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Abstract. We study the problem of finding multimodal journeys in
transportation networks, including unrestricted walking, driving, cycling,
and schedule-based public transportation. A natural solution to this
problem is to use multicriteria search, but it tends to be slow and to
produce too many journeys, several of which are of little value. We pro-
pose algorithms to compute a full Pareto set and then score the solu-
tions in a postprocessing step using techniques from fuzzy logic, quickly
identifying the most significant journeys. We also propose several (still
multicriteria) heuristics to find similar journeys much faster, making the
approach practical even for large metropolitan areas.

1 Introduction

Efficiently computing good journeys in transportation networks has been an
active area of research in recent years, with focus on the computation of routes
in both road networks [11] and schedule-based public transit [2, 5], but these
are often considered separately. In practice, users want an integrated solution
to find the “best” journey considering all available modes of transportation.
Within a metropolitan area, this includes buses, trains, driving, cycling, taxis,
and walking. We refer to this as the multimodal route planning problem.

In fact, any public transportation network has a multimodal component, since
journeys require some amount of walking. To handle this, existing solutions [4, 10,
14] predefine transfer arcs between nearby stations, then run a search algorithm
on the public transit network to find the “best” journey. Unlike in road networks,
however, defining “best” is not straightforward. For example, while some people
want to arrive as early as possible, others are willing to spend a little more time
to avoid extra transfers. Most recent approaches therefore compute the Pareto
set of non-dominating journeys optimizing multiple criteria, which is practical
even for large metropolitan areas [10].

Extending public transportation solutions to a full multimodal scenario (with
unrestricted walking, biking, and taxis) may seem trivial: one could just incorpo-
rate routing techniques for road networks [9, 17] to solve the new subproblems.
? Partial support by DFG grant WA654/16-1 and EU grant 288094 (eCOMPASS).
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Unfortunately, meaningful multimodal optimization must take more criteria into
account, such as walking duration and costs. Some people are happy to walk 10
minutes to avoid an extra transfer, while others are not. In fact, some will walk
half an hour to avoid using public transportation at all. Taking a taxi to the
airport is a good solution for some; users on a budget may prefer cheaper al-
ternatives. Considering more criteria leads to much larger Pareto sets, however,
with many of the additional journeys looking unreasonable (see full paper [8]).

Previous research thus tends to avoid multicriteria search altogether [3], look-
ing for reasonable routes by other means. A natural approach is to work with
a weighted combination of all criteria, transforming the search into a single-
criterion problem [19]. When extended to find the k-shortest paths [6], this
method can even take user preferences into account. Unfortunately, linear com-
bination may miss Pareto-optimal journeys [7] (also see full paper [8]). To avoid
such issues, another line of multimodal single-criterion research considers label-
constrained quickest journeys [1]. Here, journeys are required to obey a user-
defined pattern, typically enforcing a hierarchy of modes [6] (such as “no car
travel between trains”). Although this approach can be quite fast when using
preprocessing techniques for road networks [12], it has a fundamental conceptual
problem: it relies on the user to know her options before planning the journey.

Given the limitations of current approaches, we revisit the problem of finding
multicriteria multimodal journeys on a metropolitan scale. Instead of optimiz-
ing each mode of transportation independently [15], we argue in Section 2 that
most users optimize three criteria: travel time, convenience, and costs. As this
produces a large Pareto set, we propose using fuzzy logic [20] to identify, in a
principled way, a modest-sized subset of representative journeys. This postpro-
cessing step is very quick and can incorporate personal preferences. As Section 3
shows, we can use recent algorithmic developments [10, 12, 17] to answer exact
queries optimizing time and convenience in less than two seconds within a large
metropolitan area, for the simpler scenario of walking, cycling, and public transit.
Unfortunately, this is not enough for interactive applications and becomes much
slower when more criteria, such as costs, are incorporated. Section 4 proposes
heuristics (still multicriteria) that are significantly faster and closely match the
representative journeys in the actual Pareto set. Section 5 presents a thorough
experimental evaluation of all algorithms in terms of both solution quality and
performance and shows that our approach can be fast enough for interactive
applications. Moreover, since it does not rely on heavy preprocessing, it can be
used in dynamic scenarios.

2 Problem Statement

We want to find journeys in a network built from several partial networks. The
first is a public transportation network representing all available schedule-based
means of transportation, such as trains, buses, rail, or ferries. We can specify this
network in terms of its timetable, which is defined as follows. A stop is a location
in the network (such as a train platform or a bus stop) in which a user can board
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or leave a particular vehicle. A route is a fixed sequence of stops for which there
is scheduled service during the day; a typical example is a bus or subway line. A
route is served by one or more distinct trips during the day; each trip is associated
with a unique vehicle, with fixed (scheduled) arrival and departure times for
every stop in the route. Each stop may also keep a minimum change time, which
must be obeyed when changing trips. Besides the public transportation network,
we also take as input several unrestricted networks, with no associated timetable.
Walking, cycling, and driving are modeled as distinct unrestricted networks, each
represented as a directed graph G = (V,A). Each vertex v ∈ V represents an
intersection and has associated coordinates (latitude and longitude). Each arc
(v, w) ∈ A represents a (directed) road segment and has an associated duration
dur(v, w), which corresponds to the (constant) time to traverse it. The integrated
transportation network is the union of these partial networks with appropriate
link vertices, i. e., vertices (or stops) in different networks are identified with
one another to allow for changes in modes of transportation. Note that, unlike
previous work [18], we do not necessarily require explicit footpaths in the public
transportation networks (to walk between nearby stops). A query takes as input
a source location s, a target location t, and a departure time τ , and it produces
journeys that leave s no earlier than τ and arrive at t. A journey is a valid path
in the integrated transportation network that obeys all timetable constraints.

We still have to define which journeys the query should return. We argue
that users optimize three natural criteria in multimodal networks: arrival time,
costs, and “convenience”. For our first (simplified) scenario (with public transit,
cycling, and walking, but no taxi), we work with three criteria. Besides arrival
time, we use number of trips and walking duration as proxies for convenience.
We add cost for the scenario that includes taxi. Given this setup, a first natural
problem we need to solve is the full multicriteria problem, which must return a
full (maximal) Pareto set of journeys. We say that a journey J1 dominates J2
if J1 is strictly better than J2 according to at least one criterion and no worse
according to all other criteria. A Pareto set is a set of pairwise nondominating
journeys. If two journeys have equal values in all criteria, we only keep one.

Solving the full multicriteria problem, however, can lead to solution sets
that are too large for most users. Moreover, many solutions provide undesirable
tradeoffs, such as journeys that arrive much later to save a few seconds of walking
(or walk much longer to save a few seconds in arrival time). Intuitively, most
criteria are diffuse to the user, and only large enough differences are significant.
Pareto optimality fails to capture this. To formalize the notion of significance,
we propose to score the journeys in the Pareto set in a post-processing step using
concepts from fuzzy logic [20]. Loosely speaking, fuzzy logic generalizes Boolean
logic to handle (continuous) degrees of truth. For example, the statement “60
and 61 seconds of walking are equal” is false in classical logic, but “almost true”
in fuzzy logic. Formally, a fuzzy set is a tuple S = (U , µ), where U is a set and
µ : U → [0, 1] a membership function that defines “how much” each element in U
is contained in S. Mostly, we use µ to refer to S. Our application requires fuzzy
relational operators µ<, µ=, and µ>. For any x, y ∈ R, they are evaluated by
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µ<(x − y), µ>(y − x), and µ=(x − y). We use the well-known [20] exponential
membership functions for the operators: µ=(x) := exp( ln(χ)

ε2 x2), where 0 < χ < 1
and ε > 0 control the degree of fuzziness. The other two operators are derived
by µ<(x) := 1 − µ=(x) if x < 0 (0 otherwise) and µ> := 1 − µ=(x) if x > 0 (0
otherwise). Moreover, we require binary operators (norms) T, S : [0, 1]2 → [0, 1]
to represent fuzzy (logical) disjunction (T ) and conjunction (S). We use the
maximum/minimum norms, i. e., T = max and S = min. Note that S(x, y) =
1 − T (1 − x, 1 − x) holds, which is important for consistency. Other norms are
evaluated in the full paper [8].

We now recap the concept of fuzzy dominance in multicriteria optimization,
which is introduced by Farina and Amato [16]. Given journeys J1 and J2 withM
optimization criteria, we denote by nb(J1, J2) the (fuzzy) number of criteria in
which J1 is better than J2. More formally nb(J1, J2) :=

∑M
i=1 µ

i
<(κi(J1), κi(J2)),

where κi(J) evaluates the i-th criterion of J and µi< is the i-th fuzzy less-
than operator. (Note that each criterion may use different fuzzy operators.)
Analogously, we define ne(J1, J2) for equality and nw(J1, J2) for greater-than.
By definition, nb+ne+nw = M . Hence the Pareto dominance can be generalized
to obtain a degree of domination d(J1, J2) ∈ [0, 1], defined as (2nb +ne−M)/nb
if nb > (M−ne)/2 (and 0 otherwise). Here, d(J1, J2) = 0 means that J1 does not
dominate J2, while a value of 1 indicates that J1 Pareto-dominates J2. Otherwise,
we say J1 fuzzy-dominates J2 by degree d(J1, J2). Now, given a (Pareto) set J
of n journeys J1, . . . , Jn, we define a score function sc : J → [0, 1] that computes
the degree of domination by the whole set for each Ji. More precisely, sc(J) :=
1 − max(J1, . . . , Jn), i. e., the value sc(J) is determined by the (one) journey
that dominates J most. See the full paper [8] for more details, including an
illustration of the fuzzy dominance function d. We finally use the score to order
the journeys by significance. One may then decide to only show the k journeys
with highest score to the user.

3 Exact Algorithms

We now study exact algorithms for the multicriteria multimodal problem. We
first propose two solutions (building on different methods for multicriteria op-
timization on public transportation networks), then describe an acceleration
technique that applies to both. For simplicity, we describe the algorithms con-
sidering only the (schedule-based) public transit network and the (unrestricted)
walking network. We later deal with cycling and taxis, which are unrestricted
but have special properties.

Multi-label-correcting Algorithm. Traditional solutions to the multicriteria prob-
lem on public transportation networks typically model the timetable as a graph.
A particularly effective approach is to use the time-dependent route model [18].
For each stop p, we create a single stop vertex linked by time-independent trans-
fer edges to multiple route vertices, one for each route serving p. We also add
route edges between route vertices associated to consecutive stops within the
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same route. To model the trips along a route, the cost of a route edge is given by
a function reflecting the traversal time (including waiting for the next departure).

A journey in the public transportation network corresponds to a path in
this graph. The multi-label-correcting (MLC) [18] algorithm uses this to find full
Pareto sets for arbitrary criteria that can be modeled as edge costs. MLC extends
Dijkstra’s algorithm [13] by operating on labels that have multiple values, one per
criterion. Each vertex v maintains a bag B(v) of nondominated labels. In each
iteration, MLC extracts from a priority queue the minimum (in lexicographic
order) unprocessed label L(u). For each arc (u, v) out of the associated vertex
u, MLC creates a new label L(v) (by extending L(u) in the natural way) and
inserts it into B(v); newly-dominated labels (possibly including L(v) itself) are
discarded, and the priority queue is updated if needed. MLC can be sped up
with target pruning and by avoiding unnecessary domination checks [14].

To solve the multimodal problem, we extend MLC by augmenting its input
graph to include the walking network, creating an integrated network. The MLC
query remains essentially unchanged. Although labels can now be associated to
vertices in different networks, they can all share the same priority queue.

Round-based Algorithm. A drawback of MLC (even restricted to public trans-
portation networks) is that it can be quite slow: unlike Dijkstra’s algorithm,
MLC may scan the same vertex multiple times (the exact number depends on
the criteria being optimized), and domination checks make each such scan quite
costly. Delling et al. [10] have recently introduced RAPTOR (Round bAsed Pub-
lic Transit Optimized Router) as a faster alternative. The simplest version of the
algorithm optimizes two criteria: arrival time and number of transfers. Unlike
MLC, which searches a graph, RAPTOR uses dynamic programming to operate
directly on the timetable. It works in rounds, with round i processing all relevant
journeys with exactly i−1 transfers. It maintains one label per round i and stop
p representing the best known arrival time at p for up to i trips. During round i,
the algorithm processes each route once. It reads arrival times from round i− 1
to determine relevant trips (on the route) and updates the labels of round i at
every stop along the way. Once all routes are processed, the algorithm considers
potential transfers to nearby (predefined) stops in a second phase. Simpler data
structures and better locality make RAPTOR an order of magnitude faster than
MLC. Delling et al. [10] have also proposed McRAPTOR, which extends RAP-
TOR to handle more criteria (besides arrival times and number of transfers). It
maintains a bag (set) of labels with each stop and round.

Even with multiple modes of transport available, one trip always consists
of a single mode. This motivates adapting the round-based paradigm to our
scenario. We propose MCR (multimodal multicriteria RAPTOR), which extends
McRAPTOR to handle multimodal queries. As in McRAPTOR, each round has
two phases: the first processes trips in the public transportation network, while
the second considers arbitrary paths in the unrestricted networks. We use a
standard McRAPTOR round for the first phase (on the timetable network) and
MLC for the second (on the walking network). Labels generated by one phase
are naturally used as input to the other. During the second phase, MLC extends
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bags instead of individual labels. To ensure that each label is processed at most
once, we keep track of which labels (in a bag) have already been extended. The
initialization routine (before the first round) runs Dijkstra’s algorithm on the
walking network from the source s to determine the fastest walking path to each
stop in the public transportation network (and to t), thus creating the initial
labels used by MCR. During round i, the McRAPTOR subroutine reads labels
from round i − 1 and writes to round i. In contrast, the MLC subroutine may
read and write labels of the same round if walking is not regarded as a trip.

Contracting Unrestricted Networks. As our experiments will show, the bottle-
neck of the multimodal algorithms is processing the walking network G = (V,A).
We improve performance using a quick preprocessing technique [12]. For any
journey involving public transportation, walking between trips always begins and
ends at the restricted setK ⊂ V of link vertices. During queries, we must only be
able to compute the pairwise distances between these vertices. We therefore use
preprocessing to compute a smaller core graph that preserves these distances.
More precisely, we start from the original graph and iteratively contract [17]
each vertex in V \K in the order given by a rank function r. Each contraction
step (temporarily) removes a vertex and adds shortcuts between its uncontracted
neighbors to maintain shortest path distances (if necessary). It is usually advan-
tageous to first contract vertices with relatively small degrees that are evenly
distributed across the network [17]. We stop contraction when the average degree
in the core graph reaches some threshold (we use 12 in our experiments) [12].

To run a faster multimodal s–t query, we use essentially the same algorithm
as before (based on either MLC or RAPTOR), but replacing the full walking
network with the (smaller) core graph. Since the source s and the target t may
not be in the core, we handle them during initialization. It works on the graph
G+ = (V,A ∪ A+) containing all original arcs A as well as all shortcuts A+

added during the contraction process. We run upward searches (only following
arcs (u, v) such that r(u) > r(w)) in G+ from s (scanning forward arcs) and
t (scanning reverse arcs); they reach all potential entry and exit points of the
core, but arcs within the core are not processed [12]. These core vertices (and
their respective distances) are used as input to MCR’s (or MLC’s) standard
initialization, which can operate on the core from this point on. The main loop
works as before, with one minor adjustment. Whenever MLC extracts a label
L(v) for a scanned core vertex v, we check if it has been reached by the reverse
search during initialization. If so, we create a temporary label L′(t) by extending
L(v) with the (already computed) walking path to t and add it to B(t) if needed.
MCR is adjusted similarly, with bags instead of labels.

Beyond Walking. We now consider other unrestricted networks (besides walk-
ing). In particular, our experiments include a bicycle rental scheme, which can
be seen as a hybrid network: it does not have a fixed schedule (and is thus
unrestricted), but bicycles can only be picked up and dropped off at designated
cycling stations. Picking a bike from its station counts as a trip. To handle cycling
within MCR, we consider it during the first stage of each round (together with
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RAPTOR and before walking). Because bicycles have no schedule, we process
them independently (from RAPTOR) by running MLC on the bicycle network.
To do so, we initialize MLC with labels from round i− 1 for all relevant bicycle
stations and, during the algorithm, we update labels of (the current) round i.

We consider a taxi ride to be a trip as well, since we board a vehicle. Moreover,
we also optimize a separate criterion reflecting the (monetary) cost of taxi rides.
If taxis were not penalized in any way, an all-taxi journey would almost always
dominate all other alternatives (even sensible ones), since it is fast and has no
walking. Our round-based algorithms handle taxis as they do walking, except
that in the taxi stage labels are read from round i− 1 and written into round i.
Note that we link the taxi network to public transit stops and bicycle stations.

Dealing with personal cars or bicycles is simpler. Assuming that they are
only available for the first or last legs of the journey, we must only consider them
during initialization. Initialization can also handle other special cases, such as
allowing rented bicycles to be ridden to the destination (to be returned later).

Note that contraction can be used for cycling and driving. For every unre-
stricted network (walking, cycling, driving), we keep the link vertices (stops and
bicycle stations) in one common core and contract (up to) all other nodes. As
before, queries start with upward searches in each relevant unrestricted network.

4 Heuristics

Even with all accelerations, the exact algorithms proposed in Section 3 are not
fast enough for interactive applications. This section proposes quick heuristics
aimed at finding a set of journeys that is similar to the exact solution, which we
take as ground truth. We consider three approaches: weakening the dominance
rules, restricting the amount of walking, and reducing the number of criteria.
We also discuss how to measure the quality of the heuristic solutions we find.

Weak Dominance. The first strategy we consider is to weaken the domination
rules during the algorithm, reducing the number of labels pushed through the
network. We test four implementations of this strategy. The first, MCR-hf, uses
fuzzy dominance (instead of strict dominance) when comparing labels during
the algorithm: for labels L1 and L2, we compute the fuzzy dominance value
d(L1, L2) (cf. Section 2) and dominate L2 if d exceeds a given threshold (we use
0.9). The second, MCR-hb(κ), uses strict dominance, but discretizes criterion κ:
before comparing labels L1 and L2, we first round κ(L1) and κ(L2) to predefined
discrete values (buckets); this can be extended to use buckets for several criteria.
The third heuristic, MCR-hs(κ), uses strict dominance but adds a slack of x
units to κ. More precisely, L1 already dominates L2 if κ(L1) ≤ κ(L2)+x and L1
is at least as good L2 in all other criteria. The last heuristic, MCR-ht, weakens
the domination rule by trading off two or more criteria. More concretely, consider
the case in which walking (walk) and arrival time (arr) are criteria. Then, L1
already dominates L2 if arr(L1) ≤ arr(L2)+a·(walk(L1)−walk(L2)), walk(L1) ≤
walk(L2) + a · (arr(L1)− arr(L2)), and L1 is at least as good as L2 in all other
criteria, for a tradeoff parameter a (we use a = 0.3).



8 D. Delling, J. Dibbelt, T. Pajor, D. Wagner, R. F. Werneck

Restricting Walking. Consider our simple scenario of walking and public transit.
Intuitively, most journeys start with a walk to a nearby stop, followed by one or
more trips (with short transfers) within the public transit system, and finally a
short walk from the final stop to the actual destination. This motivates a second
class of heuristics, MCR-tx. It still runs three-criterion search (walking, arrival,
and trips), but limits walking transfers between stops to x minutes; in this case
we precompute these transfers. MCR-tx-ry also limits walking in the beginning
and end to y minutes. Note that existing solutions often use such restrictions [4].

Fewer Criteria. The last strategy we study is reducing the number of criteria
considered during the algorithm. As already mentioned, this is a common ap-
proach in practice. We propose MR-x, which still works in rounds, but optimizes
only the number of trips and arrival times explicitly (as criteria). To account for
walking duration, we count every x minutes of a walking segment (transfer) as a
trip; the first x minutes are free. With this approach, we can run plain Dijkstra
to compute transfers, since link vertices no longer need to keep bags. The round
index to which labels are written then depends on the walking duration (of the
current segment) of the considered label. A special case is x =∞, where a trans-
fer is never a trip. Another variant is to always count a transfer as a single trip,
regardless of duration; we abuse notation and call this variant MR-0. We also
consider MR-∞-tx: walking duration is not an explicit criterion and transfers
do not count as trips, but are limited to x minutes.

For scenarios that include cost as a criterion (for taxis), we consider variants
of the MCR-hb and MCR-hf heuristics. In both cases, we drop walking as an
independent criterion, leaving only arrival time, number of trips, and costs to
optimize. We account for walking by making it a (cheap) component of the costs.

Quality Evaluation. To measure the quality of a heuristic, we compare the set of
journeys it produces to the ground truth, which we define as the solution found
by MCR. To do so, we first compute the score of each journey with respect to
the Pareto set that contains it (cf. Section 2). Then, for a given parameter k,
we measure the similarity between the top k scored journeys returned by the
heuristics and the top k scored journeys in the ground truth. Note that the
score depends only on the algorithm itself and does not assume knowledge of
the ground truth, which is consistent with a real-world deployment. To compare
two sets of k journeys, we run a greedy maximum matching algorithm. First, we
compute a k × k matrix where entry (i, j) represents the similarity between the
i-th journey in the first set and the j-th in the second. Given two journeys J1 and
J2, the similarity with respect to the i-th criterion is given by ci := µi=(κi(J1)−
κi(J2)), where κi is the value of this criterion and µi= is the corresponding fuzzy
equality relation. Then, we define the total similarity between J1 and J2 as
min(c1, c2, . . . , cM ). After computing the pairwise similarities, we greedily select
the unmatched pairs with highest similarity (by picking the highest entry in the
matrix that does not share a row or column with a previously picked entry). The
similarity of the whole matching is the average similarity of its pairs, weighted by
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the fuzzy score of the reference journey. This means that matching the highest-
scored reference journey is more important than matching the k-th one.

5 Experiments

All algorithms from Sections 3 and 4 were implemented in C++ and compiled
with g++ 4.6.2 (64 bits, flag -O3). We ran our experiments on one core of a dual
8-core Intel Xeon E5-2670 clocked at 2.6GHz, with 64GiB of DDR3-1600 RAM.

We focus on the transportation network of London (England); results for
other instances (available in the full paper [8]) are similar. We use the timetable
information made available by Transport for London (TfL), from which we ex-
tracted a Tuesday in the periodic summer schedule of 2011. The data includes
subway (tube), buses, tram, and light rail (DLR), as well as bicycle station lo-
cations. To model the underlying road network, we use data provided by PTV
AG from 2006, which explicitly indicates whether each road segment is open for
driving, cycling and/or walking. We set the walking speed to 5 km/h and the
cycling speed to 12 km/h, and we assume driving at free-flow speeds. We do not
consider turn costs, which are not defined in the data. The resulting combined
network has 564 cycle stations and about 20 k stops, 5M departure events, and
259 k vertices in the walking network.

Recall that we specify the fuzziness of each criterion by a pair (χ, ε), roughly
meaning that the corresponding Gaussian (centered at x = 0) has value χ for
x = ε. We set these pairs to (0.8, 5) for walking, (0.8, 1) for arrival time, (0.1, 1)
for trips, and (0.8, 5) for costs (given in pounds; times are in minutes). Note that
the number of trips is sharper than the other criteria. Our approach is robust to
small variations in these parameters, but they can be tuned to account for user-
dependent preferences. We run location-to-location queries, with sources, targets,
and departure times picked uniformly at random (from the walking network and
during the day, respectively).

For our first experiment, we use walking, cycling, and the public transporta-
tion network and consider three criteria: arrival time, number of trips, and walk-
ing duration. We ran 1 000 queries for each algorithm. Table 1 summarizes the
results (the full paper [8] has additional statistics). For each algorithm, the ta-
ble first shows which criteria are explicitly taken into account. The next five
columns show the average values observed for the number of rounds, scans per
entity (stop/vertex), label comparisons per entity, journeys found, and running
time (in milliseconds). The last four columns evaluate the quality of the top 3
and 6 journeys found by our heuristics, as explained in Section 4. We show both
averages and standard deviations.

The methods in Table 1 are grouped in blocks. Those in the first block
compute the full Pareto set considering all three criteria (arrival time, number
of trips, and walking). MCR, our reference algorithm, is round-based and uses
contraction in the unrestricted networks. As anticipated, it is faster (by a factor
of about three) than MCR-nc (which does not use the core) and MLC (which
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Table 1. Performance and solution quality on journeys considering walking, cycling,
and public transit. Bullets (•) indicate the criteria taken into account by the algorithm.

Scans Comp. Time Quality-3 Quality-6
Algorithm Ar

r.
Tr
p.

W
lk
.

Rnd. /Ent. /Ent. Jn. [ms] Avg. Sd. Avg. Sd.

MCR-nc • • • 13.8 13.8 168.2 29.1 4 634.0 100% 0% 100% 0%
MCR • • • 13.8 3.4 158.7 29.1 1 438.7 100% 0% 100% 0%
MLC • • • — 10.6 1 246.7 29.1 4 543.0 100% 0% 100% 0%

MCR-hf • • • 15.6 2.9 14.3 10.9 699.4 89% 15% 89% 11%
MCR-hb • • • 10.2 2.1 12.7 9.0 456.7 91% 12% 91% 10%
MCR-hs • • • 14.7 2.6 11.1 8.6 466.1 67% 28% 69% 23%
MCR-ht • • • 10.5 2.0 6.4 8.6 373.6 84% 22% 82% 20%

MCR-t10 • • • 13.8 2.7 132.7 29.0 1 467.6 97% 10% 95% 10%
MCR-t10-r15 • • • 10.7 1.7 73.3 13.2 885.0 38% 40% 30% 31%
MCR-t5 • • • 13.8 2.7 126.6 28.9 891.9 93% 16% 92% 15%

MR-∞ • • ◦ 7.6 1.4 4.8 4.5 44.4 63% 28% 63% 24%
MR-0 • • ◦ 13.7 2.1 6.9 5.4 61.5 63% 28% 63% 24%
MR-10 • • ◦ 20.0 1.1 4.8 4.3 39.4 51% 33% 45% 29%
MR-∞-t10 • • ◦ 7.6 1.1 4.8 4.5 22.2 63% 28% 62% 24%

uses the core but is not round-based). Accordingly, all heuristics we test are
round-based and use the core.

The second block contains heuristics that accelerate MCR by weakening the
domination rules, causing more labels to be pruned (and losing optimality guar-
antees). As explained in Section 4, MCR-hf uses fuzzy dominance during the
algorithm, MCR-hb uses walking buckets (discretizing walking by steps of 5
minutes for domination), MCR-hs uses a slack of 5 minutes on the walking cri-
terion when evaluating domination, and MCR-ht considers a tradeoff parameter
of a = 0.3 between walking and arrival time. All heuristics are faster than pure
MCR, and MCR-hb gives the best quality at a reasonable running time.

The third block has algorithms with restrictions on walking duration. Limit-
ing transfers to 10 minutes (as MCR-t10 does) has almost no effect on solution
quality (which is expected in a well-designed public transportation network).
Moreover, adding precomputed footpaths of 10 minutes is not faster than using
the core for unlimited walking (as MCR does). Additionally limiting the walk-
ing range from s or t (MCR-t10-r15) improves speed, but the quality becomes
unacceptably low: the algorithm misses good journeys (including all-walk) quite
often. If instead we allow even more restricted transfers (with MCR-t5), we get
a similar speedup with much better quality (comparable to MCR-hb).

The MR-x algorithms (fourth block) reduce the number of criteria considered
by combining trips and walking. The fastest variant is MR-∞-t10, which drops
walking duration as a criterion but limits the amount of walking at transfers to 10
minutes, making it essentially the same as RAPTOR, with a different initializa-
tion. As expected, however, quality is much lower than for MCR-tx, confirming
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Table 2. Performance on our London instance when taking taxi into account.

Scans Comp. Time Quality-3 Quality-6
Algorithm Ar

r.
Tr
p.

W
lk
.

Co
st

Rnd. /Ent. /Ent. Jn. [ms] Avg. Sd. Avg. Sd.

MCR • • • • 16.3 3.1 369 606.0 1 666.0 1 960 234.0 100% 0% 100% 0%
MCR-hf • • • • 17.1 2.1 137.1 35.2 6 451.6 92% 12% 92% 6%
MCR-hb • • • • 9.9 1.3 86.8 27.6 2 807.7 96% 8% 92% 6%

MCR • • ◦ • 14.6 2.4 7 901.4 250.9 25 945.8 98% 6% 97% 5%
MCR-hf • • ◦ • 12.0 1.4 33.6 17.6 2 246.3 87% 12% 74% 12%
MCR-hb • • ◦ • 9.0 1.0 20.0 11.6 996.4 86% 12% 74% 12%

that considering the walking duration explicitly during the algorithm is impor-
tant to obtain a full range of solutions. MR-10 attempts to improve quality by
transforming long walks into extra trips, but is not particularly successful.

Summing up, MCR-hb should be the preferred choice for high-quality solu-
tions, while MR-∞-t10 can support interactive queries with reasonable quality.

Our second experiment considers the full multimodal problem, including
taxis. We add cost as fourth criterion (at 2.40 pounds per taxi-trip plus 60
pence per minute). We do not consider the cost of public transit, since it is
significantly cheaper. Table 2 presents the average performance of some of our
algorithms over 1 000 random queries in London. The first block includes algo-
rithms that optimize all four criteria (arrival time, walking duration, number of
trips, and costs). While exact MCR is impractical, fuzzy domination (MCR-hf)
makes the problem tractable with little loss in quality. Using 5-minute buckets for
walking and 5-pound buckets for costs (MCR-hb) is even faster, though queries
still take more than two seconds. The second block shows that we can reduce
running times by dropping walking duration as a criterion (we incorporate it into
the cost function at 3 pence per minute, instead), with almost no loss in solution
quality. This is still not fast enough, though. Using 5-pound buckets (MCR-hb)
reduces the average query time to about 1 second, with reasonable quality.

6 Final Remarks

We have studied multicriteria journey planning in multimodal networks. We
argued that users optimize three criteria: arrival time, costs, and convenience.
Although the corresponding full Pareto set is large and has many unnatural
journeys, fuzzy set theory can extract the relevant journeys and rank them.
Since exact algorithms are too slow, we have introduced several heuristics that
closely match the best journeys in the Pareto set. Our experiments show that
our approach enables efficient realistic multimodal journey planning in large
metropolitan areas. A natural avenue for future research is accelerating our ap-
proach further to enable interactive queries with an even richer set of criteria in
dynamic scenarios, handling delay and traffic information. The ultimate goal is
to compute multicriteria multimodal journeys on a global scale in real time.
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