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Abstract

Given a fixed origin o in the d-dimensional grid, we
give a novel definition of digital rays dig(op) from o
to each grid point p. Each digital ray dig(op) ap-
proximates the Euclidean line segment op between o
and p. The set of all digital rays satisfies a set of ax-
ioms analogous to the Euclidean axioms. We measure
the approximation quality by the maximum Hausdorff
distance between a digital ray and its Euclidean coun-
terpart and establish an asymptotically tight Θ(log n)
bound in the n×n grid. Without a monotonicity prop-
erty for digital rays the bound is improved to O(1).

1 Introduction

The digital line segment dig(pq) between two grid
points p and q is a fundamental digital geometric ob-
ject, but its definition is not that obvious. Indeed,
the digital representation of line segments has been
an active subject of research for almost half a century
now (see an excellent survey of Klette and Rosen-
feld [2]). In digital geometry, a geometric object is
represented by a set of d-dimensional grid points in a
digital grid G = Z

d and its topological properties are
considered under a grid topology defined by a graph
on the grid. In two dimensions, it is common to con-
sider the orthogonal grid topology, where each point p
is connected to the four grid points that are horizon-
tally and vertically adjacent to p, and we focus on this
topology; however, as a variant, we may consider the
octagonal grid topology that connects each grid point
to the eight neighboring grid points with a coordinate
difference of at most 1 in each coordinate.

Since a digital line segment is the analogue of a line
segment in Euclidean geometry, it is natural to set up
the following axioms for a digital line segment:

(S1) A digital line segment dig(pq) is a connected
path between p and q.

(S2) For any two grid points p and q there is a unique
digital line segment dig(pq) = dig(qp).

(S3) If s, t ∈ dig(pq), then dig(st) ⊆ dig(pq).

(S4) For any p and q there is a grid point r /∈ dig(pq)
such that dig(pq) ⊂ dig(pr).
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Note that axiom (S3) implies that a non-empty in-
tersection of two digital line segments is either a grid
point or a digital line segment. Axiom (S4) implies
that a digital line segment can be extended to a dig-
ital line. We often identify a path in a grid with its
vertex set if the correspondence is clear. Accordingly,
if we say a grid point p is in a path P , it means that
p is a vertex of P .

Unfortunately, popular definitions of two-dimensio-
nal (2D) digital line segments in computer vision do
not satisfy these axioms. For example, in the standard
definition of a digital straight segment (DSS) [2], a
digital line segment (in the octagonal topology) that
corresponds to the line segment y = mx+b, x0 ≤ x ≤
x1 is defined as the set of grid points {(i, ⌊mi + b⌋) |
i ∈ Z, x0 ≤ i ≤ x1} if |m| ≤ 1. Using this definition
the intersection of two DSSs is not always connected,
and axiom (S3) is violated in some cases.

Another possibility to define digital line segments
would be to use the system of L- and Γ-shaped short-
est paths. An L- or Γ-shaped path between two points
p = (xp, yp) and q = (xq, yq) such that xp ≤ xq, is the
(at most) 2-link path that consists of the grid points
on the vertical segment pp′ and on the horizontal seg-
ment p′q where p′ = (xp, yq). We can confirm that
the system of these paths satisfies axioms (S1)–(S4)
for digital line segments. A clear drawback is that an
L-shaped path is visually very different from the Eu-
clidean line segment, and the Hausdorff distance from
pq to the L-shaped path becomes n/

√
2 for p = (0, n)

and q = (n, 0). Therefore, it seems that there is a
trade-off between the axiomatic requirements and the
visual quality of digital line segments. It is a chal-
lenging problem to find a system of digital line seg-
ments that satisfies the axioms and is visually alike
Euclidean line segments at the same time.

In this paper we study a less ambitious but impor-
tant subproblem, motivated by geometric optimiza-
tion applications like extracting digital star-shaped
regions in pixel images [1]: we consider only digi-
tal line segments that have a fixed origin o as one
of their endpoints. In other words, we consider digi-
tal halflines emanating from o, and dig(op) is defined
as the unique portion of the halfline that has p as its
second endpoint. We call such segments digital ray
segments or simply digital rays emanating from o.

For digital rays, the axioms for digital line segments
should be modified as follows:



(R1) A digital ray dig(op) is a connected path be-
tween o and p.

(R2) There is a unique digital ray dig(op) between o
and any grid point p.

(R3) If r ∈ dig(op), then dig(or) ⊆ dig(op).

(R4) For any dig(op), there is a grid point r /∈ dig(op)
such that dig(op) ⊂ dig(or).

We also give an additional monotonicity axiom, which
is not combinatorial, but a reasonable condition for a
digital ray:

(R5) For any r ∈ dig(op), |or| ≤ |op|, where |ab| is
the length of the Euclidean segment ab.

A system of digital rays is called consistent if it satis-
fies axioms (R1)–(R5). From these axioms, it follows
that the union of all digital rays forms an infinite span-
ning tree T of the grid graph on G rooted at o, such
that dig(op) is the unique path between o and p in the
tree. Because of axiom (R4), T cannot have leaves.
Thus, the problem is basically to embed the infinite
“star” consisting of the halflines emanating from o in
the d-dimensional Euclidean space as a tree in the
d-dimensional grid. Although embedding a tree in a
grid is a popular topic in metric embedding and graph
drawing, it is a novel and interesting problem to geo-
metrically approximate ray segments by paths.

We give the asymptotically tight Θ(log n) bound
for the maximum Hausdorff distance between dig(op)
and op among all p in an n×n grid. The lower bound
argument is based on discrepancy theory, and the up-
per bound is attained by a simple and systematic con-
struction of a tree T that can be extended to the d-
dimensional case. Surprisingly, if we do not include
the monotonicity axiom (R5), the bound can be re-
duced to O(1).

2 The lower bound result

The Hausdorff distance H(A, B) of two objects
A and B in d-dimensional space is defined by
H(A, B) = max{h(A, B), h(B, A)}, where h(A, B) =
maxa∈A minb∈B d(a, b) and d(a, b) is some distance be-
tween the points a and b. We will use the L∞-metric
in the following for technical convenience, since the
choice of the metric is irrelevant if we consider the
bounds in big-O and big-Ω notations.

Let’s consider the set V = {(i, j) | i, j ∈ Z} of
grid points. We define a planar graph G on V that
represents the adjacency relations of a pixel grid. In
G = (V, E) each vertex (i, j) is connected to its four
neighbors (i, j − 1), (i− 1, j), (i + 1, j), and (i, j + 1).
This also defines the orthogonal topology of the grid
G. A subset of V is connected in this topology if
its induced subgraph in G is connected. We focus on
the part G(n) of the planar orthogonal grid clipped

1

9

5

3

7

10

2

6

4

8

01 2

3

4

5

6

7

8

9

10

e

(10, 0)(0, 0)

(0, 10)

Figure 1: A spanning tree T of G(n) for n = 10. The
labeled nodes are used in a low-discrepancy sequence.

to the region defined by x + y ≤ n in the first quad-
rant. From the monotonicity axiom it follows that
dig(op) ⊂ G(n) for any p ∈ G(n), and that dig(op) is
a shortest path in the grid. We show that there ex-
ists a point p ∈ G(n) such that the Hausdorff distance
H(dig(op), op) is Ω(log n). Let T be the spanning tree
of G(n) that is the union of dig(op) for all p ∈ G(n).
An example spanning tree is shown in Fig. 1.

We use a classical result on pseudo-random num-
ber generation [3, 5]. Consider an infinite sequence
X = x0, x1, x2, . . . of real numbers in [0, 1]. For any
given a ∈ [0, 1] and any natural number m define
Xm(a) = |{0 ≤ i ≤ m | xi ∈ [0, a]}|. The discrep-
ancy of the subsequence x0, x1, . . . , xm is defined as
supa∈[0,1] |am − Xm(a)|. We use discrepancy theory
in the form of the following theorem.

Theorem 1 (Schmidt [4]) Given a sequence X =
x0, x1, x2 . . . of real numbers in [0, 1] and a sufficiently
large integer n, there exists an integer m < n and
a real number a ∈ [0, 1] such that the subsequence
x0, x1, . . . , xm satisfies that |am − Xm(a)| > c log n,
where c is a positive constant independent of n.

For m = 1, 2, . . . n + 1, let L(m) = {(i, m − 1 − i) |
i = 0, . . . , m − 1} be the subset of G(n) satisfying
x + y = m − 1. Since there is no leaf of T in L(m)
for m ≤ n we must have exactly one branching node
of degree 3 and m − 1 nodes of degree 2 in L(m) in
order to connect the m points of L(m) to the m + 1
points in L(m + 1).

We associate the leaf (j, n − j) ∈ L(n + 1) to the
number j/n and define the set N = {j/n : j =
0, 1, . . . n} ⊂ [0, 1]. For each edge e of T in G(n),
the set of vertices of L(n + 1) in the subtree rooted
at e forms an interval I(e) ⊂ N . Let x(e) denote the
largest element in I(e). An example is given in Fig. 1,
where I(e) = {0.4, 0.5, 0.6} and x(e) = 0.6.

For a given spanning tree T we create a sequence
X(T ) of values x(e) for certain edges e. The lower
bound on the discrepancy of X(T ) is used to show
the following theorem.
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Theorem 2 For any spanning tree T there is a grid
point p ∈ L(n + 1) and q in G(n) such that q is on
the path dig(op) in T and the L∞ distance from q to
the line segment op exceeds c log n− 1, where c is the
constant considered in Theorem 1.

Proof. For m = 1, . . . , n + 1 let xm = x(em), where
em is the upper (i.e. vertical) branch of the unique
branching node in L(m). We artificially set x0 = 1.
Thus we obtain a sequence X(T ) = x0, x1, . . . , xn,
which is a permutation of N . Let E(m) be the set of
edges in T going from L(m) towards L(m + 1). The
following lemmas are obvious from the definitions:

Lemma 3 The set {x(e) : e ∈ E(m)} is equal to the
set {x0, x1, . . . , xm}.

Lemma 4 Let e and f be edges in E(m). If e is to
the left of f then x(e) < x(f).

For example, the tree T in Fig. 1 creates the fol-
lowing sequence: X(T ) = 1, 0, 0.6, 0.3, 0.8, 0.2, 0.7,
0.4, 0.9, 0.1, 0.5. The labels in Fig. 1 show the cor-
respondence between the unique internal branching
node in L(i) and the leaf located at (nxi, n − nxi) in
L(n+1) that is associated to the number xi. For each
i = 1, . . . , n the corresponding nodes are labeled by
i. In other words, each branching node and the right-
most leaf in the subtree of the upper branch of that
node have the same numbering.

We now consider the discrepancy of X(T ). From
Theorem 1, we have 0 ≤ a ≤ 1 and m < n for n
large enough such that |am − Xm(a)| > c log n. The
following two cases should be considered:

Case 1: Xm(a) > am + c logn. Consider the node
q located at (Xm(a)−1, m−(Xm(a)−1)) ∈ L(m+1),
and let e be the edge between q and its parent in T .
By definition, q is on the path dig(op) from o to the
node p = (x(e)n, n − x(e)n) ∈ L(n + 1). Because of
the definition of Xm(a) and Lemma 3, we have exactly
Xm(a) edges f ∈ E(m) for which x(f) ≤ a. However,
there are also exactly Xm(a) edges of E(m) to the left
of e, including e itself, since q is the Xm(a)-th node
in L(m + 1) counted from the left. Lemma 4 implies
that no edge g to the right of e can attain x(g) ≤ a.
Thus, e itself must satisfy x(e) ≤ a. Now, consider
the L∞ distance of the line segment op and q. The
line op goes through (x(e)m, m−x(e)m), which is the
L∞-nearest point from q on op. The L∞ distance is
(Xm(a)−1−x(e)m) ≥ (Xm(a)−1−am) > c log n−1.

Case 2: Xm(a) < am− c logn. Consider the node
q located at (Xm(a), m−Xm(a)) ∈ L(m + 1) and the
edge e between q and its parent. Since there are only
Xm(a) edges f ∈ E(m) for which x(f) ≤ a we have
x(e) > a (again by Lemma 4). Node q is on the path
dig(op) to p = (x(e)n, n − x(e)n). Similarly to Case
1, we can show that the L∞ distance from q to op is
greater than c logn. This proves the theorem. �

Figure 2: The spanning tree DT (2) in G(n).

3 The upper bound results

As for the upper bound, we only give the flavor here
and refer to the full version of this paper, which also
gives a higher dimensional construction. We con-
struct a spanning tree DT(2) of G, such that for ev-
ery p = (i, j) ∈ V , the unique path from p to o in
DT(2) defines the digital ray dig(op) simulating the
line segment op. This is illustrated in Fig. 2. The con-
struction is recursive: We consider the diagonal (bold)
center path. In the part below the center path, every
edge in E(2k−1) is horizontal for k = 1, 2, . . .. As for
the edges in E(2k) below the center path, we copy the
structure of E(k). The part above the center path is
constructed in a similar way.

The set of digital rays defined by DT(2) is con-
sistent, and for any grid point p ∈ G(n), the L∞-
Hausdorff distance between dig(op) and op is less than
1 + log n.

The tree DT(2) is related to a famous low discrep-
ancy sequence called van der Corput sequence [5]. As-
sume that n is a power of 2, and construct the se-
quence X(DT (2)) using the method of Section 2 (ig-
noring x0 = 1). Then, we have x1 = 0, x2 = 1/2,
x3 = 1/4, x4 = 3/4, and in general, if b1b2b3 . . . bs is
the 2-adic expansion of i−1, xi = 0.bsbs−1 . . . b1 in 2-
adic decimal expansion for 1 ≤ i ≤ n. This sequence
is indeed the van der Corput sequence.

Surprisingly, if we omit the monotonicity axiom
(R5), the lower bound does not hold, and we can give
a constant upper bound on the Hausdorff distance.
The digital ray that we construct is locally snake-like
almost everywhere; however, considered from some
distance it can approximate a line segment well.

The idea is as follows: We first consider a coarse
grid of width 2, and construct a spanning forest T1 of
it allowing internal leaves. Then, we replace each node
v of this tree by four nodes in the original unit-width
grid such that v is located in the center of gravity
of these four nodes. In the last step, we convert the
forest T1 into a tree T2 in the original unit-width grid.

Let c > 1 be an irrational constant. The forest
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Figure 4: Walks around the two trees (top) and the
corresponding part of the tree T2 (bottom).

T1 is constructed as follows: We consider the belt
R(k) ⊃ G(2k+1)\G(2k) defined by 2k < x+y ≤ 2k+1

in the first quadrant, and subdivide it into trapezoids

by lines ℓt : y = 2k−tc
tc

x passing through the non-
grid points (tc, 2k − tc) on the line x + y = 2k for
t = 1, 2, . . . , ⌊2k/c⌋. The widths of the two parallel
edges of each trapezoid are (at most)

√
2c and 2

√
2c,

respectively. Further, each trapezoid F is adjacent to
one trapezoid p(F ) in R(k−1) called the parent of F ,
and two trapezoids l(F ) and r(F ) in the belt R(k+1)
that are called the left and right child, respectively.
Let q be the intersection of x + y = 2k+1 and the
dividing line of l(F ) and r(F ). The nearest grid point
to q in F is called the exit node of F , and the nearest
grid points to q in l(F ) and r(F ) are called their entry
nodes. Each trapezoid has exactly one entry and one
exit node. In Fig. 3, the entry and exit nodes are
marked by “E” and “X”, respectively.

By gathering these trapezoids for all k ≥ ⌈log c⌉,
we have a decomposition of the first quadrant of the
plane. Since c > 1, each trapezoid is wide enough
so that the induced subgraph of the grid points in a
trapezoid is connected. It is easy to find a spanning
tree of the vertices in each trapezoid consisting of a
stem that is shortest path from its entry node to its
exit node, together with branches such that the length
of each branch (i.e., the path length from the stem to
the furthest leaf) is at most 2c as seen in Fig. 3. This
gives a forest T1 consisting of small trees, one in each
trapezoid. Now, let’s convert T1 to T2 as shown in
Fig. 4. Each node of T1 is replaced by four nodes at
the corners of the surrounding unit square. Thus, we
can realize the walk around each subtree of T1 in a
trapezoid F as a Hamiltonian cycle in the finer grid.
We cut the cycle at the exit node, and connect it to
the entry nodes of the trees in the two child trapezoids
l(F ) and r(F ) as in Fig. 4. We obtain a tree T2 that
has no internal leaf.

Theorem 5 If the monotonicity axiom (R5) is not
considered, the tree T2 defined above gives a system
of digital rays in the plane grid such that the Haus-
dorff distance between each digital ray and its corre-
sponding Euclidean line segment is O(1).

Proof. For any grid point p in a trapezoid F , the
line segment op is contained in the union of the an-
cestor trapezoids of F , and also all ancestors of p in
the tree T2 are in the same union of trapezoids. Since
the width of each trapezoid is at most 2

√
2c, the dis-

tance from any point q in the path dig(op) in T2 to
the line op is at most 2

√
2c. It might happen that

the nearest point from q to the line op is not in the
segment op since we do not assume the monotonicity
axiom. However, since the length of each branch of
a subtree in T1 is at most 2c, the Hausdorff distance
between the segment op and the path from o to p in
the tree is at most (2

√
2 + 2)c. �
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