a gaussian partition as described above, dynamically calculates
Pout according to Equation (2) and calls the same procedure as the gaussian generator for
building the edgeset.

o —C) _ pou(3) = IPI(S")) _ powe(n—n/|P]) 2)
m(C) pin| P ("37) pin(n/|P| = 1)

3.2 Attractors

The attractor generator uses geometric properties to generate a significant clustering based
on the following idea: k cluster centers, so called attractor nodes, are placed uniformly at
random with a certain minimum distance t in the plane. Then, n — k satellite nodes are
assigned to the attractors and their corresponding clusters using the following policy. At
a random position a satellite node u is inserted with probability d(u,a)/t, where d(u, a)
is the euclidean distance from u to the nearest attractor node a. If u is inserted, the edge
{u,a} is inserted. The parameter f sets the threshold for connecting nodes with a certain
distance.

Note, that the attractor nodes represent the point sites of a Voronoi Diagram and the
satellite nodes are assigned to the clusters according to the Voronoi cells.

Our implementation uses the unit square for modeling the plane and ¢t = \/2/(7k) as
threshold for the minimum distance between attractor nodes. CONNECTNODES(¢) connects
the nodes with distance less than t according to the plane, while PLACEATTRACTOR(?)

places a node in the plane with a distance greater than ¢ to existing nodes according to
the plane. Algorithm 1 provides the pseudo—code.

Algorithm 1: ATTRACTORGENERATOR(n, f)
V—0,E—0, P—]0;1] x [0;1] //P is the plane
k < integer uniformly at random € [log,,(n), /n]
t — \/2/(wk) //threshold
for i =0; ¢ < k; i++ do

v < PLACEATTRACTOR(t)

L V —Vu{v}, C; «— {v}
CONNECTNODES(2.5 - t) // ensures global connectivity
10
while i <n —k do

r « randomCoord € [0;1] x [0;1]

a «— nearestAttractor(r)

d < distance(r, a)

p < double uniformly at random € [0;1]

if d/t1 < p then

L C « cluster(a) //the cluster a represents

V—Vu{v}, E— EU{v,a}, C— CU{v}
i++

CONNECTNODES(f - v/2/100)
GH(‘/’E%C{; (017"'7Ck’)

Note, that CONNECTNODES() is called after placing the attractor nodes in the plane to
ensure global connectivity of the graph. An input of f = 0 leads to a graph with star—like
clusters and inter—cluster edges only between the attractor nodes, while f = 100 leads to
the complete graph.

4 Experiments

In this section, we summarize the results of the evaluation. All tests use n = 1000 nodes.
For the gaussian generator we choose pi, between 0.05 and 1.0 using steps of 0.05 and poyt
between 0.05 and py, with steps of 0.05. For the significant gaussian generator we use the
same values for piy, while we pick p between 0.1 and 3.0 with steps of 0.1. For the attractor
generator we choose f between 0 and 50 with steps of 0.5. The tests are repeated at least
50 times until the maximal length of the 0.95—confidence intervals is not larger than 0.1.

For the gaussian generator, all five indices achieve their highest value for combinations
of high pi, and low poyt. Performance (Figure 1(a)) and intra—cluster conductance (Figure
1(b)) exhibit an almost linear behavior. While performance strongly depends on the poyt,
intra—cluster conductance only depends on py,. In the case of modularity the dependency
seems to be balanced.

The situation is even more extreme for the significant gaussian generator, i.e., the
five indices mainly depend on one parameter, namely on pi, or p. More precisely, cover-
age, modularity (Figure 1(d)) and inter—cluster conductance (Figure 1(f), interCC) are
invariant with respect to variations in pi,, while intra—cluster conductance (Figure 1(e),
intraCC) is invariant with respect to p, by virtue of construction. Performance has a very
uniform behavior with high scores of approximately 0.9.

p(out)
0.6 0.8 1.0

0.4

0.2

p(out)
0.6 0.8 1.0

0.4

0.2

25 3.0

2.0

0.5 1.0

0.0

\

06
p(in)

(a) gaussian generators: performance

p(in)

e, ! !
\ w o o
's}
<
SR
/)
>
>
e
] k. N
ul
M
T T T T T
0.2 0.4 0.6 0.8 1.0

p(in)

(e) significant gaussian generators: intraCC

p(out)
0.6 0.8 1.0

0.4

0.2

3.0

25

2.0

1.0

05

0.0

0.45 -

0.4 —

| /g
N
30

0.2 0.4 . 06 0.8 1.0
p(in)

gaussian generators: intra—cluster conductance

7 v\/_ﬂ/\o,z/\/
<
v

il N 0.25 m

p(in)

(d) significant gaussian generators: modularity

3.0

25

2.0

1.0

0.5

0.0

025 ——

p(in)
(f) significant gaussian generators: interCC

Fig. 1. Results for gaussian and significant gaussian generators

The measured quality for attractors of o T
all five indices are shown in Figure 2. Cov- | #" “”*“****wﬁmw : ;n%fozrcﬁ’ﬁnce
erage, inter—luster conductance and modu- i ”*%%ﬂ o ince
larity indicate a decreasing significance with 52 e
increasing density of the attractors. Intra— g < |
cluster conductance has an artificial behavior ~ § °
for star—like clusters which causes extreme S
jumps for very small densities. In the case of o |
performance, the maximum score is achieved ° 10 20 20 40 50
for f =~ 13. It increases from 0 to 13 and density
decreases with further increase in density. Fig. 2. Results for attractors

5 Conclusion

We presented several generators for creating graphs with a given partition such that the
significance of the clustering is adjustable by the parameters. The experimental evaluation
confirms that the generators respect the paradigm of intra—cluster density versus inter—
cluster sparsity, since all indices attain their maximum score for instances with very small
perturbation. Both gaussian generators have two degrees of freedom, one for intra—cluster
density and one for inter—cluster sparsity. In the case of gaussian generators, most indices
depend on py, as well as poyt. By substitution of pout by p, we observe that indices which
formerly reacted to changes of pi, and poyy are only dependent on p. Thus, the usage
of these indices, namely coverage, modularity and inter—cluster conductance, is easier
because the choice of py, is irrelevant. Still, intra—cluster conductance only depends on piy,
while performace hardly differs for the chosen parameters. The attractor generator offers a
meaningful embedding additionally, which can be used to visually support the underlying
clustering. The one parameter controlling the density simultaneously adjusts intra—cluster
density and inter—cluster sparsity. For high values the impact on the inter—cluster sparsity
is larger.

References

1. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice Hall (1988)

2. Brandes, U., Erlebach, T., eds.: Network Analysis: Methodological Foundations. Volume 3418 of
Lecture Notes in Computer Science. Springer-Verlag (2005)

3. Vidal, M.: Interactome modeling. FEBS Lett. 579 (2005) 1834-1838

4. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University

Press (1994)

Nunkesser, M., Sawitzki, D.: Blockmodels. [2] 253-292

6. Vempala, S., Kannan, R., Vetta, A.: On clusterings - good, bad and spectral. In: Proceedings of the

41st Annual IEEE Symposium on Foundations of Computer Science (FOCS’00). (2000) 367-378

van Dongen, S.M.: Graph Clustering by Flow Simulation. PhD thesis, University of Utrecht (2000)

Gaertler, M.: Clustering. [2] 178-215

Brandes, U., Gaertler, M., Wagner, D.: Experiments on graph clustering algorithms. In: Proceedings

of the 11th Annual European Symposium on Algorithms (ESA’03). Volume 2832 of Lecture Notes in

Computer Science. (2003) 568 — 579

10. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Physical
Review E 70 (2004)

o

© o

