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Abstract. We study methods for drawing trees with perfect angular resolution,
i.e., with angles at each vertex, v, equal to 2π/d(v). We show:

1. Any unordered tree has a crossing-free straight-line drawing with perfect
angular resolution and polynomial area.

2. There are ordered trees that require exponential area for any crossing-free
straight-line drawing having perfect angular resolution.

3. Any ordered tree has a crossing-free Lombardi-style drawing (where each
edge is represented by a circular arc) with perfect angular resolution and
polynomial area.

Thus, our results explore what is achievable with straight-line drawings and what
more is achievable with Lombardi-style drawings, with respect to drawings of
trees with perfect angular resolution.

1 Introduction

Most methods for visualizing trees aim to produce drawings that meet as many of the
following aesthetic constraints as possible:

1. straight-line edges,
2. crossing-free edges,
3. polynomial area, and
4. perfect angular resolution around each vertex.

These constraints are all well-motivated, in that we desire edges that are easy to follow,
do not confuse viewers with edge crossings, are drawable using limited real estate, and
avoid congested incidences at vertices. Nevertheless, previous tree drawing algorithms
have made various compromises with respect to this set of constraints; we are not aware
of any previous tree-drawing algorithm that can achieve all these goals simultaneously.
Our goal in this paper is to show what is actually possible with respect to this set of
constraints and to expand it further with a richer notion of edges that are easy to fol-
low. In particular, we desire tree-drawing algorithms that satisfy all of these constraints
simultaneously. If this is provably not possible, we desire an augmentation that avoids
compromise and instead meets the spirit of all of these goals in a new way, which, in
the case of this paper, is inspired by the work of artist Mark Lombardi [18].
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Problem Statement. The art of Mark Lombardi involves drawings of social networks,
typically using circular arcs and good angular resolution. Figure 1 shows such a work of
Lombardi that is crossing-free and almost a tree. Note that it makes use of both circular
arcs and straight-line edges. Inspired by this work, let us define a set of problems that
explore what is achievable for drawings of trees with respect to the constraints listed
above but that, like Lombardi’s drawings, also allow curved as well as straight edges.

Fig. 1: Mark Lombardi, Pat Robertson, Beurt Servaas, and the UPI Takeover Battle,
ca. 1985-91, 2000 [18].

Given a graph G = (V,E), let d(u) denote the degree of a vertex u, i.e., the number
of edges incident to u in G. For any drawing of G, the angular resolution at a vertex u
is the minimum angle between two edges incident to u. A vertex has perfect angular
resolution if its minimum angle is 2π/d(u), and a drawing has perfect angular resolu-
tion if every vertex does. Drawings with perfect angular resolution cannot be placed on
an integer grid unless the degrees of the vertices are constrained, so we do not require
vertices to have integer coordinates. We define the area of a drawing to be the ratio of
the area of a smallest enclosing circle around the drawing to the square of the distance
between its two closest vertices.

Suppose that our input graph, G, is a rooted tree T . We say that T is ordered if
an ordering of the edges incident upon each vertex in T is specified. Otherwise, T
is unordered. If all the edges of a drawing of T are straight-line segments, then the
drawing of T is a straight-line drawing. We define a Lombardi drawing of a graph G
as a drawing of G with perfect angular resolution such that each edge is drawn as a
circular arc. When measuring the angle formed by two circular arcs incident to a vertex
v, we use the angle formed by the tangents of the two arcs at v. Circular arcs are strictly
more general than straight-line segments, since straight-line segments can be viewed as
circular arcs with infinite radius. Figure 2 shows an example of a straight-line drawing
and a Lombardi drawing for the same tree. Thus, we can define our problems as follows:

1. Is it always possible to produce a straight-line drawing of an unordered tree with
perfect angular resolution and polynomial area?

2. Is it always possible to produce a straight-line drawing of an ordered tree with
perfect angular resolution and polynomial area?

3. Is it always possible to produce a Lombardi drawing of an ordered tree with perfect
angular resolution and polynomial area?
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(a) Straight-line drawing for an unordered tree (b) Lombardi drawing for an ordered tree

Fig. 2: Two drawings of a tree T with perfect angular resolution and polynomial area as
produced by our algorithms. Bold edges are heavy edges, gray disks are heavy nodes,
and white disks are light children. The root of T is in the center of the leftmost disk.

Related Work. Tree drawings have interested researchers for many decades: e.g., hierar-
chical drawings of binary trees date to the 1970’s [24]. Many improvements have been
proposed since this early work, using space efficiently and generalizing to non-binary
trees [2,5,13,14,15,21,23,22]. These drawings do not achieve all the constraints men-
tioned above, however, especially the constraint on angular resolution.

Alternatively, several methods strive to optimize angular resolution of trees. Radial
drawings of trees place nodes at the same distance from the root on a circle around the
root node [11]. Circular tree drawings are made of recursive radial-type layouts [20].
Bubble drawings [16] draw trees recursively with each subtree contained within a circle
disjoint from its siblings but within the circle of its parent. Balloon drawings [19] take
a similar approach and heuristically attempt to optimize space utilization and the ratio
between the longest and shortest edges in the tree. Convex drawings [4] partition the
plane into unbounded convex polygons with their boundaries formed by tree edges.
Although these methods provide several benefits, none of these methods guarantees
that they satisfy all of the aforementioned constraints.

The notion of drawing graphs with edges that are circular arcs or other nonlinear
curves is certainly not new to graph drawing. For instance, Cheng et al. [6] used circle
arcs to draw planar graphs in an O(n)×O(n) grid while maintaining bounded (but
not perfect) angular resolution. Similarly, Dickerson et al. [7] use circle-arc polylines
to produce planar confluent drawings of non-planar graphs, Duncan et al. [8] draw
graphs with fat edges that include circular arcs, and Cappos et al. [3] study simultaneous
embeddings of planar graphs using circular arcs. Finkel and Tamassia [12] use a force-
directed method for producing curvilinear drawings, and Brandes and Wagner [1] use
energy minimization methods to place Bézier splines that represent express connections
in a train network. In a separate paper [10] we study Lombardi drawings for classes of
graphs other than trees.

Our Contributions. In this paper we present the first algorithm for producing straight-
line, crossing-free drawings of unordered trees that ensures perfect angular resolution
and polynomial area. In addition we show, in Section 3, that if the tree is ordered (i.e.,
given with a fixed combinatorial embedding) then it is not always possible to maintain
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perfect angular resolution and polynomial drawing area when using straight lines for
edges. Nevertheless, in Section 4, we show that crossing-free polynomial-area Lom-
bardi drawings of ordered trees are possible. That is, we show that the answers to the
questions posed above are “yes,” “no,” and “yes,” respectively.

2 Straight-line drawings for unordered trees

Let T be an unordered tree with n nodes. We wish to construct a straight-line drawing
of T with perfect angular resolution and polynomial area.

The main idea of our algorithm is, similarly to the common bubble and balloon tree
constructions [16, 19], to draw the children of each node of the given tree in a disk
centered at that node; however, our algorithm differs in several key respects:

– Before drawing the tree, we perform a heavy path decomposition [17]: for each
node v, the heavy child of v is the child with the greatest number of descendants,
and the other children are light children, denoted L(v). The paths that follow edges
from nodes to their heavy children are heavy paths, and they form a partition of the
input tree with the property that the tree H(T ) formed by compressing each heavy
path to a node has only logarithmic depth h(T ).

– In our drawing, each heavy path P is confined to a disk, whose radius is linear in
the number of nodes descending from P and exponential in the level of P in the
heavy path decomposition. In this way, at each step downwards in the heavy path
decomposition, the total radius of the disks at that level shrinks by a constant factor,
allowing room for disks at lower levels to be placed within the higher-level disks.

– For each heavy path P, and each node v on P, we form another disk, contained
within the disk for P, that contains v at its center and also contains the disks for the
lower-level heavy paths connected to v (the descendants of the light children of v).
The disks for the nodes of the heavy path are placed within the disk for the heavy
path, with the topmost node of the heavy path at the center of the disk for the heavy
path and successive heavy path nodes placed on concentric circles within this disk.

– Because the radii of our disks are exponential in the level of the heavy path decom-
position, the radii of the disks for the children of v add up to a constant fraction
of the radii of the disk for v itself (Figure 3a). Within the disk centered at node v,
we place the smaller disks containing the heavy paths descending from v in two
concentric annuli (Figure 3b).

– The outer annulus surrounding v contains light children of v that are the ancestors
of many nodes (relative to the total number of descendants of v and the degree of
v); the disks for the heavy paths containing these light children are placed using
a greedy algorithm so that the edges connecting them to v have angles that are
multiples of the proper angular resolution.

– The inner annulus surrounding v contains the remaining light children, each of
which is the ancestor of few enough nodes that the disk for its heavy path may be
placed in the inner annulus at the perfect angular resolution for v, filling out all the
positions incident to v that were not already filled by the two edges of the heavy
path for v and the disks in the outer annulus.
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(a) All light children fit into a disk of ra-
dius rv/4 and are split into small and large
disks.

(b) Large disks are placed in the outer
annulus and small disks in the inner
disk.

Fig. 3: Drawing a node v and its light children L(v).

As we show in the full paper [9], this method draws the given tree with perfect
angular resolution and polynomial drawing area. However, our method may reorder
the children of each node, so it does not respect a fixed embedding of the given tree.
Figure 2a shows a drawing of an unordered tree according to our method.

3 Straight-line drawings for ordered trees

In many cases, the ordering of the children around each vertex of a tree is given; that
is, the tree is ordered (or has a fixed combinatorial embedding). In the previous section
we rely on the freedom to order subtrees as needed to achieve a polynomial area bound.
Hence that algorithm cannot be applied to ordered trees with fixed embeddings. As we
now show, there are ordered trees that have no straight-line crossing-free drawings with
polynomial area and perfect angular resolution.

(a)

(b) (c)

Fig. 4: (a) A Fibonacci caterpillar; (b) Lombardi drawing; (c) Straight-line drawing with
perfect angular resolution and exponential area.
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Specifically we present a class of ordered trees for which any straight-line crossing-
free drawing of the tree with perfect angular resolution requires exponential area. Fig-
ure 4a shows a caterpillar tree, which we call the Fibonacci caterpillar because of its
simple behavior when required to have perfect angular resolution. This tree has as its
spine a k-vertex path, each vertex of which has 3 additional leaf nodes embedded on
the same side of the spine. When drawn with straight-line edges, no crossings, and with
perfect angular resolution, the caterpillar is forced to spiral (a single or a double spi-
ral). The best drawing area, exponential in the number of vertices in the caterpillar, is
achieved when the caterpillar forms a symmetric double spiral; see Figure 4c.

The Fibonacci caterpillar shows that we cannot maintain all constraints (straight-
line edges, crossing-free, perfect angular resolution, polynomial area) for ordered trees.
However, as we show next, using circular arcs instead of straight-line edges allows us
to respect the remaining three constraints. See, for example, Figure 4b.

4 Lombardi drawings for ordered trees

In this section, let T be an ordered tree with n nodes. As we have seen in Section 3, we
cannot find polynomial area drawings for all ordered trees using straight-line edges. An
augmentation of the straight-line edge requirement is the use of circular arcs as edges.
Circular arcs are curves that are not only still easy to follow visually but they also let
us achieve all remaining three constraints, i.e., we can find crossing-free circular arc
drawings with perfect angular resolution and polynomial area. We call a drawing with
circular arcs and perfect angular resolution a Lombardi drawing, so in other words we
aim for crossing-free Lombardi drawings with polynomial area.

The flavor of the algorithm for Lombardi tree drawings is similar to our straight-
line tree drawing algorithm of Section 2: We first compute a heavy-path decomposition
H(T ) for T . Then we recursively draw all heavy paths within disks of polynomial area.
Unlike before, we need to construct the drawing in a top-down fashion since the place-
ment of the light children of a node v now depends on the curvature of the two heavy
edges incident to v.

Our construction in this section uses the invariant that a heavy path P at level j is
drawn inside a disk D of radius 2 · 4h(T )− jn(P), where n(P) = |Tv| for the root v of P.

4.1 Drawing heavy paths

Let P = (v1, . . . ,vk) be a heavy path at level j of the heavy-path decomposition that is
rooted at the last node vk. We denote each edge vivi+1 by ei. Recall that the angle in an
intersection point of two circular arcs is measured as the angle between the tangents to
the arcs at that point. We define the angle α(vi) for 2≤ i≤ k−1 to be the angle between
ei−1 and ei in node vi (measured counter-clockwise). The angle α(vk) is defined as the
angle in vk between ek−1 and the light edge e = vku connecting the root vk of P to its
parent u. Due to the perfect angular resolution requirement for each node vi, the angle
α(vi) is obtained directly from the number of edges between ei−1 and ei and the degree
d(vi).
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Di

D�D�ei

ei+1

vi

Fig. 5: Any angle α ∈ [0,π] can be real-
ized.

Fig. 6: Placing a single disk D� in the ex-
tended small zone of Di (shaded gray).

Lemma 4.1. Given a heavy path P = (v1, . . . ,vk) and a disk Di of radius ri for the
drawing of each vi and its light subtrees, we can draw P with each vi in the center of its
disk Di inside a large disk D such that the following properties hold:

1. each heavy edge ei is a circular arc that does not intersect any disk other than Di
and Di+1;

2. there is a stub edge incident to vk that is reserved for the light edge connecting vk
and its parent;

3. any two disks Di and D j for i �= j are disjoint;
4. the angle between any two consecutive heavy edges ei−1 and ei is α(vi);
5. the radius r of D is r = 2∑k

i=1 ri.

Proof. We draw P incrementally starting from the leaf v1 by placing D1 in the center
M of the disk D of radius r = 2∑k

i=1 ri. We may assume that D1 is rotated such that the
edge e1 is tangent to a horizontal line at v1 and that it leaves v1 to the right. All disks
D2, . . . ,Dk will be placed with their centers v2, . . . ,vk on concentric circles C2, . . . ,Ck
around M. The radius of Ci is r1 + 2∑i−1

j=2 r j + ri so that Di−1 and Di are placed in
disjoint annuli and hence by construction no two disks intersect (property 3). Each disk
Di will be rotated around its center such that the tangent to Ci at vi is the bisector of the
angle α(vi).

We now describe one step in the iterative drawing procedure that draws edge ei and
disk Di+1 given a drawing of D1, . . . ,Di. Disk Di is placed such that Ci bisects the angle
α(vi) and hence we know the tangent of ei at vi. This defines a family Fi of circular
arcs emitted from vi that intersect the circle Ci+1, see Figure 5. We consider all arcs
from vi until their first intersection point with Ci+1. Observe that the intersection angles
of Fi and Ci+1 bijectively cover the full interval [0,π], i.e., for any angle α ∈ [0,π]
there is a unique arc in Fi that has intersection angle α with Ci+1. Hence we choose
for ei the unique circular arc that realizes the angle α(vi+1)/2 and place the center vi+1
of Di+1 at the endpoint of ei. We continue this process until the last disk Dk is placed.
This drawing of P realizes the angle α(vi) between any two heavy edges ei−1 and ei
(property 4). Note that for the edge from vk to its parent we can only reserve a stub
whose tangent at vk has a fixed slope (property 2). Figure 7 shows an example.

Note that each edge ei is contained in the annulus between Ci and Ci+1 and thus
does not intersect any other edge of the heavy path or any disk other than Di and Di+1
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C2

C3

C4 C5 C6 C7

v1

v2

v4

v3

v5 v6 v7

Fig. 7: Drawing a heavy path P on concentric circles with circular-arc edges. The angles
α(vi) are marked in gray; the edge stub to connect v7 to its parent is dotted.

(property 1). Furthermore, the disk D with radius r = 2∑k
i=1 ri indeed contains all the

disks D1, . . . ,Dk (property 5). ��

Lemma 4.1 shows how to draw a heavy path P with prescribed angles between the
heavy edges and an edge stub to connect it to its parent. Since each heavy path P (except
the path at the root of H(T )) is the light child of a node on the previous level of H(T )
that light edge is actually drawn when placing the light children of a node, which we
describe next.

4.2 Drawing light children

Once the heavy path P is drawn as described above, it remains to place the light children
of each node vi of P. For each node vi the two heavy edges incident to it partition the
disk Di into two regions. We call the region that contains the larger conjugate angle the
large zone of vi and the region that contains the smaller conjugate angle the small zone.
If both angles equal π , then we can consider both regions small zones.

For a node vi at level j of H(T ) we define the radius ri of Di as ri = 4h(T )− j(1 +
∑u∈L(vi) |Tu|) = 4h(T )− jl(vi). All light children of vi are at level j +1 of H(T ) and thus
by our invariant every light child u of vi is drawn in a disk of radius ru = 2 ·4h(T )− j−1|Tu|.
Thus we know that ru ≤ ri/2; in fact, we even have ∑u∈L(vi) ru ≤ ri/2.

Light children in the small zone. Depending on the angle α(vi), the small zone of a disk
Di might actually be too narrow to directly place the light children in it. Fortunately, we
can always place another disk D� of radius at most ri/2 in an extension of the small zone
along the annulus of Di in the drawing of P such that D� touches ei−1 and ei and does
not intersect any other previously placed disk, see Figure 6. If there is a single child u
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in the small zone then D� = Du and we are done. The next lemma shows how to place
more than one child; the proof can be found in the full paper [9].

Lemma 4.2. If a single disk D� of radius r� can be placed in the possibly extended small
zone of the disk Di, then we can correctly place any sequence of l disks D�

1, . . . ,D
�
l with

radii r�1, . . . ,r
�
l and ∑l

i=1 r�i = r� in the (extended) small zone of Di.

Light children in the large zone. Placing the light children of a vertex vi in the large
zone of Di must be done slightly different from the algorithm for the small zone since
Lemma 4.2 holds only for opening angles of at most π . On the other hand, the large
zone does not become too narrow and there is no need to extend it beyond Di. Our
approach splits the large zone into two parts that again have an opening angle of at
most π so that we can apply Lemma 4.2 and draw all children accordingly.

Let l be the number of light children in the large zone of Di. We first place a disk
D� of radius at most ri/2 such that it touches vi and such that its center lies on the line
bisecting the opening angle of the large zone. The disk D� is large enough to contain
the disjoint disks D�

1, . . . ,D
�
l for the light children of vi along its diameter. We need to

distinguish whether l is even or odd. For even l we create a container disk D��
1 for disks

D�
1, . . . ,D

�
l/2 and a container disk D��

2 for D�
l/2+1, . . . ,D

�
l . Now D��

1 and D��
2 can be tightly

packed on the diameter of D�. Using a similar argument as in Lemma 4.2 we separate
the two disks by a circular arc through vi that is tangent to the bisector of α(vi) in vi.
Since D� is centered on the bisector this is possible even though the actual opening angle
of the large zone is larger than π . If l is odd, we create a container disk D��

1 for disks
D�

1, . . . ,D
�
�l/2� and a container disk D��

2 for D�
�l/2�+1, . . . ,D

�
l . The median disk D�

�l/2� is
not included in any container. Then we apply Lemma 4.2 to D� and the three disks
D��

1 ,D
�
�l/2�,D

��
2 along the diameter of D�, see Figure 8a. The separating circular arcs in vi

are again tangent to the bisector of α(vi), which is, since l is odd, also the correct slope
for the circular arc connecting vi to the median disk D�

�l/2�.
In both cases we split the large zone and the sequence of light children to be placed

into two parts that each have an opening angle at vi of at most π between a separating
circular arc and the edge ei−1 or ei, respectively. Next, we move D��

1 and D��
2 along the

separating circular arcs keeping their tangencies until they also touch the edge ei−1 or
ei, respectively. Then we can apply Lemma 4.2 to both container disks and thus place
all light children in the large zone, see Figure 8b.

Drawing light edges The final missing step is how to actually connect a heavy node vi
to its light children given a position of vi and positions of all disks containing its light
subtrees. Let u be a light child of vi and let Du be the disk containing the drawing of Tu.
When placing the disk Du in the small or large zone of vi we made sure that a circular
arc from vi with the tangent required for perfect angular resolution at vi can reach any
point inside Du without intersecting any other edge or disk.

On the other side, we know by Lemma 4.1 that u is placed in the outermost annulus
of Du and that it has a stub for the edge e = uvi. This stub is the required tangent for e
in order to obtain perfect angular resolution in u. Let Cu be the circle that is the locus of
u if we rotate Du and the drawing of Tu around the center of Du.
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vi
ei−1 ei

vi
ei−1 ei

(a) (b)

D�
D��

1

D��
2D�

�l/2� D��
1

D��
2

D�
�l/2�

Fig. 8: Placing light children in the large zone by first splitting it into two parts (a) and
then applying the algorithm for small zones to each part (b).

There is again a family F of circular arcs with the correct tangent in u that lead
towards Du and intersect the circle Cu. As observed in Lemma 4.1 the intersection angles
formed between F and Cu bijectively cover the full interval [0,π], i.e., for any angle
α ∈ [0,π] there is a unique circular arc in F that has an intersection angle of α with
Cu. In order to correctly attach u to vi we first choose the arc a in F that realizes an
intersection angle of α(u)/2 with Cu, where α(u) is the angle between e and the heavy
edge from u to its heavy child that is required for perfect angular resolution in u. Let p
be the intersection point of that arc with Cu. Then we rotate Du and the drawing of Tu
around the center of Du until u is placed at p, see node v7 in Figure 7. Since the stub of
u for e also has an angle of α(u)/2 with Cu, the arc a indeed realizes the edge e with
the angles in both u and vi required for perfect angular resolution. Furthermore, a does
not enter the disk bounded by Cu and hence it does not intersect any part of the drawing
of Tu other than u.

We can summarize our results for drawing the light children of a node as follows:

Lemma 4.3. Let v be a node of T at level j of H(T ) with two incident heavy edges.
For every light child u ∈ L(v) assume there is a disk Du of radius ru = 2 · 4h(T )− j−1|Tu|
that contains a fixed drawing of Tu with perfect angular resolution and such that u is
exposed in the outer annulus of Du. Then we can construct a drawing of v and its light
subtrees inside a disk D, potentially with an extended small zone, such that the following
properties hold:

1. the edge between v and any light child u ∈ L(v) is a circular arc that does not
intersect any disk other than Du;

2. the heavy edges do not intersect any disk Du;
3. any two disks Du and Du� for u �= u� are disjoint;
4. the angular resolution of v is 2π/d(v);
5. the disk D has radius rv = 4h(T )− jl(v).

By combining Lemmas 4.1 and 4.3 we obtain the following theorem:

Theorem 4.4. Given an ordered tree T with n nodes we can find a crossing-free Lom-
bardi drawing of T that preserves the embedding of T and fits inside a disk D of ra-
dius 2 · 4h(T )n, where h(T ) is the height of the heavy-path decomposition of T . Since
h(T )≤ log2 n the radius of D is no more than 2n3.
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Figure 2b shows a drawing of an ordered tree according to our method. We note
that instead of asking for perfect angular resolution, the same algorithm can be used
to construct a circular-arc drawing of an ordered tree with any assignment of angles
between consecutive edges around each node that add up to 2π . The drawing remains
crossing-free and fits inside a disk of radius O(n3).

5 Conclusion and Closing Remarks

We have shown that straight-line drawings of trees can be performed with perfect an-
gular resolution and polynomial area, by carefully ordering the children of each vertex
and by using a style similar to balloon drawings in which the children of any vertex
are placed on two concentric circles rather than on a single circle. However, using our
Fibonacci caterpillar example we showed that this combination of straight lines, perfect
angular resolution, and polynomial area could no longer be achieved if the children of
each vertex may not be reordered. For trees with a fixed embedding, Lombardi drawings
in which edges are drawn as circular arcs allow us to retain the other desirable qualities
of polynomial area and perfect angular resolution. In [9] we report on a basic imple-
mentation and some practical improvements of the straight-line drawing algorithm.

Our work opens up new problems in the study of Lombardi drawings of trees, but
much remains to be done in this direction. In particular, our polynomial area bounds
seem unlikely to be tight, and our method is impractically complex. It would be of
interest to find simpler Lombardi drawing algorithms that achieve perfect angular reso-
lution for more limited classes of trees, such as binary trees, with better area bounds.
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[20] G. Melançon and I. Herman. Circular Drawings of Rooted Trees. Tech. Rep. INS-R9817,
CWI Amsterdam, 1998.

[21] E. M. Reingold and J. S. Tilford. Tidier drawings of trees. IEEE Trans. Software
Engineering 7(2):223–228, 1981.

[22] C.-S. Shin, S. K. Kim, and K.-Y. Chwa. Area-efficient algorithms for straight-line tree
drawings. Computational Geometry 15(4):175–202, 2000,
doi:10.1016/S0925-7721(99)00053-X.

[23] J. Walker. A node-positioning algorithm for general trees. Software Practice and
Experience 20(7):685–705, 1990, doi:10.1002/spe.4380200705.

[24] C. Wetherell and A. Shannon. Tidy drawings of trees. IEEE Trans. Software Engineering
5(5):514–520, 1979.

http://dx.doi.org/10.1007/s004540010080
http://arxiv.org/abs/cs.CG/0212046
http://dx.doi.org/10.1142/S0129054106004315
http://arxiv.org/abs/1009.0581
http://arxiv.org/abs/1009.0579
http://www.cs.brown.edu/cgc/papers/ggt-aoutd-96.ps.gz
http://dx.doi.org/10.1142/S021819590300130X
http://jgaa.info/accepted/2004/GargRusu2004.8.2.pdf
http://www.labri.fr/publications/is/2004/GADM04
http://dx.doi.org/10.1137/0213024
http://jgaa.info/accepted/2007/LinYen2007.11.2.pdf
http://dx.doi.org/10.1002/spe.4380200705

	Drawing Trees with Perfect Angular Resolution and Polynomial Area

