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Abstract

In recent years, many speed-up techniques for Dijkstra’s algorithm have been developed
that make the computation of shortest paths in static road networks a matter of microseconds.
However, only few of those techniques work in time-dependent networks which, unfortunately,
appear quite frequently in reality: Roads are predictably congested by traffic jams, and efficient
timetable information systems rely on time-dependent networks. Hence, a fast technique for
routing in such networks is needed.

In this work, we present an efficient time-dependent route planning algorithm. It is based on
our recently introduced SHARC algorithm, which we adapt by augmenting its basic ingredients
such that correctness can still be guaranteed in a time-dependent scenario. As a result, we are
able to efficiently compute exact shortest paths in time-dependent continental-sized transporta-
tion networks, both of roads and of railways. It should be noted that time-dependent SHARC
was the first efficient algorithm for time-dependent route planning.

1 Introduction

Computing shortest paths in graphs is used in many real-world applications like route planning in
road networks, timetable information for railways, or scheduling for airplanes. In general, Dijk-

stra’s algorithm [12] finds a shortest path between a given source s and target t. Unfortunately, the
algorithm is far too slow to be used on huge datasets. Thus, several speed-up techniques have been
developed (see [9] for an overview) yielding faster query times for typical instances, e.g., road or
railway networks. A major drawback of most existing speed-up techniques is that their correctness
depends on the fact that the network is static, i.e., the network does not change between queries.
Only [11, 37] showed how preprocessing can be updated if a road network is perturbed by a relatively
small number of traffic jams.

However, in real-world road networks, many traffic jams are predictable. This can be modeled
by a time-dependent network, where the travel time depends on the departure time τ . Moreover, a
very efficient model for timetable information relies on time-dependent networks (cf. [32] for details)
as well. Unfortunately, none of the recent high-performance speed-up techniques can be used in a
time-dependent network in a straightforward manner. Moreover, possible problem statements for
shortest paths become even more complex in such networks. For instance, a user could ask at what
time she should depart in order to spend as little time traveling as possible.

In this work, we present a speed-up technique for exact time-dependent routing in road and
railway networks. As a starting point, we decided to use our recently developed SHARC algorithm [2,
3] as it is a fast unidirectional technique. Hence, we avoid the problem of bidirectional search other
techniques rely on. Note that if bidirectional search is to be used in time-dependent networks,
the arrival time would have to be known in advance. It turns out that time-dependent SHARC is
able to efficiently compute shortest paths in time-dependent continental-sized road and timetable
networks. Moreover, we are able to compute the shortest paths between two points not only for a
specific departure time, but for all possible departure times.



Related Work

As already mentioned, a lot of speed-up techniques for static scenarios have been developed in recent
years. Since we here focus on time-dependent route planning, we direct the interested reader to [9],
which gives a recent overview over static routing techniques.

Much less work has been done on time-dependent route planning. In [5], Dijkstra’s algorithm
is extended to the time-dependent case based on the assumption that the network fulfills the FIFO
property. A network is called FIFO if all of its edges fulfill the FIFO property. A FIFO edge (u, v)
ensures that if a person A traverses (u, v) before a person B, B cannot arrive at the node v before
A. Computation of shortest paths in FIFO networks is polynomially solvable [22]. In non-FIFO
networks, complexity depends on the restriction whether waiting at nodes is allowed. If waiting is
allowed, the problems stays polynomially solvable; if it is not allowed, the problem is NP-hard [29].
Fortunately, transportation networks can be modeled in such a way that the FIFO property holds.

Goal-directed search, also called A∗ [20], has been adapted to the time-dependent scenario [14]; an
efficient version (called ALT) for the static case has been presented in [16, 19]. In [11], unidirectional
ALT is evaluated on time-dependent graphs (fulfilling the FIFO property) yielding mild speed-ups
of a factor between 3 and 5, depending on the degree of time-dependency. Goal-directed search
has also been successfully applied to time-dependent timetable networks [31, 32, 13]. In [28], it
has been shown that time-dependent ALT can be used in a bidirectional manner. The key idea of
bidirectional search in time-dependent networks is that the backward search is only used to bound
the nodes the forward search has to visit. This approach can be further accelerated by limiting
ALT search to a core extracted during preprocessing [8]. Moreover, our old implementation of static
SHARC [2] already allowed fast approximate queries in a time-dependent scenario.

Recently, a hierarchical speed-up technique, Contraction Hierarchies [15], has been extended
to the time-dependent scenario [1] as well. It turns out that the performance of time-dependent
Contraction Hierarchies is comparable to the approach presented in this work but for the price of
a very high amount of preprocessed data. The main reason for this is the fact that shortcuts are
much more expensive in terms of space consumption in time-dependent scenarios (cf. Section 3).

Our Contribution

In this work, we show how SHARC can be generalized in such a way that we are able to perform
exact shortest-path queries in time-dependent networks. The key observation is that the concept of
SHARC stays untouched. However, at certain points we augment static routines to time-dependent
ones. Moreover, we slightly adapt the intuition of Arc-Flags [24, 21]. And finally, we deal with the
problem that adding shortcuts to the graph is more expensive than in static scenarios. As a result,
we are able to perform exact time-dependent queries in road and railway networks.

We start describing our work on time-dependent route planning in Section 2 by introducing
basic definitions and a short review of Arc-Flags and SHARC in static scenarios. Basic work on
modeling time-dependency in road and railway networks is located in Section 3. We augment
the main ingredients of SHARC, namely (local) Dijkstra-searches, contraction, and Arc-Flags, in
Section 4. It turns out that the adaption of Dijkstra and contraction is straightforward, while
arc-flags computation gets more expensive: The key observation is that we have to alter the intuition
of arc-flags slightly for correct routing in time-dependent networks. The preprocessing routine itself
and the query algorithms of time-dependent SHARC are located in Section 5. We also provide a
detailed proof of correctness and present several optimization techniques to reduce the preprocessing
effort and to increase the query performance.

In order to show that time-dependent SHARC performs well in real-world environments, we
present an extensive experimental evaluation in Section 6. As inputs we use continental-sized trans-
portation networks. It turns out that SHARC is more than 20 times faster than plain Dijkstra
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for timetable information. The corresponding figure for road networks is between 60 and > 5000,
depending on the degree of time-dependency of the network and preprocessing effort. Section 7
concludes our work with a summary and possible future research.

A preliminary version of this work has been published in [7]. However, we here give detailed
proofs of correctness, present a new variant of time-dependent SHARC, and finally, we now have ac-
cess to real-world time-dependent road networks. An extended computational study reveals further
interesting details of time-dependent SHARC.

2 Preliminaries

An (undirected) graph G = (V, E) consists of a finite set V of nodes and a finite set E of edges. An
edge is an unordered pair {u, v} of nodes u, v ∈ V . If the edges are ordered pairs (u, v), we call the
graph directed. In this case, the node u is called the tail of the edge, v the head. The number of nodes
|V | is denoted by n, the number of edges by m. We say a graph is sparse if m ∈ O(n). Throughout
this paper we restrict ourselves to directed sparse graphs which are weighted by a length function
len, with len(u, v) depicting the travel time from u to v. Given a set of edges H , tail(H) / head(H)
denotes the set of all tails / heads in H . By degin(v) / degout(v) we denote the number of edges

whose head / tail is v. The reverse graph
←−
G = (V,

←−
E ) is the graph obtained from G by substituting

each (u, v) ∈ E by (v, u). The 2-core of an undirected graph is the maximal node-induced subgraph
of minimum node degree 2. The 2-core of a directed graph is the 2-core of the corresponding simple,
unweighted, undirected graph. All nodes not being part of the 2-core are called 1-shell nodes. A
tree on a graph for which only the root is located in the 2-core is called an attached tree.

Time-Dependency. The main difference between time-independent and time-dependent route
planning is the travel time function assigned to the edges. In the time-independent scenario, we
normally use a positive length function len : E → R+, while in a time-dependent scenario, we use
travel functions instead of constants for specifying edge weights. Throughout the whole work, we
restrict ourselves to a function space F consisting of positive periodic functions f : Π → R+, Π =
[0, p], p ∈ N such that f(0) = f(p) and f(x) + x ≤ f(y) + y for any x, y ∈ Π, x ≤ y. Note that these
functions respect the FIFO property. In the following, we call Π the period of the input. We restrict
ourselves to directed graphs G = (V, E) with time-dependent length functions len : E → F. We
use len : E × [0, p]→ R+ to evaluate an edge for a specific departure time. Note that our networks
fulfill the FIFO property due to our choice of F.

Let f, g ∈ F be two travel functions. We say f < g if f(x) < g(x) holds for all x ∈ Π. The
composition of f and g, depicting a travel function for traversing g directly after f , is defined by
f ⊕ g := f + (g ◦ (f + id)) with id(x) = x, x ∈ Π. Moreover, we need to merge functions, which
we define by min(f, g). For more details on these operations, see Section 3. The upper bound of
f is noted by f = maxx∈Π f(x), the lower by f = minx∈Π f(x). An underapproximation ↓f of
a function f is a function such that ↓ f(x) ≤ f(x) holds for all x ∈ Π. An overapproximation
↑f is defined analogously. Bounds and approximations of our time-dependent edge function len
is given by analogous notations. Obviously, one can obtain a time-independent graph G from a
time-dependent graph G by substituting the time-dependent length function by len. We call G the
lower bound graph of G.

Paths. A path P in G is a sequence of nodes (u1, . . . , uk) such that (ui, ui+1) ∈ E for all 1 ≤ i < k.
In time-dependent scenarios, the length γτ (P ) of a path P departing from u1 at time τ is recursively
given by

3



γτ

(

(u1, u2)
)

= len
(

(u1, u2), τ
)

γτ

(

(u1, . . . , uj)
)

= γτ

(

(u1, . . . , uj−1)
)

+ len
(

(uj−1, uj), γτ

(

(u1, . . . , uj−1)
)

)

In other words, the length of the path depends on a departure time τ from u1. In a time-dependent
scenario, we are interested in two types of distances. On the one hand, we want to compute the
shortest path between two nodes for a given departure time. On the other hand, we are also
interested in retrieving the distance between two nodes for all possible departure times ∈ Π. By
d(s, t, τ) we denote the length of a shortest s–t path ∈ V if departing from s at time τ . The distance
label, i.e., the distance between s and t for all possible departure times τ ∈ Π, is given by d∗(s, t).
Note that the distance label is a function ∈ F. In this work, we call a query for determining d(s, t, τ)
an s-t time-query, while a query for computing d∗(s, t) is denoted by s-t profile-query.

Partitions. A partition of V is a family C = {C0, C1, . . . , Ck} of sets Ci ⊆ V such that each node
v ∈ V is contained in exactly one set Ci. An element of a partition is called a cell. We denote by(u) the cell u is assigned to. A multilevel partition of V is a family of partitions {C0, C1, . . . , Cl}
such that for each i < l and each Ci

n ∈ C
i a cell Ci+1

m ∈ Ci+1 exists with Ci
n ⊆ Ci+1

m . In that case
the cell Ci+1

m is called the supercell of Ci
n. The supercell of a level-l cell is V . We denote by j(u)

the level-j cell u is assigned to. The boundary nodes BC of a cell C are all nodes u ∈ C for which
at least one node v ∈ V \ C exists such that (v, u) ∈ E.

2.1 Arc-Flags

The classic arc-flag approach [24, 21] first computes a partition C of the graph and then attaches
a label to each edge e. A label contains, for each cell Ci ∈ C, a flag AFCi

(e) which is true if a
shortest path to a node in Ci starts with e. A modified Dijkstra then only considers those edges
for which the flag of the target node’s cell is true.

Computation of Arc-Flags. Throughout the years, several approaches have been introduced
(see e.g. [24, 23, 26, 21, 25]) for computing arc-flags. We here concentrate on an approach which
turns out to be the most suited for augmentation. First, the own-cell flags of all edges not crossing
borders have to be set to true. The own-cell flag of an edge (u, v) is the flag for the region of u
and v. If u and v are in different cells, the edge does not have an own-cell flag. Next, a shortest

path tree in
←−
G is grown from all boundary nodes b ∈ BC of all cells C. Then AFC(u, v) is set to

true if (u, v) is a tree edge for at least one tree grown from all boundary nodes b ∈ BC . Note that
[21] introduces a faster algorithm for setting flags. It propergates labels of size |BC | through the
network depicting the distances to all boundary nodes of the cell. However, this approach tends to
consume a lot of memory making its adaption to a time-dependent scenario impractical.

Multi-Level Arc-Flags. One main disadvantage of uni-directional Arc-Flags is that as soon as
the query reaches the target’s cell, almost all edges are relaxed as all edges have their own-cell flag
set. In huge transportation networks cells can get quite big yielding bad query performance. An
approach to remedy this drawback is introduced in [27]: A second layer of arc-flags is computed for
each cell. Therefore, each cell is again partitioned into several subcells and arc-flags are computed
for each. A Multi-Level Arc-Flags query then first uses the flags on the topmost level and as soon as
the query enters the target’s cell on the topmost level, the low-level arc-flags are used for pruning.
This idea can be extended to a multi-level setup in a straightforward manner.
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2.2 Static SHARC-Routing

The main drawback of Arc-Flags is the time-consuming preprocessing which is remedied by
SHARC [2, 3] via the integration of a graph contraction scheme [34, 35, 17, 18] into preprocess-
ing. A graph contraction routine removes unimportant nodes and edges from the graph and adds
shortcuts to preserve distances between non-removed nodes. The key idea of SHARC is now that we

1111

1111
1111

1111 0010

0010

u w x v

Figure 1: Example for assigning arc-flags during contraction for a partition having four cells. All nodes
are in cell 3. The gray nodes (w and x) are removed, the dashed shortcuts are added by the contraction.
Arc-flags (edge labels) are indicated by a 1 for true and 0 for false. The edges directing into the shell get
only their own-cell flag set true. All edges in and out of the shell get all flags assigned to true.

can set arc-flags for removed edges automatically. See Figure 1 for an example. Then the expensive
computation of arc-flags can be restricted to a much smaller network reducing preprocessing times
significantly. Note that we assign suboptimal arc-flags to removed edges, which we can fortunately
refine as very last step of preprocessing. Here, we propagate arc-flags from important edges to
unimportant ones. See Figure 2 for an example. Summarizing, preprocessing of static SHARC
is divided into three sections. During the initialization phase, we perform a multi-level partition
of G. Then, an iterative process starts. At each step i we first contract the graph by bypassing
unimportant nodes and set the arc-flags automatically for each removed edge. On the contracted
graph we compute the arc-flags. In the finalization phase, we assemble the output graph and refine
arc-flags of edges removed during contraction.

1111
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1111

1111 0010

0010

u w x v

1100
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11100011

0011

0011

00111110

0011

1110
1110

0011 0010

0010

u w x v

1100

0001

11100011

0011

0011

00111110

Figure 2: Example for refining arc-flags. The figure in the left shows the graph from Figure 1 after the
last iteration step. The figure on the right shows the resulting arc-flags of our refinement routine: the edges
(w, x) and (x, v) inherit the flags of the outgoing edge from v, while (x,w) and (w, u) inherit the OR of the
flags of the outgoing edges from u.

SHARC adopts the Multi-Level Arc-Flags query. Compared to plain Dijkstra, the modifica-
tions are as follows: When settling a node u, we compute the lowest level i on which u and the target
node t are in the same supercell. When relaxing the edges outgoing from u, we consider only those
edges having a set arc-flag on level i for the corresponding cell of t. The advantages of SHARC over
Arc-Flags is two-fold. On the one hand, by limiting computations of arc-flags to important parts
of the graph, preprocessing times decrease significantly. On the other hand, by the introduction of
shortcuts the number of relaxed edges is reduced. Summarizing, SHARC improves on Arc-Flags
with respect to preprocessing effort and query performance.
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3 Models and Basic Operations

In this work, we focus on route planning in transportation networks. Hence, we here briefly present
how to efficiently model road and train networks as graphs. Moreover, we show how to realize the
operations link and merge (cf. Section 2) on the travel time functions we use for these models.

3.1 Road Networks

In road networks, we have roads and junctions. We intoduce a node for each junction being connected
by a directed edge if there is a direct connection between them. In this work, we use periodic
piecewise linear functions for modeling time-dependency in road networks. Each edge gets assigned
a number of sample points that depict the travel time on this road at the specific time. Evaluating
a function at time τ is then done by linear interpolation between the points left and right to τ .

Composition. In the following, we need to link two piecewise linear functions f, g to f ⊕ g,
modeling the duration for traversing g directly after f . This is done as follows. Let I(f) =

{(tf1 , wf
1 ), . . . , (tfl , wf

l )} with tfi ∈ Π, wf
i ∈ R+, 1 ≤ i ≤ l be the interpolation points of f

and I(g) = {(tg1, w
g
1), . . . , (tgk, wg

k)} those of g. Then the interpolation points {
(

tf1 , wf
1 + g(tf1 +

wf
1 )

)

, . . . ,
(

tfl , wf
l + g(tfl + wf

l )
)

} are obviously included in I(f ⊕ g). However, we also have to add
some more interpolation points, namely those from arriving at the timestamps tgj of g. More pre-

cisely, let t−1
1 , . . . , t−1

k be chosen such that f(t−1
j ) + t−1

j = tgj holds for all 1 ≤ j ≤ k. Then, we also

have to add {(t−1
1 mod Π, f(t−1

1 ) + wg
1), . . . , (t−1

k mod Π, f(t−1
k ) + wg

k)} to I(f ⊕ g). See Figure 3
for an example. Note that the composed function f⊕g may have up to P (f)+P (g) number of inter-
polation points in the worst case, with P (f) := |I(f)| denoting the number of interpolation points
of f . Since the linking of functions can be implemented by a sweeping algorithm, the worst-case
running time of this operation is in O(P (f) + P (g)).

u

v

w

7:00 - 12 min

8:00 - 16 min

. . .

7:00 - 11 min

8:00 - 16 min

8:30 - 16 min

. . .

7:00 - 24 min

7:45 - 31 min

8:00 - 32 min

. . .

Figure 3: Time-dependent composition in road networks.
A function depicting the travel time from u to w via v yields
an additional interpolation point at 7:45 because otherwise
the interpolated travel time at 7:45 would be 30 minutes
instead of 31.

departure time

travel time

Figure 4: Time-dependent merging of two
piecewise linear functions f and g in road
networks. f is drawn solid, g dotted, the
merged function is drawn thicker. Note
that P (min(f, g)) > P (f) + P (g) holds.

Merging. We also have to merge two piecewise linear functions f, g to min(f, g). Like for linking,
this may increase the number of breakpoints. More precisely, we have to check for all timestamps
tfi of f whether wf

i < g(tfi ) holds. If it holds, we need to keep the interpolation point (tfi , wf
i ),

otherwise we do not need it. Analogously, we proceed for all timestamps tgj of g. However, additional
interpolation points have to be added for all intersection points of f and g. Figure 4 gives an example.
Note that the worst-case running time of this operation is in O(P (f) + P (g)).
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3.2 Railways

The straightforward approach [4] for railway networks is to model each station by a single node, a
time-dependent edge is inserted if a direct connection between two stations exist. See Figure 5(a)
for a small example. Then, several weights are assigned to each edge. For each train, we add an
interpolation point to the corresponding edge. A problem of this approach is that transfer times
cannot be incorporated properly. To do so, a time-dependent train-route model [31] has to be
applied. For each train route, a node is introduced at each station the trains of this route stop.
These nodes are connected by time-dependent edges modeling the trains running on this route. For
each station, a supernode is introduced which is connected to all route nodes of this station modeling
the transfer from one train to another. See Figure 5(b) for an example. In this work, we use the
train-route model and guarantee the FIFO property of such graphs by introducing multi-edges.

A B D

C

(a) Simple time-dependent model.

A B D

C

(b) Realistic time-dependent model.

Figure 5: Time-dependent railway graphs. For both models, we have four stations and two train routes.
The first one runs from A to B to C and back to A, while the second one runs A→B→C→D→A. In the simple
model, switching from one train to another can be done in 0 minutes, while transfer times are incorporated
correctly in the realistic model.

When we want to evaluate a time-dependent edge at a specific time τ , we identify the interpo-
lation point (ti, wi) with minimum ti − τ ≥ 0. Then the resulting traveltime is wi + ti − τ , i.e., the
waiting time for the next connection plus its travel duration.

Composition. Interestingly, the composition of two timetable edge-functions f, g is less expensive
than in road networks. More precisely, P (f ⊕g) ≤ min{P (f), P (g)} holds as the number of relevant
departure times is dominated by the edge with less connections. More precisely, we determine for
each interpolation point (tfi , wf

i ) ∈ I(f) the so called connection interpolation point of g, which is the

point (tgj , w
g
j ) ∈ I(g) with tgj − tfi −wf

i ≥ 0 minimal. In other words, this is the first connection of g

we can catch when taking the connection departing at timestamp tfi . Then, we add the interpolation

point (tfi , (tgj − tfi + wg
j )) to I(f ⊕ g). Since f and g are FIFO functions this ensures correctness.

However, it may happen that two interpolation points ∈ I(f) yield the same connection point of
g. In such a situation we only need to keep the point with maximal timestamp since an earlier
departure does not pay off. See Figure 6 for an example. Although the number of interpolation
points may decrease, this operation takes O(P (f) + P (g)) time in the worst case.

Merging. The merging of two public transportation functions is straightforward. For each time-
stamp tfi of f we check whether wf

i < g(tfi ) holds. If it holds, we add (tfi , wf
i ) to I(min(f, g)). We do

the same for all timestamp of g. Note that in the worst case, min(f, g) may have up to P (f)+P (g)
interpolation points. See Figure 7 for an example. Note that the merging of timetable functions is
also cheaper than the merging of functions used for road networks, but still in O(P (f) + P (g)).
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u

v

w

7:00 - 55 min

8:00 - 55 min

9:00 - 55 min

09:00 - 60 min

12:00 - 60 min

16:00 - 60 min

8:00 - 120 min

9:00 - 240 min

Figure 6: Time-dependent composition in public trans-
portation networks. A function depicting the travel time
from u to w via v yields less interpolation points than both
functions constructed it is from.

departure time

travel time

Figure 7: Time-dependent merging of two
public transportation functions f and g, f

is drawn solid, g dotted, the merged func-
tion is drawn thicker.

4 Augmenting Ingredients

The main ingredients of the static SHARC preprocessing are (local) Dijkstra-searches, Arc-Flags
and contraction (cf. Section 2). So, in order to augment SHARC to time-dependency, we first need
to augment all these ingredients such that correctness is guaranteed in a time-dependent scenario,
which we do in this section.

4.1 Dijkstra

Computing d(s, t, τ) can be solved by a modified Dijkstra [5]: when relaxing an edge (u, v) we
have to evaluate its weight for departure time τ + d(s, u, τ). In our scenario, the running time for
evaluating functions is negligible, hence the additional effort for respecting the departure time is
negligible as well. However, computing d∗(s, t) is more expensive but can to be computed by a
label-correcting algorithm [6]. Such an algorithm can be implemented very similarly to Dijkstra.
The source node s is initialized with a constant label d∗(s, s) ≡ 0, any other node u with a constant
label d∗(s, u) ≡ ∞. Then, in each iteration step, a node u with minimum d∗(s, u) is removed from
the priority queue. Then for all outgoing edges (u, v) a temporary label l(v) = d∗(s, u) ⊕ len(u, v)
is created. If l(v) ≥ d∗(s, v) does not hold, l(v) yields an improvement. Hence, d∗(s, v) is updated
to min{l(v), d∗(s, v)} and v is inserted into the queue. We may stop the routine if we remove a
node u from the queue with d(s, u) ≥ d(s, t). If we want to compute d∗(s, t) for many nodes t ∈ V ,
we apply a label-correcting algorithm and stop the routine as soon as our stopping criterion holds
for all t. Note that we may reinsert nodes into the queue that have already been removed by this
procedure. Also note that when applied to a graph with constant edge-functions, this algorithm
equals a normal Dijkstra.

An interesting result from [6] is the fact that the worst-case runtime of such a label-correcting
algorithm is O(nmf∗), where f∗ denotes maxu∈V = P (d∗(s, u)). Note that the increase from log n
to n (compared to a static Dijkstra) derives from the fact that we lose the label-setting property.
Fortunately, the number of multiple insertions of nodes stays small in road networks (cf. Table 3 in
Section 6). Still, the runtime of this algorithm is dominated by the complexity of the constructed
distance labels. In fact, these labels can even grow exponentially for worst-case inputs [6]. Such
exponential growth may happen if the number of different shortest paths (for varying τ) between
two nodes is exponential. Fortunately, it turns out that in transportation networks, such situations
do not arise. Hence, the usage of this algorithm is still practical as our experiments confirm.

In the following, we construct profile graphs (PG), i.e., compute d∗(s, u) for a given source s
and all nodes u ∈ V , with our label-correcting algorithm. We call an edge (u, v) a PG-edge if
d∗(s, u)⊕ (u, v) > d∗(s, v) does not hold. In other words, an edge (u, v) is a PG-edge (with respect
to s) if it is part of a shortest path from s to v for at least one departure time.
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4.2 Arc-Flags

In time-independent scenarios, a set arc-flag AFC(e) denotes whether e has to be considered for
a shortest-path query targeting a node within C. In other words, the flag is set if e is important
for (at least one target node in) C. In a time-dependent scenario, we use the following intuition
to set arc-flags: an arc-flag AFC(e) is set to true, if e is important for C at least once during
Π. A straightforward adaption of computing arc-flags in a time-dependent graph is to construct a

profile graph in
←−
G for all boundary nodes b ∈ BC of all cells C. Then we set AFC(u, v) = true if

(u, v) is a PG-edge for at least one PG built from all boundary nodes b ∈ BC . See Figure 8 for an
example. In addition, we also set all own-cell flags to true. The time-dependent query is a normal
time-dependent Dijkstra only relaxing edges with set flag for the target’s region.

u v b

Figure 8: Computation of time-dependent arc-flags. By construction of a profile graph from the boundary
node b, we end up in two distance labels d∗(u, b) and d∗(v, b). If len(u, v)⊕d∗(v, b) > d∗(u, b) does not hold,
(u, v) is a PG edge (with respect to b) and hence gets the arc-flag for (b) assigned true.

Lemma 1 Time-dependent Arc-Flags is correct.

Proof. To show correctness of time-dependent Arc-Flags, we have to prove that for each shortest
s–t path pτ

st = (e0, . . . , ek), τ ∈ Π the following condition holds: AFT (ei) = true, 0 ≤ i ≤ k with
T = (t). For all edges ei = (ui, vi) with (ui) = (vi) = (t) this holds because we set own-cell
flags to true.

Let s and t be arbitrary nodes, and let τ be an arbitrary departure time. In addition, let
ei = (ui, vi) ∈ pτ

st, (ui) 6= (t), (vi) 6= (t), and bT be the last boundary node of region T on
pτ

st. We know that the subpath from s to bT is a shortest path (for departure time τ). Assume
AFT (ei) = false. Since AFT (ei) = false holds, d∗(ui, bi)⊕ (ui, vi) > d∗(vi, bi) must hold as well.
This is a contradiction since ei is part of the shortest path from s to bT . 2

Approximation. Computing arc-flags as described above requires building a complete profile
graph on the backward graph from each boundary node, which yields too long preprocessing times
for large networks. Recall that the running time of building PGs highly depends on the complexity
of the edge functions. Hence, we may construct two PGs for each boundary node; the first uses
↑ len as length functions, the second ↓ len. As we use approximations with a constant number
of interpolation points, constructing two such PGs is faster than building a single exact one. We
end up in two distance labels per node u, one being an overapproximation, the other one being an
underapproximation of the correct label. Then, for each (u, v) ∈ E, we set AFC(u, v) = true if
↓len(u, v)⊕ ↓d∗(v, bC) >↑d∗(u, bC) does not hold. See Figure 9 for an example.

If networks get so big that even computing approximate labels is prohibitive due to running times,
one can even use upper and lower bounds for the labels. This has the advantage that building two
shortest-path trees per boundary node is sufficient for setting correct arc-flags. The first uses len as
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length function, the other len. See Figure 10 for an example. Note that by approximating arc-flags
(denoted by AF ), their quality may decrease but correctness is untouched. Thus, queries remain
correct by may become slower.

u v b

Figure 9: Approximation of time-dependent arc-
flags via functions. The original functions are drawn
in gray. By using over- and underapproximations
of len during construction of the profile graphs, we
end up in approximated distance labels for u and
v. Then, we set the arc-flag of (u, v) to true if
↓len(u, v)⊕ ↓d∗(v, bC) >↑d∗(u, bC) does not hold.

u v b

Figure 10: Approximation of time-dependent
arc-flags via bounds. The original functions
are drawn in gray. Unlike for approximation
via functions, we use bounds for approxima-
tions. We set the arc-flag of (u, v) to true if
len(u, v) + d∗(v, bC) ≤ d∗(u, bC) holds.

Lemma 2 Approximate Arc-Flags is correct.

Proof. We have to show that AF (e) = true ⇒ AF (e) = true holds for all edges e = (u, v).
Assume AF (e) = true and AF (e) = false. Let b be the boundary node for which e is a PG-edge.
Since AF (e) = true, we known that lenτ (u, v) + dτ+lenτ (u,v)(v, b) = dτ (u, b) holds for at least one

departure time. Since AF ((u, v)) = false, ↓len(u, v)⊕ ↓d∗(v, b) >↑d∗(u, b) must hold as well. From
this follows that τ , lenτ (v, u) + dτ+lenτ (v,u)(u, b) > dτ (v, b) must hold, which is a contradiction to
AF (e) = true. 2

Heuristic Arc-Flags. Analyzing both approaches for computing arc-flags, exact and approxi-
mated, we observe the following. Exact flags yield excellent query times (cf. Section 6) but pre-
processing is time-consuming, while approximated flags yield lower preprocessing times but query
performance is much worse than for exact flags.

Hence, we propose a third approach for computing flags. Unfortunately, we cannot guarantee
correctness but experiments show that in road networks, errors are very small. The preprocessing
is as follows: We grow K + 2 shortest-path trees from each boundary node, the first uses len as

metric, the second one len. The remaining K trees are time-queries in
←−
G using a fixed arrival time

at the boundary node. We set a flag of an edge for a region C if the edge is part of at least one
shortest path tree grown from the boundary nodes of C.

As already mentioned, this approach may yield incorrect queries as a shortest path for a specific
departure time may have been missed. However, it is obvious that a path is found since at least for
one departure time, flags are set to true for a shortest path to the target’s region. We evaluate the
error-rate in Section 6.

Multi-Level Arc-Flags

Preprocessing the multi-level extension of Arc-Flags in a time-dependent scenario is done as follows.
Arc-flags on the upper level are computed as described above. For the lower flags, we construct
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a PG for all boundary nodes b on the lower level. We may stop the construction as soon as
d∗(u, b) ≥ d∗(v, b) holds for all nodes v in the supercell of C and all nodes u in the priority queue.
Then, we set an arc-flag to true if the edge is a PG-edge of at least one PG. Note that we can apply
our alternative arc-flag setting strategies (approximate and heuristic) to low-level flags as well.

Lemma 3 Time-Dependent Multi-Level Arc-Flags is correct.

Proof. In the following, we show the correctness of a two-level setup. The generalization to a
multi-level scenario is straightforward. Let pτ

st = (e0, . . . , ek), τ ∈ Π be an arbitrary s–t shortest
path with arbitrary departure time τ . Let i(u) be the cell of u in level i, where 0 denotes the
lower, 1 the upper level. An edge (u, v) is part of the upper level if 1(u) 6= 1(t) and 1(v) 6= 1(t).
According to Lemma 1, we know that all edges being part of the upper level have AF 1(t) = true.
Let b be the last boundary node of 0(t) on pτ

st. Since we have built a profile graph from b during
preprocessing until all nodes in 1(t) have their final label assigned, edges being part of the lower
level have proper arc-flags assigned. 2

4.3 Contraction

Our time-dependent contraction routine is very similar to a static one [34, 35, 18, 2]. First we reduce
the number of nodes by removing unimportant ones and—in order to preserve distances between
non-removed nodes—add time-dependent shortcuts to the graph. Then, we apply an edge-reduction
step that removes unneeded shortcuts.

Node-Reduction. We reduce the number of nodes by iteratively bypassing nodes until no node
is bypassable any more. To bypass a node u we first remove u, its incoming edges I and its outgoing
edges O from the graph. Then, for each v ∈ tail(I) and for each w ∈ head(O) \ {v} we introduce a
new edge of the length len(v, u)⊕ len(u, w). In the following, we will see that allowing multi-edges
eases unpacking shortcuts since each shortcut represents exactly one path. We call the number of
edges of the path that a shortcut represents on the graph before the node-reduction the hop number
of the shortcut.

The order in which nodes are bypassed changes the resulting contracted graph. Hence, we use a
heap to determine the next bypassable node. Therefore, we first determine the number #shortcut
of edges that would be inserted into the graph if u was bypassed. However, we do not count
existing edges connecting nodes in tail(I) with nodes in head(O). Let ζ(u) = #shortcut/(degin(u)+
degout(u)) be the expansion [18] of a node u. Furthermore, let h(u) be the hop number of the hop-
maximal shortcut, and let p(u) be the number of interpolation points of the shortcut with most
interpolation points, that would be added if u was bypassed. Then we set the key of a node u
within the heap to h(u) + p(u) + 10 · ζ(u), smaller keys having higher priority. By this ordering
for bypassing nodes we prefer nodes whose removal yield few additional shortcuts with a small hop
number and few interpolation points.

We stop the node-reduction as soon as we would bypass a node u with an expansion ζ(u) > C,
with C called the expansion threshold. Moreover, to keep the costs of shortcuts limited we do not
bypass a node if its removal would either result in a shortcut with more than I interpolation points
or a hop number greater than H . We say that the nodes that have been bypassed belong to the
shell, while the remaining nodes are called core nodes.

Corollary 1 Time-dependent node-reduction keeps distances (for all departure times) between core
nodes correct.

Proof. Correctness follows directly from our rules of adding shortcuts. 2
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Edge-Reduction. The second edge-reduction step for time-dependent networks is also similar to
a the static one: We build a profile graph (instead of a shortest path tree) from each node u of the
core. We stop the construction as soon as all neighbors v of u have their final label assigned. Then
we check for all neighbors whether d∗(u, v) < len(u, v) holds. If it holds, we can remove (u, v) from
the graph because for all possible departure times, the path from u to v does not include (u, v).
As already mentioned, building profile graphs is very time-consuming. Hence, we limit the running
time of this procedure by restricting the number of priority-queue removals to 20.

Since building even such very limited profile graphs can get very time-consuming, we apply a
bounded edge-reduction step directly before. We grow two shortest path trees from u, one uses
len as length function, the other one len. Here, we may stop the growth as soon as all outgoing
neighbors v of u have been settled. If d∗(u, v) < len(u, v) holds, we can safely remove (u, v) from
the graph.

Corollary 2 Time-dependent edge-reduction keeps distances (for all departure times) between core
nodes correct.

Proof. Correctness follows directly from our rules of removal. 2

Discussion. Time-dependent contraction in road networks is space-consuming. Each added short-
cut increases the total number of interpolation points of the graph (cf. Section 3). It turns out that
this increase in number of interpolation points is one of the main problems when routing in time-
dependent road networks: Almost all speed-up techniques developed for static scenarios rely on
adding long shortcuts to the graph. While this is “cheap” for static scenarios, the insertion of time-
dependent shortcuts yields a high amount of preprocessed data. So, unlike in time-independent
scenarios, the degree of contraction must be chosen carefully to keep the number of shortcuts as low
as possible.

5 Time-Dependent SHARC

With our ingredients augmented, we are now ready to augment SHARC itself. It turns out that the
additional effort for augmentation is quite small since we may leave the basic concept of SHARC
untouched.

5.1 Preprocessing

During the initialization phase, we remove the 1-shell nodes from the graph since we can directly
assign correct arc-flags to all edges adjacent to 1-shell nodes: Edges targeting the 2-core get full flags
assigned, those directing away from the 2-core get only the own-cell flag set to true. Note that this
procedure is independent from edge weights. After extracting the 2-core, we perform a multi-level
partitioning of the unweighted graph. The partition has to fulfill several requirements: cells should
be connected, the size of cells should be balanced, and the number of boundary nodes should be as
low as possible. Like in [2], we obtain such a partition by local optimization of a partition obtained
from SCOTCH [30].

After the initialization, an iterative process starts, consisting of two phases: contraction and
arc-flag computation. We apply a contraction step according to Section 4. However, in order to
guarantee correctness, we have to use cell-aware contraction, i.e., a node u is never marked as
bypassable if any of its neighboring nodes is not in the same cell as u. Next, we assign arc-flags to
all edges of our output graph, including those which we remove during contraction. Like for static

12



SHARC, we can set arc-flags for all removed edges automatically. We set the arc-flags of the current
and all higher levels depending on the tail v of the deleted edge. If v is a core node, we only set
the own-cell flag to true (and others to false) because this edge can only be relevant for a query
targeting a node in this cell. If v belongs to the shell, all arc-flags are set to true as a query has
to leave the shell in order to reach a node outside this cell. See Figure 1 for an example. Setting
arc-flags of those edges not removed from the graph is more expensive since we apply one of the
preprocessing techniques for Multi-Level Arc-Flags from Section 4.

The final phase of our preprocessing-routine assembles the output graph. It contains the original
graph, shortcuts added during preprocessing and arc-flags for all edges of the output graph. However,
some edges may have no arc-flag set to true. Since these edges are never relaxed by our query
algorithm, we can remove them from the output graph.

5.2 Query

Time-dependent SHARC allows time- and profile-queries. For computing d(s, t, τ), we use a modified
Dijkstra that operates on the output graph. The modifications are as follows: When settling a
node u, we compute the lowest level i on which u and the target node t are in the same supercell.
Note that level i is the lowest level in which u and t are in different cells. Moreover, we consider
only those edges outgoing from u having a set arc-flag on level i for the corresponding cell of t. In
other words, we prune edges that are not important for the current query. We stop the query as
soon as we settle t. See Figure 11 for an example query.

For computing d∗(s, t), we use a modified variant of our label-correcting algorithm (see Section 4)
that also operates on the output graph. The modifications are the same as for time-queries and the
stopping criterion is the standard one explained in Section 4.

Figure 11: Two examples for time-dependent queries with different departure times (but identical source
and target) yielding different quickest paths. The input is a road network with congested motorways. The
source of the query is marked by the flag on the left, the target by the one on the right. The quickest
paths are drawn thicker. Roads touched by SHARC are black. Note that the edges touched are almost
independent of the departure time. Also note that for a nighttime departure (left), it pays off to use the
highway (lower route) while for a departure during rush hours, the quickest path is across fields without
using highways.

Outputting Shortest Paths. SHARC adds shortcuts to the graph in order to accelerate queries.
If the complete description of the path is needed, the shortcuts have to be unpacked. Since we
allow multi-edges during contraction, each shortcut represents exactly one path in the network, and
hence, we can directly apply our unpacking routine for static SHARC, which, in turn, is adapted
from Highway Hierarchies [10].
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5.3 Correctness

Before proving correctness of SHARC, we first have to show that the following lemma holds. We
denote by Gi the graph after iteration step i, i = 1, . . . , L. By G0 we denote the input graph G. The
level l(u) of a node u is defined to be the integer i such that u is contained in Gi but not in Gi+1.
We further define the level of a node contained in GL to be L. Note that the proof of correctness is
very similar to the one presented in [3]. Still, we include it here for self-containedness.

Lemma 4 Let s and t be arbitrary nodes in G such that there is a path from s to t in G0. Let τ
be an arbitrary departure time. At each step i of the SHARC preprocessing there exists a shortest
s-t-path pτ

st = (v1, . . . , vj1 ; u1, . . . , uj2 ; w1, . . . , wj3), j1, j2, j3 ∈ N0, in
⋃i

k=0 Gk, such that

• l(v1), . . . , l(vj1), l(w1), . . . , l(wj3) < i,

• l(u1), . . . , l(uj2) ≥ i

• i(uj2) = i(t)

• for each edge e of pτ
st, the arc-flags assigned to e until iteration i allow the path pτ

st to t.

We use the convention that jr = 0, r ∈ {1, 2, 3} means that the corresponding subpath has no edges.

In other words, during each step of the preprocessing, the lemma assures that there exists a
path in the output graph such that at the beginning, the levels of nodes monotonically increase and
the end, levels monotonically decrease again. Moreover, arc-flags are set in such a way that the
according flag is set to true.

Proof. We prove Lemma 4 by induction on the iteration steps. Since Lemma 1 holds, the claim
holds trivially for i = 0. The inductive step works as follows: Assume the claim holds for step
i. Let s and t be arbitrary nodes, for which there is a path from s to t in G0. We denote by
pτ

st = (v1, . . . , vj1 ; u1, . . . , uj2 ; w1, . . . , wj3 ) the s-t-path according to the lemma for step i.
Let pm = (u1, . . . , uk) be the corresponding sub-path of pτ

st at iteration step i. The iteration
step i + 1 consists of the contraction phase and the arc-flag computation. Since the latter does not
violate the lemma, it remains to be shown that after each contraction step, Lemma 4 holds.
There exists a maximal path (uℓ1 , uℓ2 , . . . , uℓd

) with 1 ≤ ℓ1 ≤ . . . ≤ ℓd ≤ k for which

• for each f = 1, . . . , d − 1 either ℓf + 1 = ℓf+1 or the subpath (uℓf
, uℓf+1, . . . uℓf+1

) has been
replaced by a shortcut,

• the nodes u1, . . . , uℓ1−1 have been deleted, if ℓ1 6= 1 and

• the nodes uℓd+1, . . . , uk have been deleted, if ℓd 6= k.

The contraction routine guarantees that:

• (uℓ1 , uℓ2, . . . , uℓd
) is also a shortest path, see Corollary 1.

• uℓd
is in the same shell as uk in all levels greater than i (because of cell aware contraction)

• the deleted edges in (u1, . . . , uℓ1−1) either already have their arc-flags for the path pτ
st assigned

(case a) or the nodes u1, . . . , uℓ1−1 are in the shell (case b). In case a, the arc-flags are correct
because of the induction hypothesis. In case b, all arc-flags for all higher levels are assigned
true.

• the deleted edges in (uℓd+1, . . . , uk) either already have their arc-flags for the path pτ
st assigned

or uℓd+1, . . . , uk are in the same shell (due to cell-aware contraction) as t for all levels ≥ i.
Since the own-cell flag always is set true for deleted edges the path stays valid.
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According to Corollaries 1 and 2, distances are preserved during preprocessing. Hence, for
arbitrary i, 0 ≤ i ≤ L a shortest path in Gi is also a shortest path in

⋃L
k=0 Gk. Concluding, the

path p̂τ
st = (v1, . . . , vj1 , u1, . . . , uℓ1−1; uℓ1 , uℓ2, . . . , uℓd

; uℓd+1, . . . , uk, w1, . . . , wj3 ) fulfills all claims
of the lemma for iteration step i + 1. 2

The lemma guarantees that arc-flags are set properly at each iteration. With this lemma at
hand, we are finally ready to prove correctness of time-dependent SHARC.

Theorem 1 The distances computed by time-dependent SHARC are correct.

Proof. Lemma 4 holds during all phases of all iteration steps of SHARC preprocessing. So,
together with Lemma 3 the preprocessing algorithm is correct. 2

5.4 Optimizations

Although SHARC as described above already yields a low preprocessing effort combined with good
query performance, we use some optimization techniques to reduce preprocessing effort (time and
space consumption) and to increase query performance.

Refinement of Arc-Flags. During the iteration-phase we set sub-optimal arc-flags to edges orig-
inating from shell nodes. However, we can do better: we are able to refine arc-flags by propagation
of arc-flags from higher to lower levels. Recall that the level l(u) of a node u is determined by the
iteration step it is removed from the graph. All nodes removed during iteration step i belong to
level i. Those nodes which are part of the core-graph after the last iteration step belong to level L.
In the following, we explain our propagation routine for a given node u.

First, we construct a partial profile graph T starting from u. When settling a node v, we do not
relax edges whose heads are on a level smaller than l(v). Moreover, we add a settled node v to a set
~N(u) if l(v) > l(u) holds and a predecessor—with respect to T—of the node v is in level l(u). In the

following, we call ~N(u) the exit nodes of u. For the stopping criterion we need the notion of covered
nodes. A node v is called covered as soon as all its predecessors—with respect to T—belong to a
level > l(u). We stop the construction of T as soon as all nodes in the priority queue are covered
and the minimum key in the priority queue is greater than max

v∈ ~N(u) d∗(u, v). This ensures that

all exit nodes of u have been discovered and that they have their final distance labels assigned.
Once this partial profile graph is built we are ready to refine the arc-flags of all edges outgoing

from u. Therefore, we assign exit nodes to outgoing edges from u. Starting at an exit node nE

we follow the predecessors in T until we finally end up in a node x whose predecessor is u. The
edge (u, x) now inherits the flags from nE . Every edge outgoing from nE whose head v is not an
exit node of u and not in a level < l(u) propagates all true flags of all levels ≥ l(u) to (u, x). See
Figure 2 for an example. In order to propagate flags from higher to lower levels we perform our
propagation-routine in L− 1 refinement steps, starting at level L− 1 and in descending order. Note
that during refinement step i we only refine arc-flags of edges outgoing from nodes belonging to
level i. Also note that in profile graphs, a node may have more than one predecessor. In order to
preserve correctness, we have to follow each predecessor until we reach u.

As already mentioned, constructing PGs is time-consuming. Hence, we limit the growth of those
graphs to n log(n)/|Vl| priority-queue removals, where Vl denotes the nodes in level l. In order to
preserve correctness, we then may only propagate the flags from the exit nodes to u if the stopping
criterion is fulfilled before this number of removals.

Lemma 5 Refinement of Arc-Flags is correct.
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Proof. Recall that the own-cell flag does not get altered by the refinement routine. Hence, we
only have to consider flags for other cells. Assume we perform the propagation routine at a level l to
a level-l node u. A shortest path pτ

ut from u to a node t in another cell on level ≥ l needs to contain
a level > l node that is in the same cell as u because of the cell-aware contraction. Moreover, with
iterated application of Lemma 4 we know that there must be an (arc-flag valid) shortest s-t-path for
which the sequence of the levels of the nodes first is monotonically ascending and then monotonically
descending. In fact, to cross a border of the current cell at level l, at least two level > l nodes are
on pτ

ut. We consider the first level > l node u1 on pτ
ut. This must be an exit node of u. The node u2

after u1 on pτ
ut is covered and therefore it is no exit node. Furthermore, it is in a level > l. Hence,

the flags of the edge (u1, u2) are propagated to the first edge on pτ
ut and thus, Lemma 4 holds also

after refinement which proves that the refinement phase is correct. 2

Shortcut-Removal. As already discussed in Section 4, time-dependent shortcuts are very space-
consuming. Hence, we try to remove shortcuts as the very last step of preprocessing. The routine
works as follows. For each added shortcut (u, v) we analyze the path puv = (u, u0, . . . , uk, v) it
represents. If degout(ui) ≤ 3 holds for all 0 ≤ i ≤ k, we remove (u, v) from the graph and the edge
(u, u0) additionally inherits the arc-flags from (u, v).

Arc-Flag Compression. In order to reduce space consumption of SHARC, we compress the arc-
flag information. During our studies, we observed that the number of unique arc-flags sets is much
less than the number of edges. Thus, instead of storing the arc-flags directly at each edge, we use
a separate table containing all possible unique arc-flags sets. In order to access the flags efficiently,
we assign an additional pointer to each edge indexing the correct arc-flags set in the table. This
reduces the space consumption for storing the arc-flags data by a factor of ≈ 5. Note however, that
the main space overhead for time-dependent SHARC stems from time-dependent shortcuts.

Improved Locality. In order to improve query performance, we increase—similar to [18]—cache
efficiency of the output graph by reordering nodes according to the level they have been removed
from the graph. As a consequence, the number of cache misses is reduced yielding lower query times.

Landmarks. SHARC harmonizes with A∗ search. The idea of goal-directed or A∗ search is to
push the search towards the target. By adding a potential π : V → R to the priority of each
node, the order in which nodes are removed from the priority queue is altered. In order to preserve
correctness, the potential has to be feasible [20], i.e., len(u, v) − π(u) + π(v) ≥ 0 holds for all
(u, v) ∈ E. The ALT algorithm [16, 19] uses a small number of nodes—so called landmarks—and
the triangle inequality to compute lower bounds on the distance to the target. Given a set L ⊆ V
of landmarks and distances d(li, v), d(v, li) for all nodes v ∈ V and landmarks li ∈ L, the following
triangle inequalities hold:

d(l1, u) + d(u, v) ≥ d(l1, v) and d(u, v) + d(v, l2) ≥ d(u, l2)

See Figure 12 for an illustration. Therefore, lb(u, v) := maxl∈L max{d(u, l)−d(v, l), d(l, v)−d(l, u)}
provides a lower bound for the distance d(u, v). It turns out that these lower bounds are feasible
potentials. The quality of the lower bounds highly depends on the quality of the selected landmarks.
Interestingly, undirectional ALT can be used without further adaption if landmark-distances are
computed using len as metric [11].

Finding good landmarks is difficult. In this work, we use landmark selection with avoid [16].
This heuristic tries to identify regions of the graph that are not well covered by the current landmark
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Figure 12: Triangle inequalities for landmarks. The landmarks are l1 and l2.

set L. The routine first grows a shortest-path tree Tr from a random node r. The weight of each
node v is the difference between d(v, r) and the lower bound d(v, r) obtained by the given landmarks.
The size of a node v is defined by the sum of its weight and the size of its children in Tr. If the
subtree of Tr rooted at v contains a landmark, the size of v is set to zero. Starting from the node
with maximum size, Tr is traversed following the child with highest size. The leaf obtained by this
traversal is added to L.

We can combine ALT with SHARC easily. We run a time-dependent ALT preprocessing con-
sisting of selecting landmarks L ⊆ V and computing d∗(l, v), d∗(v, l) (in G) for all v ∈ V, l ∈ L.
Then, we apply a normal SHARC query but use d(s, u, τ) + lb(u) instead of d(s, u, τ) as priority
key. We call this combination L-SHARC (Landmarks and SHARC).

5.5 Comparison to Static SHARC

Comparing our new time-dependent preprocessing routine with the one for static SHARC [2, 3],
one may notice that the concept itself stays untouched. We still apply three phases: initialization,
iteration, and finalization. The initialization stays untouched as both removal of 1-shell nodes and
partitioning are performed on the unweighted graph. However, the iteration process gets more
expensive both in terms of memory consumption and preprocessing times: The higher memory
consumption is due to the fact that time-dependent shortcuts use more space than static ones,
while the longer preprocessing times are due to the more complex algorithms for setting arc-flags.

The finalization is also altered slightly. On the one hand, we again use a label-correcting
algorithm instead of Dijkstra for arc-flag refinement, which makes this procedure more time-
consuming. Unlike in [3], we limit the effort for refinement by limiting the number of heap op-
erations. This yields faster preprocessing times but the quality of arc-flags is worse than it could
be. The high memory consumption of shortcuts is the reason why we introduce a new routine for
removing shortcuts from the output graph. Note that we could directly use our time-dependent
variant for time-independent networks. However, preprocessing times increase by a factor of 4 when
using our time-dependent preprocessing instead of our static one. This is mainly due to two facts:
On the one hand, we use more complex data structures for storing distance labels during arc-flags
computation. On the other hand, we use a faster algorithm for setting arc-flags in a static scenario.

The query algorithm stays almost untouched. The only difference between a static and time-
dependent SHARC query is the same as for plain Dijkstra: The key of a node depends on the
departure time. Due to these very minor changes, the slow-down deriving from using a time-
dependent query for a time-independent network is almost negligible.

6 Experiments

In this section, we present our experimental evaluation. To this end, we evaluate the performance
of time-dependent SHARC for road and railway networks. Our implementation is written in C++.
As priority queue we use a binary heap. For implementation details on graph data structures and
multi-level partitions, see Appendix A. Our tests were executed on one core of an AMD Opteron
2218 running SUSE Linux 10.3. The machine is clocked at 2.6 GHz, has 16 GB of RAM and
2 x 1 MB of L2 cache. The program was compiled with GCC 4.2, using optimization level 3.
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Methodology. In the following, we report preprocessing times and the overhead of the prepro-
cessed data in terms of additional bytes per node. Moreover, we report the increase in number of
edges and interpolation points of the output graph compared to the input. We report two types of
queries: time-queries, i.e., queries for a specific departure time, and profile-queries, i.e., queries for
computing d∗(s, t). For each type we provide the average number of settled nodes, i.e., the number
of nodes taken from the priority queue, the average number of relaxed edges, and the average query
time. For s-t profile-queries, the nodes s and t are picked uniformly at random. Time-queries ad-
ditionally need a departure time τ , which we pick uniformly at random as well. All figures in this
paper are based on 100000 random s-t queries and refer to the scenario that only the lengths of the
shortest paths have to be determined, without outputting a complete description of the paths. How-
ever, our shortcut expansion routine needs less than 1 ms to output the whole path; the additional
space overhead is ≈ 4 bytes per node.

Since picking s and t uniformly at random is not a very realistic assumption in continental-sized
networks, we also evaluate local queries [34]. This setup allows insights into the performance of
SHARC depending on the length of a query. This is achieved by choosing 1 000 (s, t) pairs for each
Dijkstra rank: Starting a query from s (with random departure time), the rank of t is denoted by
the number of settled nodes before t is settled. It is given for 20, 21, . . . , 2log |V |. The results are
then presented in the form of a box-and-whisker plot [33].

Default Setting. Unless otherwise stated, we use C = 2.5 as expansion threshold during con-
traction for the all levels. The hop-bound of our contraction is set to 10, the interpolation-bound to
300. Note that the hop counter of all edges is set to 1 before each contraction step. Since we apply
node-reduction during each iteration step, shortcuts may eventually represent more than 10 edges
of the input graph. If we use landmarks, we select 8 nodes with avoid.

In the following, we evaluate four variants of time-dependent SHARC. The only difference bet-
ween them is the way we compute arc-flags during preprocessing. Refinement of arc-flags is the
same for all variants. Our economical variant sets arc-flags via Dijkstra-based approximation of
labels, the generous version uses approximation with a fixed number (24, one for each hour of the
day) of interpolation points, while the aggressive variant uses exact label-correcting algorithms on
the topmost level. Finally, our heuristic variant sets heuristic (and potentially false negative) flags
on all levels. For the latter, we construct 14 shortest path trees per node, i.e., we set K to 12. We
hereby use arrival times for every two hours of the day. To keep preprocessing times limited, we
compute arc-flags only for the topmost three levels and do not refine arc-flags for the lowest two
levels. For static SHARC on road networks, this reduces preprocessing times by a factor of 3, but
query performance decreases only by ≈ 30%.

6.1 Time-Dependent Road Networks

Inputs. Unfortunately, we only have access to a real-world time-dependent road network of Ger-
many. Hence, we use two types of inputs. Besides the German road network, we also use the available
real-world time-independent network of Western Europe and generate synthetic rush hours. All data
has been provided by PTV AG for scientific use. The German road network has approximately 4.7
million nodes and 10.8 million edges. The corresponding figures for Europe are 18 million and 42.6
million, respectively.

6.1.1 Germany

We have access to five different traffic scenarios, collected from historical data: Monday, midweek
(Tuesday till Thursday), Friday, Saturday, and Sunday. As expected, congestion of the roads is
higher during the week than on the weekend: ≈ 8% of the edges are time-dependent for Monday,
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midweek, and Friday. The corresponding figures for Saturday and Sunday are ≈ 5% and ≈ 3%,
respectively. We define the delay of a time-query by 1 − d(s, t, τ)/d(s, t) with d(s, t) depicting the
length of a shortest s–t path in G. For our inputs, the average delay over 100 000 random queries is
2.4% for Monday, 2.7% for midweek, 2.6% for Friday, 0.7% for Saturday, and 0.4% for Sunday. This
confirms our assumption that traffic is higher during the week than on the weekend. For all German
inputs, we apply a 5-level partition, with 112 cells on level 4 and 4 cells per supercell on levels 0 to
3. For this setup, we analyze the impact of the degree of perturbation and the quality of different
arc-flag computations. Note that in the following, we use the term of perturbation depicting the
degree of time-dependency, i.e., the percentage of time-dependent edges and the average delay of an
edge during rush hours.

Traffic Days. Table 1 reports the performance of time-dependent SHARC with and without
landmarks for all profiles we have access to. We use our economical and generous variant for all
traffic days and our aggressive version for Saturday and Sunday. Unfortunately, preprocessing of
our aggressive variant is too long for the remaining traffic days. For comparison, we also report
the performance of static SHARC in a “no traffic” scenario. We also report the speed-up over

Table 1: Performance of SHARC on the German road network instance. Column scenario depicts the
traffic day. Preprocessing times are given in hours and minutes, the overhead in additional bytes per node,
increase in number of edges and increase in number of interpolation points. For queries, we report the
average number of nodes taken from the priority queue, average number of relaxed edges, and average
execution times of a query. We also report the speed-up over Dijkstra’s algorithm.

Preprocessing Time-Queries

time space edge points #settled speed #relaxed speed time speed
scenario algorithm [h:m] [B/n] inc. inc. nodes up edges up [ms] up

Monday

eco SHARC 1:16 156.6 25.4% 366.8% 19 136 124 101 176 54 24.55 63
eco L-SHARC 1:18 220.6 25.4% 366.8% 2 681 887 18 071 303 6.10 255
gen SHARC 20:47 155.9 25.2% 362.1% 16 472 144 87 092 63 21.13 74
gen L-SHARC 20:49 219.9 25.2% 362.1% 2 308 1 030 15 555 352 5.25 296

midweek

eco SHARC 1:16 154.9 25.4% 363.8% 19 425 119 104 947 51 25.06 60
eco L-SHARC 1:18 218.9 25.4% 363.8% 2 776 831 19 005 279 6.31 238
gen SHARC 20:45 154.2 25.2% 359.2% 16 954 136 91 596 58 21.87 69
gen L-SHARC 20:47 218.2 25.2% 359.2% 2 423 952 16 587 320 5.51 273

Friday

eco SHARC 1:10 142.0 25.4% 358.0% 17 412 134 92 473 58 22.07 69
eco L-SHARC 1:12 206.0 25.4% 358.0% 2 500 936 16 895 319 5.59 271
gen SHARC 19:31 141.7 25.2% 356.1% 15 308 153 81 298 66 19.40 78
gen L-SHARC 19:33 205.7 25.2% 356.1% 2 198 1 065 14 853 363 4.92 309

Saturday

eco SHARC 0:42 90.3 25.0% 283.6% 5 284 441 19 991 269 5.34 276
eco L-SHARC 0:44 154.3 25.0% 283.6% 940 2 478 4 867 1 103 1.50 978
gen SHARC 6:54 88.9 24.9% 278.1% 4 842 481 18 319 293 4.89 301
gen L-SHARC 6:56 152.9 24.9% 278.1% 861 2 705 4 460 1 204 1.38 1 067
agg SHARC 48:57 84.3 24.5% 264.4% 721 3 229 1 603 3 349 0.58 2 554
agg L-SHARC 48:59 148.3 24.5% 264.4% 295 7 905 1 036 5 182 0.32 4 589

Sunday

eco SHARC 0:30 64.6 24.6% 215.8% 2 142 1 097 6 549 826 1.86 787
eco L-SHARC 0:32 128.6 24.6% 215.8% 576 4 076 2 460 2 200 0.73 2 011
gen SHARC 5:27 62.9 24.5% 211.2% 1 737 1 352 5 311 1 019 1.51 970
gen L-SHARC 5:29 126.9 24.5% 211.2% 467 5 026 1 995 2 712 0.59 2 480
agg SHARC 27:20 60.7 24.1% 202.6% 670 3 504 1 439 3 759 0.50 2 904
agg L-SHARC 27:22 124.7 24.1% 202.6% 283 8 300 978 5 535 0.29 5 045

no traffic static SHARC 0:06 13.5 23.9% 23.9% 591 3 790 1 837 2 810 0.30 4 075
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Dijkstra’s algorithm, which settles ≈ 2.3 million nodes in 1.5 seconds on average. These values
are independent of the applied traffic scenario.

We observe that the degree of perturbation has a high influence on both preprocessing and query
performance of economical SHARC. Preprocessing times increase if perturbation is higher. This is
mainly due to our refinement phase that uses partial label-correcting algorithms in order to improve
the quality of arc-flags. The increase in overhead derives from the fact that the number of additional
interpolation points for shortcuts increases. Analyzing query performance of SHARC, we observe
that in a Sunday scenario, SHARC provides speed-ups of up to 787 over Dijkstra. However, this
values drops to 60 if a high traffic scenario is applied. The reason for this loss in query performance
is the bad quality of our Dijkstra-based approximation. If perturbation is higher, upper and lower
bounds are less tight than in a scenario with only few time-dependent edges. Interestingly, adding
landmarks yields an additional speed-up of up to 4. This is especially useful in high traffic scenarios
as query performance is now down to 6.31 ms, which seems to be sufficient for most applications.

Switching to arc-flags approximation via functions during preprocessing (generous SHARC)
hardly pays off. Preprocessing times increase by a factor between 10 (Sunday) and 20 (midweek)
but this tremendous increase only yields an increase in query performance by ≈ 20%. We conclude
that it is sufficient to settle for arc-flags approximation via bounds.

However, investing more preprocessing time pays off: Query performance of aggressive SHARC
is almost independent of the traffic day: For both Saturday and Sunday, we observe query times of
0.5 ms, a speed-up of about 3 000 over Dijkstra’s algorithm. By adding landmarks, we get down
to 0.3 ms and the speed-up is now ≈ 5 000. Compared to static SHARC, we observe that aggressive
time-dependent SHARC yields almost the same speed-up in terms of settled nodes. However, the
number of relaxed edges is lower in static scenarios and, thus, query performance is slightly better.
Still, we pay a high price in terms of preprocessing times for switching to aggressive SHARC. It
seems as the best trade-off between preprocessing effort and query performance is an economical
variant combined with landmarks. Here, speed-ups over Dijkstra’s algorithm vary between 238
and 2 011, depending on the traffic day.
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Figure 13: Comparison of time-dependent economical SHARC applying a Wednesday, Saturday, and
Sunday traffic scenario using the Dijkstra rank methodology [34]. The results are represented as a box-
and-whisker plot [33]: each box spreads from the lower to the upper quartile and contains the median, the
whiskers extend to the minimum and maximum value omitting outliers, which are plotted individually.
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Local Queries. In order to gain further insights into the impact of traffic days on query perfor-
mance of economical SHARC, Figure 13 reports the query times of SHARC with respect to the
Dijkstra rank. As inputs we use our German road network applying traffic data for midweek, Satur-
day, and Sunday. Note that we use a logarithmic scale due to outliers. We observe that up to a rank
of 212, query performance is almost independent of the traffic day. However, beyond this rank, high
traffic queries (midweek) get slower. The same holds for medium traffic queries (Saturday) beyond
ranks of 215. The reason for this is that for long-range queries the quality of Dijkstra-based arc-
flags fades since upper- and lower bounds get worse with increasing distance. Another interesting
observation is that queries for a given rank vary by up to 2 orders of magnitude. Still, all queries
are executed in less than 55 ms.

Heuristic SHARC. Table 2 reports query performance of SHARC if suboptimal paths are al-
lowed. For approximate queries, the quality of the computed path is very important. Let µ be the
length of the shortest path and σ be the length of the path found by heuristic SHARC. We report
three types of errors: The error-rate (which depicts which fraction of the queries are non-optimal),
the maximal relative error (σ/µ − 1), and maximal absolute error (σ − µ). Obviously, the path
found by heuristic SHARC can only be longer than the shortest. Note that preprocessing times
of heuristic SHARC are higher than for our (economical) exact variant since we need to grow 14
instead of 2 shortest path trees per boundary node. We observe excellent query performance and

Table 2: Performance of heuristic SHARC on the German road network instance. Since heuristic SHARC
may yield suboptimal paths, we report the error-rate, the maximal relative, and maximal absolute error.

Prepro Error Time-Queries

time space error max max #settled speed #rel. speed time speed
scenario algorithm [h:m] [B/n] -rate rel. ab.[s] nodes up edges up [ms] up

Monday
heu SHARC 3:30 138.2 0.46% 0.54% 39.3 810 2 935 1 593 3 439 0.69 2 253
heu L-SHARC 3:32 202.2 0.46% 0.54% 39.3 330 7 213 1 076 5 090 0.38 4 104

midweek
heu SHARC 3:26 137.2 0.82% 0.61% 48.3 818 2 820 1 611 3 297 0.69 2 164
heu L-SHARC 3:28 201.2 0.82% 0.61% 48.3 334 6 900 1 092 4 866 0.38 3 915

Friday
heu SHARC 3:14 125.2 0.50% 0.50% 50.3 769 3 044 1 522 3 543 0.64 2 358
heu L-SHARC 3:16 189.2 0.50% 0.50% 50.3 322 7 266 1 054 5 118 0.36 4 168

Saturday
heu SHARC 2:13 80.4 0.18% 0.23% 16.9 666 3 499 1 336 4 018 0.51 2 887
heu L-SHARC 2:15 144.4 0.18% 0.23% 16.9 278 8 369 927 5 788 0.29 5 097

Sunday
heu SHARC 1:48 58.8 0.09% 0.36% 14.9 635 3 699 1 271 4 255 0.46 3 163
heu L-SHARC 1:50 122.8 0.09% 0.36% 14.9 272 8 639 908 5 960 0.27 5 420

no traffic static SHARC 0:06 13.5 0.00% 0.00% 0.0 591 3 790 1 837 2 810 0.30 4 075

preprocessing effort of heuristic SHARC. Without landmarks, queries are up to 3 163 times faster
than Dijkstra. If landmarks are added, this value increases to above 5 400. These values are
achieved by a preprocessing effort of not more than 3.5 hours. More importantly, the impact of
perturbation fades. For high traffic scenarios, queries are below 0.38 ms, for low traffic scenarios
below 0.27 ms. This very good performance comes with paths of very good quality. Less than 0.9%
of the queries are suboptimal with a maximal relative error of 0.61% and maximal absolute error of
50.3 seconds (the average path length is ≈ 12 hours). Since time-dependent road networks are based
on historical data anyway, such low errors seem reasonable for real-world applications. One could
even think of the following approach. We compute economical and heuristic SHARC, which only
differ in arc-flags, not in shortcuts: As long as the server load is low, we use economical SHARC and
switch to heuristic SHARC only during peak hours. Comparing heuristic and aggressive SHARC
(cf. Table 1), we observe that query performance is almost the same for both variants. However,
the former yields much lower preprocessing times, while the latter guarantees correctness.
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Table 3: Performance of SHARC profile queries on Germany. Column #nodes reinserted depicts how
many nodes have been reinserted in the queue after removal. Column profile/time shows the quotient of
the corresponding figure for profile and time queries. Hence, it shows the slow-down when switching from
time to profile queries.

Time-Queries Profile-Queries

#settled #relaxed time #settled prof. #nodes #relaxed time prof.
traffic day variant nodes edges [ms] nodes /time reins. edges [ms] /time

Monday
eco 19 136 101 176 24.55 19 768 1.03 402 208 942 51 122 2 083
heu 810 1 593 0.69 1 071 1.32 24 3 597 1 008 1 461

midweek
eco 19 425 104 947 25.06 20 538 1.06 432 222 066 60 147 2 400
heu 818 1 611 0.69 1 100 1.35 27 3 731 1 075 1 548

Friday
eco 17 412 92 473 22.07 19 530 1.12 346 204 545 52 780 2 392
heu 769 1 522 0.64 1 049 1.36 21 3 551 832 1 293

eco 5 284 19 991 5.34 5 495 1.04 44 41 956 3 330 624
Saturday agg 721 1 603 0.58 865 1.20 9 3 269 134 233

heu 666 1 336 0.51 798 1.20 8 2 665 98 192

eco 2 142 6 549 1.86 2 294 1.07 12 13 563 536 288
Sunday agg 670 1 439 0.50 781 1.17 5 2 824 57 114

heu 635 1 271 0.46 738 1.16 5 2 449 45 98

Profile Queries. Up to this point we only reported performance of time-queries, Table 3 now
reports profile-query performance of SHARC. Note that profile figures are based on 1 000 random
queries and that we also report time-query performance for comparison.

We observe that the perturbation has an even higher impact on profile-queries. While profiles
can be computed by economical SHARC within 1 second on the weekend, profile queries take up
to 1 minute during high traffic days. Our heuristic version, however, yields acceptable query times.
For all traffic scenarios, a complete profile can be computed in ≈ 1 second. Comparing time- and
profile-queries, we observe that the search-space only increases at most by 35% when running profile-
instead of the time-queries. However, due to the high number of interpolation points of the labels
propagated through the network, profile-queries are up to 2 400 times slower than time-queries. The
slow-down is much less for a low traffic scenario. This is due to the fact that less edges are time-
dependent and thus, labels get less complex in low traffic scenarios than in high traffic situations.
Summarizing, switching from time to profile queries is expensive in terms of query times but at least
for heuristic SHARC, computing a complete profile is practical.

6.1.2 Europe

Each edge of our European road network belongs to one of five main categories representing mo-
torways, national roads, local streets, urban streets, and rural roads. In order to generate synthetic
time-dependent edge costs, we use the generator introduced in [28]. The methods developed there
are based on statistics gathered using real-world data on a limited-size road network. The period
is set to 24 hours. Moreover, two traffic jams are assigned to each edge, one in the morning, one in
the evening. For details, see [28]. We additionally adjust the degree of perturbation by assigning
time-dependent edge-costs only to specific categories of edges. In our no traffic scenario, all edges
are time-independent, i.e., the graph is static. In a low traffic scenario, all motorways are time-
dependent, other roads are time-independent. The medium traffic scenario additionally includes
congested national roads, and for the high traffic scenario, we perturb all edges except local and
rural roads.
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Table 4: Performance of SHARC on our time-dependent European road network instance. Scenario depicts
the degree of perturbation, as described above.

Prepro Error Time-Queries

time space error max max #sett. speed #rel. speed time speed
scen. algorithm [h:m] [B/n] -rate rel. [s] nodes up edges up [ms] up

eco SHARC 1:45 21.9 0.00% 0.00% 0 36 063 247 238 467 88 31.55 177
low eco L-SHARC 1:50 85.9 0.00% 0.00% 0 9 506 939 74 890 281 11.45 487
traffic heu SHARC 6:31 21.1 35.25% 0.68% 285 2 827 3 156 4 333 4 849 1.26 4 410

heu L-SHARC 6:36 85.1 35.25% 0.68% 285 1 550 5 758 4 081 5 149 0.91 6 097

eco SHARC 4:37 42.6 0.00% 0.00% 0 42 776 210 296 845 75 42.75 132
med eco L-SHARC 4:42 106.6 0.00% 0.00% 0 11 977 749 98 049 226 18.72 301
traffic heu SHARC 10:55 39.1 36.11% 1.28% 431 3 920 2 289 6 238 3 550 1.78 3 154

heu L-SHARC 11:00 103.1 36.11% 1.28% 431 2 308 3 888 6 016 3 681 1.33 4 240

eco SHARC 6:44 133.8 0.00% 0.00% 0 66 908 133 480 768 44 82.12 70
high eco L-SHARC 6:49 197.8 0.00% 0.00% 0 18 289 485 165 382 127 38.29 150
traffic heu SHARC 22:12 127.2 39.56% 1.60% 541 5 031 1 764 8 411 2 498 2.94 1 958

heu L-SHARC 22:17 191.2 39.56% 1.60% 541 3 873 2 292 8 103 2 592 2.13 2 703

no static SHARC 0:35 13.7 0.00% 0.00% 0 779 11 301 3 335 6 299 0.35 15 831

Table 4 reports the results of economical and heuristic SHARC for the European inputs. Unfor-
tunately, it turned out that this input is too big to apply generous or aggressive SHARC. Note that
we again report the performance of static SHARC for comparison. Like for Germany, we observe
that the degree of perturbation has a high influence on both preprocessing and query performance of
SHARC. Again, preprocessing times increase if more edges are time-dependent. Query performance
of economical SHARC on Europe is similar—with respect to speed-up over Dijkstra’s algorithm—
to Germany. Combined with landmarks, queries times are below 40 ms for all scenarios. These query
times can be achieved by investing up to 7 hours of preprocessing, which still seems reasonable for
most applications.

Comparing heuristic SHARC on Germany (cf. Table 2) and Europe, we observe that speed-
ups over Dijkstra’s algorithm are almost identical in both cases. However, the quality of paths
is worse for Europe than for Germany: Up to 40% of the queries are incorrect and the maximal
error increases to 1.6%. A reason for this is that for Europe, shortcuts get more complex than for
Germany. Hence, the shortest path may change more often during the day than for Germany. Still,
with respect to travel times within Europe, these errors still seem reasonable.

6.1.3 Comparison

Next, we compare time-dependent SHARC to other recent time-dependent speed-up techniques, in-
cluding those published after the preliminary version of this work. We hereby split our comparison in
two parts: exact queries and approximation. Table 5 reports query performance of time-dependent
Dijkstra, uni-directional ALT [11], bidirectional ALT [28], Core-ALT [8], and Contraction Hier-
archies [1] compared to SHARC in an exact setup, while Table 6 depicts performance if suboptimal
paths are allowed. As input we use our time-dependent road networks of Europe (high traffic) and
Germany (midweek and Sunday). Note that no approximate variant of Contraction Hierarchies
exists yet and that no results for Europe (high traffic) have been published. The reason for the
latter is the high memory consumption making Contraction Hierarchies impractical for this input.
Also note that the time-dependent variants of Contraction Hierarchies and Core-ALT have been
published after [7].
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Table 5: Performance of Dijkstra, uni- and bidirectional ALT, Core-ALT, SHARC, and Contraction
Hierarchies (CH) in an exact setup. Note that no figures for the number of relaxed edges of CH is given
in [1].

Prepro Queries

time space #settled speed #relaxed speed time speed
input algorithm [h:m] [B/n] nodes up edges up [ms] up

Dijkstra 0:00 0 2 305 440 1 5 311 600 1 1 502.88 1
uni-ALT 0:23 128 200 236 12 239 112 22 148.36 10
ALT 0:23 128 110 134 21 131 090 41 94.26 16

Ger midweek Core-ALT 0:09 50 3 190 723 12 255 433 5.36 280
eco SHARC 1:16 155 19 425 119 104 947 51 25.06 60
eco L-SHARC 1:18 219 2 776 831 19 005 279 6.31 238
CH 0:25 1 019 528 4 366 – – 1.22 1231

Dijkstra 0:00 0 2 348 470 1 5 410 600 1 1 464.41 1
uni-ALT 0:23 128 142 631 16 170 670 32 92.79 16
ALT 0:23 128 58 956 40 70 333 77 42.96 34
Core-ALT 0:05 19 1 773 1 325 6 712 806 2.13 688

Ger Sunday eco SHARC 0:30 65 2 142 1 097 6 549 826 1.86 787
eco L-SHARC 0:32 129 576 4 076 2 460 2 200 0.73 2 011
agg SHARC 27:20 61 670 3 504 1 439 3 759 0.50 2 904
agg L-SHARC 27:22 125 283 8 300 978 5 535 0.29 5 045
CH 0:11 248 407 5 770 – – 0.71 2 061

Dijkstra 0:00 0 8 877 158 1 21 006 800 1 5 757.45 1
uni-ALT 1:15 128 2 143 160 4 2 613 994 8 1 520.83 4

Europe ALT 1:15 128 3 009 320 3 3 799 112 6 1 379.21 4
high traffic Core-ALT 1:00 61 60 961 146 356 527 59 121.47 47

eco SHARC 6:44 134 66 908 133 480 768 44 82.12 70
eco L-SHARC 6:49 198 18 289 485 165 382 127 38.29 150

Table 6: Performance of Dijkstra, uni- and bidirectional ALT, Core-ALT, and SHARC in an approxi-
mation setup.

Prepro Error Time-Queries

time space error max max #sett. spd #rel. speed time spd
input algorithm [h:m] [B/n] -rate rel. abs[s] nodes up edges up [ms] up

ALT 0:23 128 12.4% 14.32% 1 892 50 764 45 60 398 88 36.92 41
Ger Core-ALT 0:09 50 8.2% 13.84% 2 408 1 593 1 447 5 339 995 1.87 804
mid heu SHARC 3:26 137 0.8% 0.61% 48 818 2 820 1 611 3 297 0.69 2 164

heu L-SHARC 3:28 201 0.8% 0.61% 48 334 6 900 1 092 4 866 0.38 3 915

ALT 0:23 128 10.4% 14.28% 1 753 50 349 47 59 994 90 36.04 41
Ger Core-ALT 0:05 19 4.0% 12.72% 1 400 1 551 1 514 5 541 976 1.71 856
Sun heu SHARC 1:48 59 0.1% 0.36% 15 635 3 699 1 271 4 255 0.46 3 163

heu L-SHARC 1:50 123 0.1% 0.36% 15 272 8 639 908 5 960 0.27 5 420

ALT 1:15 128 35.4% 10.57% 5 789 311 209 29 382 061 55 214.24 27
Eur Core-ALT 1:00 61 33.0% 8.69% 6 643 6 365 1 395 32 719 642 9.22 624
high heu SHARC 22:12 127 39.6% 1.60% 541 5 031 1 764 8 411 2 498 2.94 1 958

heu L-SHARC 22:17 191 39.6% 1.60% 541 3 873 2 292 8 103 2 592 2.13 2 703
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Exact Setup. Depending on the scenario, different algorithms perform best. While Core-ALT is
the technique with lowest preprocessing effort (both time and overhead), Contraction Hierarchies
(CH) or SHARC win with respect to query performance. While CH tend to have fast query times,
the space consumption is up to 1 000 bytes per node. For this reason, CH cannot be used for
Europe (high traffic). Aggressive SHARC however, has the lowest query times but for the price of
high preprocessing times. In fact, preprocessing times for aggressive SHARC are only practical for
Germany Sunday. As soon as the graph gets bigger or more edges are time-dependent, preprocessing
takes more than 2 days. So, it seems as if economical L-SHARC is the favorable technique since
it is the one most robust to the input. Moreover, query performance is always within reasonable
bounds.

Approximation. Things are even clearer if we allow suboptimal paths. Performance of SHARC
is boosted by more than an order of magnitude if we drop correctness combined with a reasonable
preprocessing effort. Although ALT and Core-ALT also gain from allowing suboptimal paths,
both query performance and the quality of the computed paths is (much) worse than for heuristic
SHARC. We conclude that SHARC is (clearly) superior if we allow slightly suboptimal paths.

6.2 Time-Dependent Timetable Information

Our timetable data—provided by HaCon for scientific use—of Europe consists of 30 516 train stations
and 1 775 482 elementary connections. The period is 24 hours. The resulting realistic, i.e., including
transfer times, time-dependent network has about 0.5 million nodes and 1.4 million edges, and fulfills
the FIFO property (cf. Section 3). Table 7 reports the performance of time-dependent SHARC
using this input. We report the performance of economical and aggressive SHARC. Recall that
the economical version computes approximate arc-flags on all levels, while our aggressive variant
computes exact flags during preprocessing. For comparison, we also report the results for plain
Dijkstra and unidirectional ALT.

We observe a good performance of SHARC in general. Queries for specific departure times are
up to 29.7 times faster than plain Dijkstra in terms of search space. This lower search space yields
a speed-up of a factor of 26.6. This gap originates from the fact that SHARC operates on a graph
enriched by shortcuts. As shortcuts tend to have many interpolation points, evaluating them is more
expensive than original edges. As expected, our economical variant is slower than the aggressive
version but preprocessing is about 8 times faster. Recall that the only difference between both
versions is the way arc-flags are computed during the last iteration step. However, since composing
and merging functions is more expensive than adding and comparing integers, preprocessing times
increase significantly.

Table 7: Performance of time-dependent Dijkstra, uni-directional ALT and SHARC using our timetable
data as input. Preprocessing times are given in hours and minutes, the overhead in bytes per node. Moreover,
we report the increase in edge count over the input. Column #settled nodes denotes the number of nodes
removed from the priority queue, query times are given in milliseconds. Column speed-up reports the
speed-up over the corresponding value for plain Dijkstra.

Prepro Time-Queries Profile-Queries

time space edge #settled speed time speed #settled speed time speed
technique [h:m] [B/n] inc. nodes up [ms] up nodes up [ms] up

Dijkstra 0:00 0 0% 260 095 1.0 125.2 1.0 1 919 662 1.0 5 327 1.0
uni-ALT 0:02 128 0% 127 103 2.0 75.3 1.7 1 434 112 1.3 4 384 1.2
eco SHARC 1:30 113 74% 32 575 8.0 17.5 7.2 181 782 10.6 988 5.4
agg SHARC 12:15 120 74% 8 771 29.7 4.7 26.6 55 306 34.7 273 19.5
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Comparing time- and profile-queries, we observe that the slow-down in terms of the number of
heap operations is only of a factor of 4 to 7. Again, as composing and merging functions is more
expensive than adding and comparing integers, the loss in terms of running times is much higher.
Still, both SHARC variants are capable of computing a travel time function between two random
train stations in less than 1 second.

Comparison to Road Networks. Comparing the figures from Tables 3 and 7, we observe that
speed-ups for time-queries in road networks are higher than in railway networks. To some extend,
this stems from the fact that the network is smaller. On a road network with 0.5 million nodes,
aggressive SHARC yields speed-ups of about 800. The remaining gap mainly stems from the fact
that road networks include a stronger hierarchy than railway networks. However, switching from
time to profile queries is cheaper for timetable information. The reason for this is that it is cheaper
to compose and merge functions needed for timetables than those needed for road networks (cf.
Section 3).

7 Conclusion

In this work, we presented the first efficient speed-up technique for exact routing in large time-
dependent transportation networks. We generalized the recently introduced SHARC algorithm by
augmenting several static routines of the preprocessing to time-dependent variants. In addition, we
introduced routines to handle the problem of expensive shortcuts. As a result, we are able to run
fast queries on continental-sized transportation networks of both roads and railways. Moreover, we
are able to compute the distances between two nodes for all possible departure times. By dropping
optimality, we compute time-dependent paths with minor errors in road networks up to 5 000 times
faster than plain Dijkstra.

Regarding future work, one could think of faster ways of composing, merging, and approximat-
ing piecewise linear functions as this would directly accelerate preprocessing and, more importantly,
profile-queries significantly. Preprocessing of aggressive SHARC is based on constructing multiple
profile graphs, which are independent of each other. Hence, it seems as if massive parallelization
might help to preprocess aggressive SHARC within reasonable time for all inputs. Another inter-
esting question is whether we can somehow reduce the space consumption of SHARC. Here, one
should focus on shortcuts since they are the main reason for the increase in space consumption when
switching from static to time-dependent route planning.
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A Implementation Details

For an efficient implementation of time-dependent SHARC, we need a fast time-dependent graph
datastructure, a tailored data structure for maintaining a multi-level partition, and an efficient
priority queue. For the latter, Dominik Schultes provided us with his implementation of a binary
heap [36]. In the following, we describe our graph and multi-level partition data structures in more
detail.

Time-Dependent Graphs. SHARC is a unidirectional technique allowing a very simple data
structure. We use two arrays of structs, one representing nodes, the other edges. Enumeration is
started at zero. The edge entries are ordered by their source nodes; thus, all outgoing edges of
a node are stored in succession. Each node stores the index to its first outgoing edge, providing
an easy access to them. Each edge stores its head node. A dummy node is also saved at the end
of the node-array to provide a pointer to the first invalid element of the edge-array. A number of
interpolation points is stored to each edge depicting the travel time at different departure times.
Since the number of such points is not the same for each edge we introduce a third layer storing all
interpolation points of the graph. Each edge stores an additional pointer to the first interpolation
point in the third layer. For each edge, the interpolation points are sorted by their time value. Note
that we have to introduce a dummy edge for iteration over the points of the last edges. Figure 14
gives an example. For accessing the correct interpolation points for a specific departure time τ , we
access the point p = ⌊τ/Π⌋ · |P (e)| + firstPoint(e) where |P (e)| denotes the number of points
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assigned to edge e. In most cases, this access point is close to the one we seek. By linear search we
finally retrieve the correct entries.

firstEdge

targetNode

firstPoint

0

1 3 2 3 2 0

2 3 4 6

time

weight

0

6 8 12 18 20

3 5 4 5 3

8 9 10

2 5 2
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8 10 12
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8:00 - 5
6:00 - 3

18:00 - 5
20:00 - 3

12:00 - 4
8:00 - 1

12:00 - 1
10:00 - 4

8:00 - 2

10:00 - 2
9:00 - 5

Figure 14: Adjacency representation of a time-dependent graph. The right hand figure shows the repre-
sentation of the graph including three time-dependent edges. The resulting data structure is shown by the
left hand figure.

Multi-Level Partition. During a SHARC query, we need to access the cell number of a node on
a certain level very efficiently. In fact, this operation is executed whenever we settle a node. So,
access should be as fast as possible. For each node, we store the cell numbers of all levels in one
integer. The cell number on the lowest level is stored in the lowest bits, the number on the highest
level in the highest bits. An example if given in Fig. 15. Then, the cell number can be accessed by
one bitshift and an additional AND operation.

1 1 1 01 1 10 0 0 1 1 0 0 0 0

level

cell number

01234

0126105

Figure 15: Example for storing a multi-level partition with 4 cells on the lower 3 levels, 8 cells on the
fourth level, and 108 cells on the topmost level.
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