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Abstract. During the last years, many speed-up techniques for Dijk-

stra’s algorithm have been developed. As a result, computing a shortest
path in a static road network is a matter of microseconds. However, only
few of those techniques work in time-dependent networks. Unfortunately,
such networks appear frequentely in reality: Roads are predictably con-
gestured by traffic jams, and efficient timetable information systems rely
on time-dependent networks. Hence, a fast technique for routing in such
networks is needed. In this work, we present an exact time-dependent
speed-up technique based on our recent SHARC-algorithm. As a re-
sult, we are able to efficiently compute shortest paths in time-dependent
continental-sized transportation networks, both of roads and of railways.

1 Introduction

Computing shortest paths in graphs is used in many real-world applications like
route planning in road networks, timetable information for railways, or schedul-
ing for airplanes. In general, Dijkstra’s algorithm [1] finds a shortest path
between a given source s and target t. Unfortunately, the algorithm is far too
slow to be used on huge datasets. Thus, several speed-up techniques have been
developed yielding faster query times for typical instances, e.g., road or railway
networks. See [2] for an overview. A major drawback of most existing speed-
up techniques is that their correctness depends on the fact that the network is
static, i.e., the network does not change between queries. Only [3,4] showed how
preprocessing can be updated if a road network is perturbed by a relatively small
number of traffic jams.

However, in real-world road networks, many traffic jams are predictable. This
can be modeled by a time-dependent network, where the travel time depends on
the departure time τ . Moreover, a very efficient model for timetable information
relies on time-dependent networks (cf. [5] for details) as well. Unfortunately,
none of the speed-up techniques yielding high speed-ups can be used in a time-
dependent network in a straight-forward manner. Moreover, possible problem
statements for shortest paths become even more complex in such networks. A
user could ask at what time she should depart in order to spend as little time
traveling as possible.

� Partially supported by the Future and Emerging Technologies Unit of EC (IST
priority – 6th FP), under contract no. FP6-021235-2 (project ARRIVAL).

D. Halperin and K. Mehlhorn (Eds.): ESA 2008, LNCS 5193, pp. 332–343, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Time-Dependent SHARC-Routing 333

Related Work. As already mentioned, a lot of speed-up techniques for static
scenarios have been developed during the last years. Due to space limitations,
we direct the interested reader to [2], which gives a good overview over static
routing techniques. Much less work has been done on time-dependent routing.
In [6], Dijkstra’s algorithm is extended to the time-dependent case based on
the assumption that the network fulfills the FIFO property. The FIFO property
is also called the non-overtaking property, because it basically states that if A
leaves an arbitrary node s before B, B cannot arrive at any node t before A.
Computation of shortest paths in FIFO networks is polynomially solvable [7],
while it is NP-hard in non-FIFO networks [8].

Goal-directed search, also called A∗ [9], has been adapted to the previously
described scenario; an efficient version for the static case has been presented
in [10]. In [3], unidirectional ALT is evaluated on time-dependent graphs (ful-
filling the FIFO property) yielding mild speed-ups of a factor between 3 and
5, depending on the degree of perturbation. Goal-directed search has also suc-
cessfully been applied to time-dependent timetable networks [5,11]. Recently, it
has been shown that time-dependent ALT can be used in a bidirectional man-
ner [12]. However, in order to obtain faster queries than in the unidirectional
case, the user has to accept approximative solutions. Moreover, our old imple-
mentation of static SHARC [13] already allowed fast approximative queries in a
time-dependent scenario.

Our Contribution. In this work, we show how our recently developed SHARC-
algorithm [13] can be generalized in such a way that we are able to perform exact
shortest-path queries in time-dependent networks. The key observation is that
the concept of SHARC stays untouched. However, at certain points we augment
static routines to time-dependent ones. Moreover, we slightly adapt the intuition
of Arc-Flags [14]. And finally, we deal with the problem that adding shortcuts
to the graph is more expensive than in static scenarios. As a result, we are able
to perform exact time-dependent queries in road and railway networks.

We start our work on time-dependent routing in Section 2 by introducing
basic definitions and a short review of SHARC in static scenarios. Basic work on
modeling time-dependency in road and railway networks is located in Section 3.
Furthermore, we introduce basic algorithms that our preprocessing routines rely
on. The preprocessing routine itself and the query algorithms of time-dependent
SHARC are located in Section 4. We hereby show how the two main ingredients
of SHARC, i.e., graph contraction and arc-flags computation, have to be altered
for time-dependent networks. It turns out that the adaption of contraction is
straight-forward, while arc-flags computation gets more expensive: The key ob-
servation is that we have to alter the intuition of arc-flags slightly for correct
routing in time-dependent networks. We also show how SHARC can be used to
compute a shortest path between two points for all possible departure times.

In order to show that time-dependent SHARC performs well in real-world
environments, we present an extensive experimental evaluation in Section 5.
Section 6 concludes our work with a summary and possible future research.
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2 Preliminaries

The major difference between static and time-dependent routing is the usage
of functions instead of constants for specifying edge weights. Throughout the
whole work, we restrict ourselves to a function space � consisting of positive
periodic functions f : Π → �

+, Π = [0, p], p ∈ � such that f(0) = f(p) and
f(x) + x ≤ f(y) + y for any x, y ∈ Π, x ≤ y. In the following, we call Π the
period of the input. The composition of two functions f, g ∈ � is defined by
(f ⊕ g)(x) := f(x)+ g((f(x)+x)mod p). Moreover, we need to merge functions.
The merged function h of two functions f, g is defined by h(x) = min{f(x), g(x)}.
Comparison of functions is defined as follows: f < g means that f(x) < g(x)
holds for all x ∈ Π . The upper bound of f is noted by f = maxx∈Π f(x), the
lower by f = minx∈Π f(x). An underapproximation ↓ f of a function f is a
function such that ↓ f(x) ≤ f(x) holds for all x ∈ Π . An overapproximation
↑f is defined analogously. We also restrict ourselves to simple, directed graphs
G = (V, E) with time-dependent length functions len : E → �. Note that our
networks fullfill the FIFO-property if we interpret the length of an edge as travel
times due to our choice of �. The reverse graph G = (V, E) is the graph obtained
from G by substituting each (u, v) ∈ E by (v, u). The 2-core of an undirected
graph is the maximal node induced subgraph of minimum node degree 2. The
2-core of a directed graph is the 2-core of the corresponding simple, unweighted,
undirected graph. A partition of V is a family C = {C0, C1, . . . , Ck} of sets
Ci ⊆ V such that each node v ∈ V is contained in exactly one set Ci. An
element of a partition is called a cell. A multilevel partition of V is a family
of partitions {C0, C1, . . . , Cl} such that for each i < l and each Ci

n ∈ Ci a cell
Ci+1

m ∈ Ci+1 exists with Ci
n ⊆ Ci+1

m . In that case the cell Ci+1
m is called the

supercell of Ci
n. The supercell of a level-l cell is V . The boundary nodes BC of

a cell C are all nodes u ∈ C for which at least one node v ∈ V \ C exists such
that (v, u) ∈ E or (u, v) ∈ E.

By d(s, t, τ) we denote the distance between s, t ∈ V if departing from s at
time τ . The distance-label, i.e., the distance between s and t for all possible
departure times ∈ Π , is given by d∗(s, t). Note that the distance-label is a
function ∈ �. In the following, we call a query for determining d(s, t, τ) an s-t
time-query, while a query for computing d∗(s, t) is denoted by s-t profile-query.

Static SHARC-Routing. The classic arc-flag approach [14] first computes
a partition C of the graph and then attaches a label to each edge e. A label
contains, for each cell Ci ∈ C, a flag AFCi(e) which is true iff a shortest path
to a node in Ci starts with e. A modified Dijkstra then only considers those
edges for which the flag of the target node’s cell is true. SHARC [13] extends and
combines ideas of Arc-Flags and hierarchical approaches [18,17]. Preprocessing
of static SHARC is divided into three sections. During the initialization phase,
we extract the 2-core of the graph and perform a multi-level partition of G.
Then, an iterative process starts. At each step i we first contract the graph by
bypassing low-degree nodes and set the arc-flags automatically for each removed
edge. On the contracted graph we compute the arc-flags of level i by growing a
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partial centralized shortest-path tree from each cell Ci
j . At the end of each step

we prune the input by detecting those edges that already have their final arc-
flags assigned. In the finalization phase, we assemble the output-graph, refine
arc-flags of edges removed during contraction and finally reattach the nodes
removed at the beginning. The query of static SHARC is a multi-level Arc-Flags
Dijkstra adapted from a two-level Arc-Flags setup [14].

3 Models and Basic Algorithms

In this section, we introduce our approach how to model time-dependency in road
and railway networks efficiently. In particular, we present our label-correcting
algorithm, which is a main ingredient of time-dependent SHARC-preprocessing.

Modeling Time-Dependency. We apply two types of edge-functions, one for
road networks, the other one for timetable information.

In road networks, we use a piece-wise linear function for modeling time-
dependency. Each edge gets assigned a number of sample points that depict
the travel time on this road at the specific time. Evaluating a function at time τ
is then done by linear interpolation between the points left and right to τ . Let
P (f) be the number of interpolation points of f . Then the composed function
f ⊕g, modeling the duration for traversing g after f , may have up to P (f)+P (g)
number of interpolation points in worst case. This is one of the main problems
when routing in time-dependent graphs: Almost all speed-up techniques devel-
oped for static scenarios rely on adding long shortcuts to the graph. While this
is “cheap” for static scenarios, the insertion of time-dependent shortcuts yields a
high amount of preprocessed data. Even worse, merging travel-functions, mod-
eling the merge of two parallel edges into one, increases |P | as well.

In timetable graphs, time-dependent edges model several trains running on
the same route from one station to another. For each such connection, we add
an interpolation point to the corresponding edge. The timestamp σ of the in-
terpolation point is the departure time, the weight w the travel time. When we
want to evaluate a time-dependent edge at a specific time τ , we identify the
interpolation point with minimum σ − τ ≥ 0. Then the resulting traveltime is
w + σ − τ , i.e., the waiting time for the next connection plus its travel duration.

Note that composing two timetable edge-functions f, g is less expensive than in
road networks. More precisely, P (f ⊕g) = min{P (f), P (g)} holds as the number
of relevant departure times is dominated by the edge with less connections.
Merging functions, however, may increase the number of interpolation points.

Label-Correcting Algorithms. As already mentioned, computing d(s, t, τ)
can be solved by a modified Dijkstra [6]. However, computing d∗(s, t) is more
expensive but can be computed by a label-correcting algorithm [15]. Such an
algorithm can be implemented very similarly to Dijkstra. The source node
s is initialized with a constant label d∗(s, s) = 0, any other node u with a
constant label d∗(s, u) = ∞. Then, in each iteration step, a node u with minimum
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d∗(s, u) is removed from the priority queue. Then for all outgoing edges (u, v) a
temporary label l(v) = d∗(s, u) ⊕ len(u, v) is created. If l(v) ≥ d∗(s, v) does not
hold, l(v) yields an improvement. Hence, d∗(s, v) is updated to min{l(v), d∗(s, v)}
and v is inserted into the queue. We may stop the routine if we remove a node
u from the queue with d(s, u) ≥ d(s, t). If we want to compute d∗(s, t) for many
nodes t ∈ V , we apply a label-correcting algorithm and stop the routine as soon
as our stopping criterion holds for all t. Note that we may reinsert nodes into the
queue that have already been removed by this procedure. Also note that when
applied to a graph with constant edge-functions, this algorithm equals a normal
Dijkstra. An interesting result from [15] is the fact that the runtime of label-
correcting algorithms highly depends on the complexity of the edge-functions.

In the following, we construct shortest-path DAGs, i.e., compute d∗(s, u) for
a given source s and all nodes u ∈ V , with our label-correcting algorithm. We
call an edge (v, u) a DAG-edge if d∗(s, v) ⊕ (v, u) > d∗(s, u) does not hold. In
other words, (u, v) is a DAG-edge iff it is part of a shortest path from s to v for
at least one departure time.

4 Exact Time-Dependent SHARC

In static scenarios, a true arc-flag AFC(e) denotes whether e has to be considered
for a shortest-path query targeting a node within C. In other words, the flag is
set if e is important for (at least one target node) in C. In a time-dependent
scenario, we use the following intuition to set arc-flags: an arc-flag AFC(e) is set
to true, if e is important for C at least once during Π . In the following, we show
how to adapt preprocessing of SHARC in order to reflect this intuition correctly.
Moreover, we present the time-dependent query algorithm.

4.1 Time-Dependent Preprocessing

Initialization. In a first step, we extract the 2-core from the graph since we can
directly assign correct arc-flags to all edges outside the 2-core: Edges targeting
the 2-core get full flags assigned, others only get the own-cell flag set to true.
Note that this procedure is independent from edge weights. Next, we perform a
multi-level partitioning—using SCOTCH [16]—of the unweighted graph.

Iteration. Next, an iterative process starts. Each iteration step is divided into
three parts, described in the following: contraction, edge reduction, arc-flag com-
putation.

Contraction. Our time-dependent contraction routine works very similar to a
static one [2,17]: We iteratively bypass nodes until no node is bypassable any
more. To bypass a node n we first remove n, its incoming edges I and its outgo-
ing edges O from the graph. Then, for each combination of ei ∈ I and eo ∈ O,
we introduce a new edge of the length len(ei)⊕ len(eo). Note that we explicitely
allow multi-edges. Hence, each shortcut represents exactly one path in the graph,
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making shortcut unpacking easier. We call the number of edges of the path that a
shortcut represents on the graph at the beginning of the current iteration step the
hop number of the shortcut. Note that in road networks, contraction gets more
expensive in terms of memory consumption because the number of interpolation
points of an added shortcut is roughly the sum of the number of interpolation
points of the arcs the shortcuts is assembled from. Moreover, merging a short-
cut with an existing edge may increase the number of interpolation points even
further. Hence, the choice of which node to bypass next is even more important
for the time-dependent scenario than for the static one. We use a heap to deter-
mine the next bypassable node [17]. Let #shortcut of new edges that would be
inserted into the graph if n is bypassed and let ζ(n) =#shortcut/(|I| + |O|) be
the expansion [17] of node n. Furthermore, let h(n) be the hop number of the
hop-maximal shortcut, and let p(n) be the number of interpolation points of the
shortcut with most interpolation points, that would be added if n was bypassed.
Then we set the key of a node n within the heap to h(n)+p(n)+10 ·ζ(n), smaller
keys have higher priority. By this ordering for bypassing nodes we prefer nodes
whose removal yield few additional shortcuts with a small hop number and few
interpolation points.

To keep the costs of shortcuts limited we do not bypass a node if its removal
would either result in a shortcut with more than 200 interpolation points or a
hop number greater than 10. We say that the nodes that have been bypassed
belong to the component, while the remaining nodes are called core-nodes. Note
that in order to guarantee correctness, we have to use cell-aware contraction,
i.e., a node n is never marked bypassable if any of its neighboring nodes is not
in the same cell as n.

Edge-Reduction [4]. Note that our contraction potentially adds shortcuts not
needed for keeping the distances in the core correct. Hence, we perform an edge
reduction directly after each contraction. We grow a shortest-path DAG from
each node u of the core. We stop the growth as soon as all neighbors t of u have
their final label assigned. Then we check all neighbors whether d∗(u, t) < len(u, t)
holds. If it holds, we can remove (u, t) from the graph because for all possible
departure times, the path from u to t does not include (u, t). In order to limit
the running time of this procedure, we restrict the number of priority-queue
removals to 100. Hence, we may leave some unneeded edges in the graph.

Arc-Flags. We have to set arc-flags for all edges of our output-graph, including
those which we remove during contraction. Like for static SHARC, we can set
arc-flags for all removed edges automatically. We set the arc-flags of the current
and all higher levels depending on the source node s of the deleted edge. If s is
a core node, we only set the own-cell flag to true (and others to false) because
this edge can only be relevant for a query targeting a node in this cell. If s
belongs to the component, all arc-flags are set to true as a query has to leave
the component in order to reach a node outside this cell.

Setting arc-flags of those edges not removed from the graph is more expensive.
A straight-forward adaption of computing arc-flags in a time-dependent graph
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is to grow a shortest-path DAG in G for all boundary nodes b ∈ BC of all cells
C at level i. We stop the growth as soon as d∗(u, b) ≥ d∗(v, b) holds for all
nodes v in the supercell of C and all nodes u in the priority queue. Then we set
AFC(u, v) = true if (u, v) is a DAG-edge for at least one DAG grown from all
boundary nodes b ∈ BC .

However, this approach would require to compute a full label-correcting al-
gorithm on the backward graph from each boundary node yielding too long
preprocessing times for large networks. Recall that the running time of grow-
ing DAGs is dominated by the complexity of the function. Hence, we may grow
two DAGs for each boundary node, the first uses ↑len as length functions, the
latter ↓len. As we use approximations with a constant number of interpolation
points (we use 48), growing two such DAGs is faster than growing one exact
one. We end up in two distance labels per node u, one being an overapproxi-
mation, the other being an underapproximation of the correct label. Then, we
set AFC(u, v) = true if len(u, v)⊕ ↑ d∗(v, bC) >↓ d∗(u, bC) does not hold. If
networks get so big that even setting approximative labels is prohibited due to
running times, one can even use upper and lower bounds for the labels. This has
the advantage that building two shortest-path trees per boundary node is suffi-
cient for setting correct arc-flags. The first uses len as length function, the other
len. Note that by approximating arc-flags the quality of them may decrease but
correctness is untouched. Thus, queries remain correct but may become slower.

Finalization. The last phase of our preprocessing-routine first assembles the
output graph. It contains the original graph, shortcuts added during preprocess-
ing and arc-flags for all edges of the output graph. However, some edge may have
no arc-flag set to true, which we can safely remove from the output graph.

Arc-Flags Refinement. During the iteration-phase we set sub-optimal arc-flags
to edges originating from component nodes. However, a query starting from a
node u being part of the a component has to leave the component via core-nodes.
We call those nodes the exit nodes of u. The idea of arc-flags refinement is to
propagate the flags from the exit nodes to edges outgoing from u. For details,
see [13]. This routine can directly be adapted to a time-dependent scenario by
growing shortest-paths DAGs from each u. However, we limit the growth of those
DAGs to 1000 priority-queue removals due to performance. In order to preserve
correctness, we then may only propagate the flags from the exit nodes to u if
the stopping criterion is fulfilled before this number of removals.

Shortcut-Removal. As already mentioned, time-dependent shortcuts are very
space-consuming. Hence, we try to remove shortcuts as the very last step of
preprocessing. The routine works as follows. For each added shortcut (u, v) we
analyze the shortest path it represents. If all nodes on this shortest path have a
degree less than 3, we remove (u, v) from the graph and all edges being part of
the shortest path additionally inherit the arc-flags from (u, v).
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4.2 Query

Time-dependent SHARC allows time- and profile-queries. For computing dτ (s, t),
we use a modified Dijkstra that operates on the output graph. The modifica-
tions are as follows: When settling a node n, we compute the lowest level i on
which n and the target node t are in the same supercell. In order to keep the
effort for this operation as small as possible we use such a numbering of cells such
that the common level can be computed by the most significant bit of current
and target cell. Moreover, we consider only those edges outgoing from n having
a set arc-flag on level i for the corresponding cell of t. In other words, we prune
edges that are not important for the current query. We stop the query as soon
as we settle t. For computing d∗(s, t), we use a modified variant of our label-
correcting algorithm (see Section 3) that also operates on the output graph. The
modifications are the same as for time-queries and the stopping criterion is the
standard one explained in Section 3.

SHARC adds shortcuts to the graph in order to accelerate queries. If the
complete description of the path is needed, the shortcuts have to be unpacked.
As we allow multi-edges during contraction, each shortcut represents exactly one
path in the network, and hence, we can directly apply the unpacking routine from
Highway Hierarchies [18].

5 Experiments

In this section, we present our experimental evaluation. To this end, we evaluate
the performance of time-dependent SHARC for road and railway networks. Our
implementation is written in C++ using solely the STL. As priority queue we
use a binary heap. Our tests were executed on one core of an AMD Opteron
2218 running SUSE Linux 10.3. The machine is clocked at 2.6 GHz, has 16 GB
of RAM and 2 x 1 MB of L2 cache. The program was compiled with GCC 4.2,
using optimization level 3.

Default Setting. Unless otherwise stated, we use a 7-level partition with 4 cells
per supercell on levels 0 to 5 and 104 cells on level 6 for road networks. As
railway networks are smaller, we use a 3-level setup with 8 cells per supercell
on levels 0 to 1 and 112 cells on level 2 for such networks. We use c = 2.5 as
contraction parameter for the all levels. The hop-bound of our contraction is set
to 10, the interpolation-bound to 200.

In the following, we report preprocessing times and the overhead of the pre-
processed data in terms of additional bytes per node. Moreover, we report two
types of queries: time-queries, i.e., queries for a specific departure time, and
profile-queries, i.e., queries for computing d∗(s, t). For each type we provide the
average number of settled nodes, i.e., the number of nodes taken from the pri-
ority queue, and the average query time. For s-t profile-queries, the nodes s and
t are picked uniformly at random. Time-queries additionally need a departure
time τ as well, which we pick uniformly at random as well. All figures in this
paper are based on 1 000 random s-t queries and refer to the scenario that only
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the lengths of the shortest paths have to be determined, without outputting
a complete description of the paths. However, our shortcut expansion routine
needs less than 1 ms to output the whole path; the additional space overhead is
≈ 4 bytes per node.

5.1 Time-Dependent Timetable Information

Our timetable data—provided by Hacon for scientific use—of Europe consists
of 30 516 stations and 1 775 482 elementary connections. The period is 24 hours.
The resulting realistic, i.e., including transfer times, time-dependent network
(cf. [5] for details on modeling issues) has about 0.5 million nodes and 1.4 million
edges. Table 1 reports the performance of time-dependent SHARC using this
input. We report the performance of two variants of SHARC: the economical
version computes Dijkstra-based arc-flags on all levels, while our generous
variant computes exact flags during the last iteration step. Note that we do not
use additional techniques in order to improve query performance, e.g. the avoid
binary search technique (cf. [5] for details). For comparison, we also report the
results for plain Dijkstra and unidirectional ALT [3].

We observe a good performance of SHARC in general. Queries for a spe-
cific departure times are up to 29.7 times faster than plain Dijkstra in terms
of search space. This lower search space yields a speed-up of a factor of 26.6.
This gap originates from the fact that SHARC operates on a graph enriched
by shortcuts. As shortcuts tend to have many interpolation points, evaluating
them is more expensive than original edges. As expected, our economical variant
is slower than the generous version but preprocessing is almost 8 times faster.
Recall that the only difference between both version is the way arc-flags are com-
puted during the last iteration step. Although the number of heap operations is
nearly the same for running one label-correcting algorithm per boundary node
as for growing two Dijkstra-trees, the former has to use functions as labels. As
composing and merging functions is more expensive than adding and comparing
integers, preprocessing times increase significantely.

Table 1. Performance of time-dependent Dijkstra, uni-directional ALT and SHARC
using our timetable data as input. Preprocessing times are given in hours and minutes,
the overhead in bytes per node. Moreover, we report the increase in edge count over
the input. #delete mins denotes the number of nodes removed from the priority queue,
query times are given in milliseconds. Moreover, speed-up reports the speed-up over
the corresponding value for plain Dijkstra.

Prepro Time-Queries Profile-Queries

time space edge #delete speed time speed #delete speed time speed
technique [h:m] [B/n] inc. mins up [ms] up mins up [ms] up
Dijkstra 0:00 0 0% 260 095 1.0 125.2 1.0 1 919 662 1.0 5 327 1.0
uni-ALT 0:02 128 0% 127 103 2.0 75.3 1.7 1 434 112 1.3 4 384 1.2
eco SHARC 1:30 113 74% 32 575 8.0 17.5 7.2 181 782 10.6 988 5.4
gen SHARC 12:15 120 74% 8 771 29.7 4.7 26.6 55 306 34.7 273 19.5
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Comparing time- and profile-queries, we observe that computing d∗ instead of
d yields an increase of about factor 4 − 7 in terms of heap operations. Again, as
composing and merging functions is more expensive than adding and comparing
integers, the loss in terms of running times is much higher. Still, both our SHARC-
variants are capable of computing d∗ for two random stations in less than 1 second.

5.2 Time-Dependent Road Networks

Unfortunately, we have no access to large real-world time-dependent road net-
works. Hence, we use available real-world time-independent networks and gen-
erate synthetic rush hours. As network, we use the largest strongly connected
component of the road network of Western Europe, provided by PTV AG for
scientific use. The graph has approximately 18 million nodes and 42.6 million
edges and edge lengths correspond to (time-independent) travel times. Each
edge belongs to one of five main categories representing motorways, national
roads, local streets, urban streets, and rural roads. In order to generate syn-
thetic time-dependent edge costs, we use the generator introduced in [12]. The
methods developed there are based on statistics gathered using real-world data
on a limited-size road network. The period is set to 24 hours. For details, see [12].
We additionally adjust the degree of perturbation by assigning time-dependent
edge-costs only to specific categories of edges. In a low traffic scenario, only mo-
torways are time-dependent. The medium traffic scenario additionally includes
congested national roads, and for the high traffic scenario, we pertube all edges
except local and rural roads. For comparison, we also report the performance of
static SHARC in a no traffic scenario, i.e., all edges are time-independent.

Table 2 reports the results of SHARC in our different scenarios. Note that
we use the same parameters for all inputs and also report the speed-up over
Dijkstra’s algorithm in terms of query performance. Unfortunately, it turned
out that this input is too big to use a label-correcting algorithm for computing
arc-flags. Hence, we use Dijkstra-based approximation of arc-flags for all lev-
els. Note that this type of preprocessing equates our economical variant from
the last section. We observe that the degree of perturbation has a high influ-
ence on both preprocessing and query performance of SHARC. Preprocessing
times increase if more edges are time-dependent. This is mainly due to our

Table 2. Performance of SHARC on our time-dependent European road network in-
stance. Note that profile-queries are reported in seconds, while time-queries are given
in milliseconds. Also note that we apply static SHARC for the no traffic scenario.

Prepro Time-Queries Profile-Queries

time space edge #delete speed time speed #delete time
scenario [h:m] [B/n] inc. mins up [ms] up mins [s]
no traffic 0:41 13.7 27% 997 8 830 0.42 13 369 - -
low traffic 4:03 27.2 31% 34 123 261 26.12 214 37 980 35.28
medium traffic 6:10 45.6 32% 51 738 173 38.05 148 57 761 61.05
high traffic 8:31 112.4 34% 84 234 105 75.33 76 92 413 154.32
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refinement phase that uses partial label-correcting algorithms in order to im-
prove the quality of arc-flags. The increase in overhead derives from the fact that
the number of additional interpolation points for shortcuts increases. Analyzing
time-query performance of SHARC, we observe that in a our scenario where
only motorways are time-dependent, SHARC provides speed-ups of up to 214
over Dijkstra. However, this values drops to 76 if more and more edges become
time-dependent. The reason for this loss in query performance is the bad quality
of our Dijkstra-based approximation. If more edges are time-dependent, upper-
and lower-bounds are less tight than in a scenario with only few time-dependent
edges. Comparing time- and profile-queries, we observe that the search-space
only increases by ≈ 10% when running profile- instead of the time-queries. How-
ever, due to the high number of interpolation points of the labels propagated
through the network, profile-queries are up to 1200 times slower than time-
queries. Comparing the figures from Tab. 1 and 2, we observe that speed-ups
for time-queries in road networks are higher than in railway networks. However,
the situation changes when running profile-queries. Here, timetable queries are
much faster than queries in road networks. The reason for this is that composing
functions needed for timetables is cheaper than those needed for road networks.

Summarizing, average time-query times are below 100 ms for all scenarios,
while plain Dijkstra has query times of about 5.6 seconds. Moreover, for the
probably most important scenario, i.e., the medium traffic scenario, SHARC
provides query times of about 38 ms being sufficient for many applications.
Moreover, SHARC allows profile-queries that cannot be handled by a plain label-
correcting algorithm due to memory consumption.

6 Conclusion

In this work, we presented the first efficient speed-up technique for exact rout-
ing in large time-dependent transportation networks. We generalized the recently
introduced SHARC-algorithm by augmenting several static routines of the pre-
processing to time-dependent variants. In addition, we introduced routines to
handle the problem of expensive shortcuts. As a result, we are able to run fast
queries on continental-sized transportation networks of both roads and of rail-
ways. Moreover, we are able to compute the distances between two nodes for all
possible departure times.

Regarding future work, one could think of faster ways of composing, merging,
and approximating piece-wise linear functions as this would directly accelerate
preprocessing and, more importantly, profile-queries significantly. Another in-
teresting question is, whether SHARC is helpful to run multi-criteria queries in
time-dependent graphs. The good performance of the multi-metric variant of
static SHARC [13] might be a good indicator that this works well. This is very
interesting for timetable information systems as users may be willing to accept
longer travel times if the required number of transfers is smaller.
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