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Abstract. A promising approach to compare two graph clusterings is
based on using measurements for calculating the distance between them.
Existing measures either use the structure of clusterings or quality-based
aspects with respect to some index evaluating both clusterings. Each
approach suffers from conceptional drawbacks. We introduce a new ap-
proach combining both aspects and leading to better results for compar-
ing graph clusterings. An experimental evaluation of existing and new
measures shows that the significant drawbacks of existing techniques are
not only theoretical in nature but manifest frequently on different types
of graphs. The evaluation also proves that the results of our new measures
are highly coherent with intuition, while avoiding the former weaknesses.

1 Introduction

Finding groups of similar elements in datasets, a technique known as cluster-
ing, is an important problem in the analysis and exploration of data. There are
numerous applications such as data mining [8], network analysis [1], and bio-
chemistry [16]. While recent research [2,3] focused on measuring the quality of
a given clustering of an underlying graph, the problem of comparing two graph
clusterings becomes more and more important.

There exists a mutual relation between the two concepts quality and distance:
One could use a quality index to obtain a distance measure as shown later, while
measuring the distance of a given clustering to an “optimal” clustering could
yield the quality of the clustering. Current techniques for the comparison of
clusterings use only qualitative aspects or transfer existing measures from the
field of data mining. Both approaches have certain drawbacks: When comparing
clusterings by using qualitative aspects the results are highly dependent on the
used quality measure and completely different clusterings may yield the same
quality value and are thus indicated as equal. Measures originating from data
mining only consider the partition of nodes and ignore the structure of graphs.
Due to these conceptional disadvantages, investigated below, the introduction
of new measures seems inevitable, using structural and qualitative properties of
the clusterings to calculate an appropriate distance. We present a new approach
combining structural properties and qualitative aspects. In order to achieve this,
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we extend data mining measures by adding qualitative features and introduce
a new promising measure having its origin in quality measurement. Due to the
high complexity of comparing clusterings we focus on the case of static com-
parison, i.e., the graph is unchanged, but give an outlook on the dynamic case.
An experimental evaluation is presented, showing that the drawbacks of data
mining measures are not only theoretical in nature but manifest often.

This paper is organized as follows. Section 2 introduces preliminaries and
existing measures for comparing (data-)clusterings, including their drawbacks.
Two approaches for constructing new measures are presented in Section 3. An
evaluation based on artificial data of all presented measures is given in Section 4,
while Section 5 shows the applicability of our approach in a real-world scenario.
Section 6 concludes this paper.

2 Preliminaries

We assume that G = (V, E) is an undirected, unweighted and connected graph.
Let n := |V |, m := |E|, and C := {C1, . . . , Cp} a partitioning of V . We call C
a clustering and the Ci clusters of the graph. The set of all possible clusterings
is A(V ). Let E(C) := {{u, v} ∈ E | u, v ∈ Ci} be the set of intra-cluster edges
of C and E(C) := {{u, v} ∈ E | u ∈ Ci, v ∈ Cj , i �= j} the set of inter-cluster
edges of C. The cardinalities are indicated by m(C) := |E(C)| and m(C) := |E(C)|.
We call a graph with disjoint cliques a clustergraph and FC , the set of edges to
be added or deleted in order to transform a given graph and clustering C into an
according clustergraph, the cluster editing set of C. When comparing two cluster-
ings we use C and C′, with k := |C|, l := |C′|. With deg(Ci) :=

∑
v∈Ci

deg(v) we
indicate the sum of all degrees of nodes within a cluster. All presented measures
are given in a distance version, normalized to the interval [0, 1]. In the following,
we give a short overview of existing comparison techniques. Among them are
measures based on quality and on comparing the partitions of node-sets, the
latter are also called node-structural.

Quality-Based Distance. Quality-based measurements can be constructed by
comparing the scores of the two clusterings with respect to an arbitrary quality
index such as coverage, performance or modularity [1,3]. Note, that a distance
measured in such a way is highly dependent on the used index. Furthermore,
completely different clusterings can yield the same value. Thus, we neglect purely
quality-based distances in the following and focus on measuring the distance
based on the structure of the clusterings.

Counting Pairs. In [17] some techniques based on counting pairs are pre-
sented. Summarizing, every pair of nodes is categorized based on whether they
are in the same (or different) cluster with respect to both clusterings. Four sets
are defined: S11 (S00) is the set of unordered pairs that are in the same (differ-
ent) clusters under both clusterings, whereas S01 (S10) contains all pairs that are
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in the same cluster under C (C′) and in different under C′ (C). In the following
we present two representatives for this class: Rand and adjusted Rand measure.
Rand introduced the distance function R given in Equation 1 in [12], it suffers
from several drawbacks. For example, it is highly dependent on the number of
clusters. One attempt to remedy some of these drawbacks, which is known as
adjusted Rand AR and given in Equation 1, is to subtract the expected value
for clusterings with a hypergeometric distribution of nodes, see [11].

R(C, C′) := 1 − 2(n11 + n00)
n(n − 1)

, AR(C, C′) := 1 − n11 − t3
1
2 (t1 + t2) − t3

, (1)

where t1 := n11 + n10, t2 := n11 + n01, and t3 := (2t1t2)/(n(n − 1)) and t1 (t2)
is the cardinality of all pairs of nodes that are in the same cluster under C (C′).

Overlaps. Another counting approach is based on the k × l confusion matrix
CM := (mij) whose ij-entry indicates how many elements are in Cluster Ci and
C′

j , formally mij := |Ci ∩ C′
j |, for 1 ≤ i ≤ k and 1 ≤ j ≤ l. Several measures

are based on the confusion matrix. We restrict ourselves to the measure NVD,
introduced by van Dongen in [15], given in Equation 2. Other measures suffer
from the obvious disadvantage of asymmetries, thus we exclude them. We use a
normalized version to keep the measure to the interval [0, 1].

NVD(C, C′) := 1 − 1
2n

k∑

i=1

max
j

mij − 1
2n

l∑

j=1

max
i

mij (2)

One major drawback of NVD is that the distance between the two trivial clus-
terings, i. e.,k = 1, l = n, only yields a value of about 0.5. In addition, this
measure suffers from the drawback that only the maximum overlaps contribute,
resulting counter-intuitive examples are given in [10].

Information Theory. More promising approaches are based on information
theory [4]. Informally, the entropy H(C) of a clustering is the uncertainty of a
randomly picked node belonging to a certain cluster. An entropy of a clustering
is always positive and is bounded by log2(n), see [13]. An extension of entropy is
the mutual information I(C, C′). The mutual information of two clusterings is the
loss of uncertainty of one clustering if the other is given. With P (i) := |Ci|/n
and P (i, j) := (|Ci ∩ C′

j |)/n, entropy and mutual information are defined as
follows.

H(C) := −
k∑

i=1

P (i) log2 P (i) , I(C, C′) :=
k∑

i=1

l∑

j=1

P (i, j) log2
P (i, j)

P (i)P (j)
(3)

Note that mutual information is positive and bounded by min{H(C), H(C′)} ≤
log2(n). In the following we present two representatives in this class, namely
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one introduced by Fred & Jain [6] and Variation of Information, introduced by
Meila [9].

FJ (C, C′) :=

{
1 − 2I(C,C′)

H(C)+H(C′) , if H(C) + H(C′) �= 0

0 , otherwise
(4)

VI(C, C′) := H(C) + H(C′) − 2I(C, C′) (5)

The first measure FJ , given in Equation 4, is a normalized version of the mutual
information and stated as a distance function. The case differentiation is used
to deal with the degenerated case of two trivial clusterings, i. e.,k = l = 1.

The second measure VI is motivated by an axiomatic approach and given in
Equation 5. In [10], it is shown that VI is the only measure fulfilling several ax-
ioms. However, these axioms seem to be inadequate in the special case of graph
clustering. According to these axioms, the movement of a node v from one clus-
ter Ci to another cluster Cj must be equivalent to first splitting v off from Ci and
then merging it with Cj . Figure 1 shows an example regarding this axiom: intu-
itively d(C, C′′) should be greater than d(C, C′)+d(C′, C′′) of which both terms rep-
resent minor changes, but according to the axiom d(C, C′′) = d(C, C′) + d(C′, C′′)
must hold. This measure is not normalized and the two possible normalization
factors, which are 1/ log2(n) and 1/ log2(max{k, l}), mapping to the intervals
[0, x], x ≤ 1 and [0, 1] respectively, have significant drawbacks. Nevertheless, we
use the log2(n) normalized version for comparability with the other measures.

Drawbacks of the Data Mining Approach. All node-structural measures
suffer from the same drawback that they neglect the structure of the graph. The
examples in Figure 2 clarify this circumstance. The figure shows four clusterings
C1, C′

1, C2 and C′
2 on two graphs G1 and G2. A measure d not considering the

structure of the graphs fulfills d(C1, C′
1) = d(C2, C′

2). Intuitively, the distance
d(C1, C′

1) has to be greater than d(C2, C′
2) since the quality of C1 is almost equal

to that of C2, but C′
1 has far lower quality than C′

2. This drawback can become
arbitrarily grave when the edge set of the graph is allowed to change.

C C′ C′′

Fig. 1. The sum of two minor
changes result in a major one

C1 C′
1 C2 C′

2

Fig. 2. Two static comparisons of graph cluster-
ings
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3 Engineering Graph-Structural Comparison Measures

In order to remedy some of the disadvantages of node-structural measures, we
introduce the concept of graph-structural measures. Since they are also based
on the underlying graph structure, they can include qualitative aspects for mea-
suring the distance of two clusterings. In the first part, Section 3.1, we extend
node-structural measures, while a novel measure is introduced in the second
part, Section 3.2.

3.1 Extension of Node-Structural Measures

For consistency, all extended measures should meet the following requirement:
If the underlying graph is complete, then both the graph- and node-structural
version should yield the same value, since then the graph structure does not
provide additional information. A second objective is to adjust the three found-
ing principles—counting pairs, overlaps and information theory—of the existing
measures themselves, instead of adjusting each implementation separately.

Counting Local Pairs. Instead of categorizing every pair we only consider
those pairs, that are connected by an edge. For a, b ∈ {0, 1} we define Eab :=
Sab ∩E and eab := |Eab|. It is obvious that Sab = Eab holds for complete graphs.
Thus, we obtain the graph-based versions Rg and ARg of the Rand and adjusted
Rand measure given in Equation 6:

Rg(C, C′) := 1 − e11 + e00

m
, ARg(C, C′) := 1 − e11 − t3

1
2 (m(C) + m(C′)) − t3

, (6)

where t3 := (m(C)m(C′))/m. Note, that m(C) = e11 +e10 and m(C′) = e11 +e01,
respectively, hold.

Degree-Based Overlaps. Measures based on overlaps can be transformed
into graph-structural measures by a slight modification in the definition of the
confusion matrix as follows. The ij-th entry of the degree-based confusion matrix
CM d := (md

ij) indicates the sum of the degrees of the nodes that are both in Ci

and C′, formally md
ij := deg(Ci ∩ C′

j). Note, that if G is d-regular graph, then
the equality CM = CM d/d holds. In certain cases, this may lead to different
normalization factors. The extension of NVD is given in Equation 7.

NVDg(C, C′) := 1 − 1
4m

k∑

i=1

max
j

md
ij − 1

4m

l∑

j=1

max
i

md
ij (7)

The equivalence of the node- and the graph-structural variant of the normalized
van Dongen measure for regular graphs follows from m = dn/2 and mij = md

ij/d.

Edge Entropy. The entropy defined in Section 2 solely depends on the node-
set, thus we extend it to the edge-set using the following paradigm: Instead of
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randomly picking a node from the graph for measuring the uncertainty, we pick
the end of an edge randomly. As a consequence, a node with high degree has a
greater impact on the distance. The formal definition of edge entropy HE and
edge mutual information IE is given in Equation 8 and 9.

HE(C) := −
k∑

i=1

PE(i) log2 PE(i) , (8)

IE(C, C′) :=
k∑

i=1

l∑

j=1

PE(i, j) log2
PE(i, j)

PE(i)PE(j)
, (9)

where PE(i) := deg(Ci)/2m and PE(i, j) := deg(Ci ∩ C′
j)/2m. Note that for

regular graphs, the entropy and the edge entropy coincide. The extensions of
FJ and VI are given in Equation 10 and 11.

FJ g(C, C′) :=

{
1 − 2IE(C,C′)

HE(C)+HE(C′) , if HE(C) + HE(C′) �= 0

0 , otherwise
(10)

VIg(C, C′) := HE(C) + HE(C′) − 2IE(C, C′) (11)

The equivalence of the node- and the graph-structural variant for regular graphs
results from the equality of entropy and edge entropy for complete graphs. Meila
showed in [10] that VI ≤ log2(n) also holds for weighted clusterings. Since the
degree of a node can be interpreted as node-weight our log2(n)-normalization
maps to the interval of [0, 1].

3.2 A Novel Approach for Measuring Graph-Structural Distance

Although the extensions introduced in the previous section incorporate the un-
derlying graph structure, they are not suitable for comparing clusterings on
different graphs. As a first step to solve this task, we consider the restriction to
graphs with the same node-set, but potentially different edge-sets. Motivated by
the cluster editing set, we introduce the editing set difference defined in Equa-
tion 12.

ESD(C, C′) =
|FC ∪ FC′ | − |FC ∩ FC′ |

|FC ∪ FC′ | = 1 − |FC ∩ FC′ |
|FC ∪ FC′ | (12)

Small cluster editing sets correspond to significant clusterings. By comparing
the two clusterings with a geometric difference, we obtain an indicator for the
structural difference of the two clusterings. It easy to see, that in the case of
static comparison, ESD is a metric.

4 Experiments and Evaluation

We evaluate the introduced measures on two setups. The first focuses on struc-
tural properties of clusterings, the second concentrates on qualitative aspects:
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Initial and Random Clusterings. The tests consist of two comparisons, each
including clusterings with the same expected intrinsic structure of the par-
titions, i. e.,the expected number of clusters and the size of clusters. The
first comparison uses one significant clustering and one uniformly random
clustering, while the second one uses two uniformly random clusterings.

Local Minimization. The setup consists of two parts, each comparing a ref-
erence clustering with a clustering of less significance. The two parts differ
in the significance of the reference clustering.

The intuition of the first test is to clarify the drawbacks of the node-structural
measures, while the second setup verifies the obtained results. We use the attrac-
tor generator introduced in [5] which uses geometric properties based on Voronoi
Diagrams to generate initial clusterings. The Voronoi cells represent clusters and
the maximum Euclidean distance of two nodes being connected is determined by
a perturbation parameter. All tests use n = 1000 nodes and are repeated until
the maximal length of the 0.95-confidence intervals is not larger than 0.1.

4.1 Initial- and Random Clusterings

The generated clustering is used as a significant clustering. For the random clus-
tering we first pick k uniformly at random between 2 and 3

√
n for the number of

clusters and assign each node uniformly at random to the k clusters. Figures 3.1
and 3.2 show the measured quality by the indices coverage, performance and
modularity [1,3]. The tests consists of two cases. On the one hand, the compari-
son of the generated and a random clustering (GvR) and on the other hand, the
comparison of two random clusterings (RvR). A measure for comparing graph
clusterings should differ in the two cases. For GvR, a suitable measure should
indicate a decreasing distance with the loss of significance of the reference, while
for RvR two interpretations are possible. On the one hand, one could claim that
the distance between two random clusterings should be independent of the un-
derlying graphs. On the other hand, the distance should decrease with the loss
of significance because two random clusterings on an almost complete graph are
closer to each other than on a graph with an existing significant clustering. An-
other interpretation seems acceptable as well: The distance of a given clustering
to a random clustering should always be somehow maximal.

Figure 3 shows the results for the node- and graph-structural measures. By
comparing Figure 3.3 and 3.4 it is evident that node-structural measures do not
distinguish the two cases. Only Fred & Jain and adjusted Rand reflect the inter-
pretation that the distance to a random clustering is always maximal. However,
the situation changes for the graph-structural distance (Figures 3.5 and 3.6).
Only Rand and ESD capture the difference, while the remaining measures show
nearly the same behavior as their node-structural counterparts. For GvR, the
distance measured by Rand is decreasing with increasing density while for RvR
the distance is invariant under the density. Furthermore, the measured distance
equals the node-structural measurement for RvR. ESD has the same behavior
for GvR as Rand, whereas RvR reflects the intuition that two random cluster-
ings become more similar with loss of significance. Under the assumption that
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Fig. 3. Results of the initial- and random clustering setup

a comparison to a random clustering should always be interpreted as maximal,
adjusted Rand and Fred & Jain can be accepted. Nevertheless, the equivalence
of the node- and the graph-structural versions of van Dongen and the normalized
Variation of Information is counterintuitive. This partly originates from the fact,
that attractors produce graphs that are close to regular for � > 0.5. Further-
more, the clusters are equal in size. The strange behavior of Fred & Jain, van
Dongen and the variation of Information for very small � stems from the fact
that for small � attractors are nearly stargraphs with k centers.

4.2 Local Minimization

Since there are several possible interpretations of graph-structural distance and
the structural similarity of the clusterings in Section 4.1 a second test is executed
having a precise intuition for graph-structural distance. Again, as a reference
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4.4: type 2 node-structural
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4.5: type 1 graph-structural
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4.6: type 2 graph-structural

Fig. 4. Results of the local minimization setup

clustering we use the generated clustering of an attractor graph. The second
clustering of less significance is obtained from the reference clustering by locally
moving nodes from one cluster to another. Such a shift is executed, if it max-
imally decreases a given index among all possible shifts. This is done until no
decrease of quality can be achieved or the number of moved nodes has reached
a maximum value of Mmax.

In this setup, we use modularity as the index, the density is set to the values
� = 0.5 (type 1) and � = 2.5 (type 2), and Mmax increases from 0 to 500 using
steps of 5. Figures 4.1 and 4.2 show the measured quality of the locally decreased
clusterings on increasing number of moved nodes. Note, that for Mmax = 0 the
reference and the locally decreased clustering coincide. A suitable distance mea-
sure should first of all distinguish the two cases. In addition, with increasing
Mmax the measured distance in type 2 should be smaller than in type 1, since
the intuition is that in type 1 a very significant clustering is destroyed while on
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type 2 the loss of significance is lower. Figure 4 shows the results for all measures
on this specific setup. As shown in Figures 4.3 and 4.4, all node-structural mea-
sures hardly distinguish the two cases. This reveals additional disadvantages.
Evaluating the graph-structural measures (Figures 4.5 and 4.6), the intuitive
behavior of Rand is verified. Furthermore, adjusted Rand and ESD distinguish
both cases very well. The remaining graph-structural measures show the same
behavior as their node-structural counterparts. Thus, the failure of van Dongen
and the Variation of Information is confirmed. Unlike in Section 4.1 Fred & Jain
fails on this setup. The unexpected behavior of the overlap and entropy based
measures may be due to—as mentioned in Section 4.1—the fact that for � = 0.5
and � = 2.5 attractor graphs have a fairly regular structure. As shown in Section
2 the graph-structural versions of overlap- and entropy-based measures equal the
node-structural variants for regular graphs.

5 Real-World Scenario

In this section, we discuss a real-world instance in order to illustrate the ad-
vantages of graph-structural measures over node-structural ones. As input, we
use the e-mail graph (Figure 5) of the Karlsruhe faculty of computer science,
introduced in [7]. As a reference clustering, we group by departments. We ad-
ditionally compute two clusterings by using the greedy modularity approach [3]
and the MCL algorithm, introduced in [14]. Table 1 depicts the scores achieved
by the quality measures coverage, performance and modularity. With respect to
all three quality measures, MCL outperforms the greedy approach and achieves
a score close to the reference. Table 2 gives an overview of the measured dis-
tances between the abovementioned clusterings. We observe that the MCL-
clustering is not as close to the reference than one could expect from the figures in

Fig. 5. Karlsruhe e-mail graph. Groups refer to the reference clustering, colors to the
clustering obtained by the greedy modularity algorithm.



Engineering Comparators for Graph Clusterings 141

Table 1. Quality scores achieved by the reference clustering and those computed by
the greedy approach and by MCL. The input is the Karlsruhe e-mail graph.

reference greedy MCL
coverage 0.8173 0.8634 0.8182
performance 0.9387 0.8286 0.9238
modularity 0.7423 0.6725 0.7282

Table 2. Measured distances between reference and two computed clusterings. One
clustering is obtained by MCL, the other one by the greedy modularity algorithm. The
input is the Karlsruhe e-mail graph (cf. Figure 5).

reference reference greedy
measure type measure vs. greedy vs. MCL vs. MCL
quality modularity difference 0.0697 0.0140 0.0557

Rand 0.1233 0.0463 0.1466
adj. Rand 0.5765 0.3555 0.6549

node-structural van Dongen 0.2676 0.1834 0.3465
Fred & Jain 0.3137 0.1794 0.3876
variation of information 0.2425 0.1658 0.2904

graph-structural

Rand 0.1963 0.1305 0.2452
adj. Rand 0.4689 0.2820 0.5730
van Dongen 0.2435 0.1714 0.3215
Fred & Jain 0.2828 0.1623 0.3581
variation of information 0.2107 0.1427 0.2549
ESD 0.7325 0.5382 0.7796

Table 1. All graph-structural distance measures indicate a difference of more than
0.1. More interestingly, ESD yields a lower score than graph-structural adjusted
Rand. For artificial data, the contrary is true (cf. Section 4). Most of our graph-
structural measures indicate a lower distance between all clusterings than their
node-structural versions. As all clusterings score similar quality values, and thus
have quite a low distance with respect to quality, the graph-structural measures
really incorporate qualitative aspects. Hence, they harmonize better with intu-
ition than the purely node-structural versions. As discussed in Section 2, the
node-structural Rand measure yields a very small value due to the high num-
ber of small cluster. However, this drawback appears to be remedied by the
graph-structural version.

6 Conclusion

The experimental evaluation confirms the drawbacks of node-structural mea-
sures while some graph-structural measures, i. e.,ESD, adjusted Rand, and Rand
perform more consistently with intuition. Furthermore, this is an indicator for
the feasibility of the graph-structural distance in applications such as dynamic
graph clustering. More precisely, since graph-structural measures incorporate
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both structural and qualitative aspects, they can be used as a foundation for clus-
tering in dynamic scenarios. Summarizing, extensions of node-structural mea-
sures are not trivial and need not lead to intuitive results. Furthermore, our
presented extensions are only suitable for comparing clusterings on the same
graph. In contrast, the editing set distance only requires the same node-set.
Thus, this improves the foundation for dynamic graph clusterings. Concluding,
this work is a first step towards a unifying comparison framework.
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