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ABSTRACT

Given a fixed origin o in the d-dimensional grid, we give
a novel definition of digital rays dig(op) from o to each grid
point p. Each digital ray dig(op) approximates the Euclidean
line segment op between o and p. The set of all digital rays
satisfies a set of axioms analogous to the Euclidean axioms.
We measure the approximation quality by the maximum
Hausdorff distance between a digital ray and its Euclidean
counterpart and establish an asymptotically tight Θ(log n)
bound in the n × n grid. The proof of the bound is based
on discrepancy theory and a simple construction algorithm.
Without a monotonicity property for digital rays the bound
is improved to O(1). Digital rays enable us to define the
family of digital star-shaped regions centered at o which we
use to design efficient algorithms for image processing prob-
lems.

Categories and Subject Descriptors

I.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling

General Terms

Theory

Keywords

digital geometry, discrete geometry, star-shaped regions, tree
embedding

∗Supported by the German Research Foundation (DFG) un-
der grant WO 758/4-3

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’08, June 9–11, 2008, College Park, Maryland, USA.
Copyright 2008 ACM 978-1-60558-071-5/08/06 ...$5.00.

1. INTRODUCTION
The digital line segment dig(pq) between two grid points p

and q is a fundamental digital geometric object, but its defi-
nition is not that obvious. Indeed, the digital representation
of line segments has been an active subject of research for
almost half a century now (see an excellent survey of Klette
and Rosenfeld [9]). In digital geometry, a geometric object is
represented by a set of d-dimensional grid points in a digital
grid G = Z

d and its topological properties are considered
under a grid topology defined by a graph on the grid. In
two dimensions, it is common to consider the orthogonal (or
4-neighbor) grid topology, where each point p = (x, y) is con-
nected to its four vertical and horizontal neighbors (x, y±1)
and (x ± 1, y), and we focus on this topology; however, as
a variant, we may consider the octagonal (or 8-neighbor)
grid topology that connects each grid point p = (x, y) to
its 4-neighbors and additionally to its diagonal neighbors
(x + 1, y ± 1) and (x − 1, y ± 1).

Since a digital line segment is analogous to a line segment
in Euclidean geometry, it is natural (at least from a math-
ematical perspective) to set up the following axioms that a
digital line segment should satisfy:

(S1) A digital line segment dig(pq) is a connected path be-
tween p and q under the grid topology.

(S2) For any two grid points p and q there is a unique digital
line segment dig(pq) = dig(qp).

(S3) If s, t ∈ dig(pq), then dig(st) ⊆ dig(pq).

(S4) For any two grid points p and q there is a grid point
r /∈ dig(pq) such that dig(pq) ⊂ dig(pr).

Note that axiom (S3) implies that a non-empty intersection
of two digital line segments is either a grid point or a digital
line segment. Axiom (S4) implies that a digital line segment
can be extended to a digital line. We often identify a path
in a grid with its vertex set if the correspondence is clear.
Accordingly, if we say a grid point p is in a path P , it means
that p is a vertex of P .

Unfortunately, popular definitions of two-dimensional (2D)
digital line segments in computer vision do not satisfy these
axioms. For example, in the standard definition of a digi-
tal straight segment (DSS) [9], a digital line segment (in the
octagonal topology) that corresponds to the line segment
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Figure 1: Euclidean line segments and their DSSs. Inter-
sections are indicated by bicolored pixels. Axiom (S3) is
violated since s, t ∈ dig(pq) but dig(st) 6⊆ dig(pq) (top); the
intersection of the DSSs g1 and g2 is not connected (bottom).

y = mx + b, x0 ≤ x ≤ x1 is defined as the set of grid points
{(i, ⌊mi + b + 0.5⌋) | x0 ≤ i ≤ x1} for |m| ≤ 1. Using this
definition the intersection of two DSSs is not always con-
nected, and axiom (S3) is violated in some cases as depicted
in Figure 1.

In the 2D grid, another possibility to define digital line
segments would be to use the system of L- and Γ-shaped
shortest paths. An L- or Γ-shaped path between two points
p = (xp, yp) and q = (xq, yq) such that xp ≤ xq, is the
(at most) 2-link path that consists of the grid points on the
vertical segment pp′ and on the horizontal segment p′q where
p′ = (xp, yq). We can confirm that the system of these paths
satisfies axioms (S1)–(S4) for digital line segments. A clear
drawback is that an L-shaped path is visually very different
from the Euclidean line segment, and the Hausdorff distance
from pq to the L-shaped path becomes n/

√
2 for p = (0, n)

and q = (n, 0). If, on the other hand, one accepts to use a
non-planar graph structure to define the topology on the grid
points, Pach et al. [12] show that the shortest-path distance
(using Euclidean distance for the edge lengths) in the grid
topology given by a suitable sparse graph is at most (1 + ǫ)
times the Euclidean distance. Accordingly, the polygonal
path consisting of the edge set of the shortest path between
p and q in the graph gives a nice approximation of the line
segment pq. However, the graph structure is a union of many
randomly chosen lattice structures on the grid points using
long edges with a variety of slopes; thus, the vertex set of
the polygonal path is too sparse for direct use as a digital
line segment. Also, the method does not guarantee an o(n)
bound for the Hausdorff distance.

Therefore, it seems that there is a trade-off between the
axiomatic requirements and the visual quality of digital line
segments. It is a challenging problem to find a system of
digital line segments that satisfies the axioms and is visually
alike Euclidean line segments at the same time.

In this paper we study a less ambitious but important sub-
problem, motivated by geometric optimization applications:
we consider only digital line segments that have the origin o
as one of their endpoints. In other words, we consider digital
halflines emanating from o. Then dig(op) is defined as the
unique portion of the halfline that has p as its second end-

point. We call such segments digital ray segments or simply
digital rays emanating from o.

For digital rays, the axioms for digital line segments should
be modified as follows:

(R1) A digital ray dig(op) is a connected path between o
and p under the grid topology.

(R2) There is a unique digital ray dig(op) between o and
any grid point p.

(R3) If r ∈ dig(op), then dig(or) ⊆ dig(op).

(R4) For any dig(op), there is a grid point r /∈ dig(op) such
that dig(op) ⊂ dig(or).

We also give one additional monotonicity axiom, which is
not combinatorial, but a reasonable condition for a digital
ray:

(R5) For any r ∈ dig(op), |or| ≤ |op|, where |ab| is the
length of the Euclidean segment ab.

A system of digital rays is called consistent if it satisfies
axioms (R1)–(R5). From these axioms, it follows that the
union of all digital rays forms an infinite spanning tree T of
the grid graph on G rooted at o, such that dig(op) is the
unique path between o and p in the tree. Because of axiom
(R4), T cannot have leaves. Thus, the problem is basically
to embed the infinite “star” consisting of the halflines em-
anating from o in the d-dimensional Euclidean space as a
tree in the d-dimensional grid. Although embedding a tree
in a grid is a popular topic in metric embedding and graph
drawing, it is a novel and interesting problem to geometri-
cally approximate ray segments by paths.

Main result.
The main result of the paper is the asymptotically tight

Θ(log n) bound for the maximum Hausdorff distance be-
tween dig(op) and op among all points p in an n×n grid. The
lower bound argument is based on discrepancy theory, and
the upper bound is attained by a simple and systematic con-
struction of a tree T that is extended to the d-dimensional
case. Surprisingly, if we do not include the monotonicity
axiom (R5), the bound can be reduced to O(1).

2. MOTIVATION AND RELATED WORK
Our motivation comes from handling digital analogues of

star-shaped regions for optimization problems in a pixel grid.
A square pixel grid is a subdivision of an n×n square region
into N = n2 unit squares called pixels. We have a canonical
one-to-one correspondence between pixels in a pixel grid P

and grid points in our two-dimensional grid G restricted to
an n × n subgrid. Thus, we can translate the definitions of
digital rays and digital star-shaped regions in G to those
in P. A pixel grid image is an assignment of a color to
each pixel: A monochromatic image can be considered as a
function from the set P of all pixels to real values in [0, 1]
called gray levels, while a color image can be considered as a
triple of functions from P to real values in [0, 1] correspond-
ing to the color levels of red, green, and blue. For example,
a picture taken with a 1-megapixel digital camera is a color
image in a pixel grid of size 1024 × 1024.

Image segmentation is an important problem in computer
vision, which separates an object from the background in
the picture. Asano et al. [1] formulated the problem as a
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Figure 2: Input terrain (left) and output pyramid (right).

least-square optimization problem and gave an efficient al-
gorithm if the object is a region bounded by two x-monotone
curves. Several improved results such as controlling smooth-
ness of curves and higher dimensional extensions were given
by Wu and Chen [19], and the optimal-ratio formulation
was given by Wu [18]. It was further pointed out that image
segmentation problems appear in medical applications [18]:
Tumors can be approximated by a layer of three dimensional
star-shaped annuli, where a star-shaped annulus is the set
difference of two star-shaped regions with a shared center
o. If an image transformed by the central projection from
o is given as the input by using a mechanism such as op-
tical coherence tomography, then a star-shaped annulus is
transformed to a region bounded by two x-monotone sur-
faces, which can be naturally digitized. Wu [18] considered
the case where such an input is given and applied his algo-
rithm to extract a tumor region from a medical image. A
remaining question is how to directly segment a star-shaped
annulus from a pixel grid (in two or three dimensions). In
other words, how to extract a tumor in a digital image that
is not generated/preprocessed by using a central projection
method about o.

Chen et al. [3] and Chun et al. [4] considered the pyramid
approximation problem to compute the least-square approx-
imation of an input digital terrain (given as a function on P)
where each horizontal slice (i.e., a region bounded by a con-
tour line) of the output terrain is a special kind of rectilinear
convex region as shown in Figure 2, where heights are given
by gray-levels. It was desired to solve the analogous moun-
tain approximation problem where each horizontal slice is a
star shape, since it will be useful in applications to computer
vision and geographic data processing.

A natural definition of a digital star-shaped region is the
set of all pixels intersecting a given Euclidean star-shaped
region. However, such a family of regions does not satisfy the
condition that the intersection of two digital star-shaped re-
gions centered at o is again a digital star-shaped region. This
causes difficulty for solving the above mentioned problems.
We give the following definition of a digital star-shaped re-
gion that satisfies the above condition:

Definition 2.1. Given a system of digital rays from a
center o, a region R is a digital star-shaped region centered
at o if and only if dig(op) ⊆ R for any grid point p ∈ R.

This definition and theory naturally can be extended to
higher dimensional grids. The quality of a digital star-
shaped region is assured by the following theorem, which
follows immediately from our main results:

Theorem 2.2. For any Euclidean star-shaped region R
with center o and the n×n pixel grid P, R′ =

S

p∈P∩R dig(op)
is a digital star-shaped region such that the Hausdorff dis-
tance H(R,R′) between R and R′ is O(log n). Conversely,
given any digital star-shaped region Q, let Q′ be the union of
segments ox over all points x in the plane covered by pixels
in Q. Then, Q′ is a Euclidean star-shaped region such that
H(Q,Q′) = O(log n). The O(log n) bound improves to O(1)
if we use a system of digital rays without the monotonicity
axiom.

We can define the inverse digital central projection D

from P to P along digital rays, such that a region below an
x-monotone curve is canonically mapped to a digital star-
shaped region: We use the spanning tree of the grid graph
underlying P that will be given in Section 3.3 (Section 4 for
its higher dimensional analogue) to define digital rays. Then
a pixel p = (i, j) is mapped to the pixel D(p) corresponding
to the node of depth j on the path in the tree from the ori-
gin towards (i, n − i). Thus, we can solve the segmentation
problem for star-shaped annuli by using the inverse digi-
tal central projection combined with Wu’s algorithm [18].
Instead of using D explicitly, we may also implement the
algorithm by using our digital rays directly; we can control
smoothness of the contour of the region by using techniques
given in [19, 18] (omitted here). Section 5 gives our moun-
tain approximation algorithm.

Relation to digital computational geometry.
In computational geometry, the problem of representing

geometric objects in digital geometry without causing topo-
logical and combinatorial inconsistencies is a major con-
cern, and algorithmic solutions have been considered from
the viewpoint of robust finite-precision geometric computa-
tion [8, 16].

Suppose that we would like to represent a set S of line
segments digitally. Although ideally one would like to give
a precisely defined and consistent system of digital line seg-
ments, the above mentioned difficulties prevent us from do-
ing so. Rather, it is popular to use a dynamic method to dig-
itize the line segments; that is, the digital approximation of
a line segment ℓ is affected by the configuration of the other
line segments of S. In particular, it is required to construct
the arrangement of S in the digital plane without changing
the combinatorial structure of the arrangement, while all
vertices of the arrangement are located at grid points and
each line segment is visually alike the original line segment.
It is known that a grid of exponential size is necessary to
represent all the combinatorial types of arrangements of n
straight lines [6]; hence we need to bend lines if we want
to use a polynomial-size grid. In the pioneering paper of
Greene and Yao [8] and its following research by Goodrich
et al. [7], each line segment is represented by a polygonal
chain consisting of edges of the arrangement. It is neces-
sary to carefully round each vertex of the arrangement to a
grid point in order not to cause combinatorial inconsisten-
cies, and a method named snap rounding is proposed. Since
no pair of edges of the arrangement intersect each other, we
can draw edges by using a popular method like DSS once
we have such a representation of the arrangement. We note
that the snap rounding idea is important not only in theory
of robust computation but also in practical design of geo-
metric editors/systems: The Ipe editor [15] is a pioneering
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Figure 3: A spanning tree T of G(n) for n = 10. The labeled
nodes are used for the construction of a low-discrepancy se-
quence.

one, and the idea is also used in the CGAL project [2]. This
dynamic approach is different from our static approach in
which each digital line segment is defined irrespective to the
existence of other lines in the arrangement. Still, we think
that it is important to investigate how well line segments
can be digitized statically and to consider the combination
of static and dynamic methods to design efficient systems
and algorithms in digital geometry.

3. DIGITAL RAYS IN THE PLANE GRID

3.1 Preliminaries
The Hausdorff distance H(A,B) of two objects A and

B is defined by H(A,B) = max{h(A, B), h(B, A)}, where
h(A, B) = maxa∈A minb∈B d(a, b) and d(a, b) is some dis-
tance between the points a and b. Although it is most nat-
ural to consider the Euclidean distance for d(a, b), we will
use the L∞-metric in the following for technical convenience.
Since the ratio of the Euclidean distance to the L∞ distance
in d-dimensional space is always between 1/

√
d and d, the

choice of the metric is irrelevant in a constant dimensional
space if we consider the bounds in big-O and big-Ω nota-
tions.

Let’s consider the set V = {(i, j) | i, j ∈ Z} of grid points,
where Z is the set of integers. We define a planar graph
G on V that represents the adjacency relations of a pixel
grid. In G = (V, E) each vertex (i, j) is connected to its four
neighbors (i, j − 1), (i − 1, j), (i + 1, j), and (i, j + 1). This
also defines the orthogonal topology of the grid G. A subset
of V is connected in this topology if its induced subgraph in
G is connected.

3.2 The lower bound result
We focus on the part G(n) of the planar orthogonal grid

clipped to the region defined by x + y ≤ n in the first
quadrant. From the monotonicity axiom it follows that
dig(op) ⊂ G(n) for any p ∈ G(n) and that dig(op) is a
shortest path in the grid. We show that there exists a point
p ∈ G(n) such that the Hausdorff distance H(dig(op), op)
is Ω(log n). Let T be the spanning tree of G(n) that is the
union of dig(op) for all p ∈ G(n). An example spanning tree
is shown in Figure 3.

We use a classical result on pseudo-random number gen-
eration [10, 11, 14]. The following historical summary is
according to Schmidt’s textbook [14]. Consider a sequence

X = x0, x1, x2, . . . of real numbers in [0, 1]. For any given
a ∈ [0, 1] and m ∈ N define Xm(a) = |{0 ≤ i ≤ m | xi ∈
[0, a]}|. The discrepancy of the sequence x0, x1, . . . , xm is
defined as supa∈[0,1] |am − Xm(a)|. Van der Corput con-
jectured in 1935 that for any sequence X, the discrepancy
cannot be bounded by a constant (indeed, 1, in the orig-
inal conjecture). This was affirmatively answered by Van
Aardenne-Ehrenfest in 1945. Roth gave an Ω(

√
log n) bound

in 1954, and the correct order of magnitude of the discrep-
ancy is Θ(log n) given by Schmidt in 1972. We make use of
discrepancy theory in the form of the following Theorem 3.1.
We remark that a slightly stronger version of the conjecture
was given in a list of favorite questions of Erdős [5]: He con-
jectured that there is an a such that maxm<n |am−Xm(a)|
is an unbounded function in n, for which Schmidt’s method
also gives a Θ(log n) bound.

Theorem 3.1 (Schmidt [13]). Given a sequence X =
x0, x1, x2 . . . of real numbers in [0, 1] and a sufficiently large
integer n, there exist an integer m < n and a real number
a ∈ [0, 1] such that the subsequence Xm = x0, x1, . . . , xm

satisfies that |am − Xm(a)| > c log n, where c is a positive
constant independent of n.

For m = 1, 2, . . . n + 1, let L(m) = {(i, m − 1 − i) | i =
0, . . . , m−1} be the subset of G(n) satisfying x+y = m−1.
We show the following theorem to attain our lower bound
result:

Theorem 3.2. For any spanning tree T there is a grid
point p ∈ L(n + 1) and q in G(n) such that q is on the path
dig(op) in T and the L∞ distance from q to the line segment
op exceeds c log n − 1, where c is the constant considered in
Theorem 3.1.

Before we prove this theorem we need a simple lemma:

Lemma 3.3. For any natural number m ≤ n, there is a
unique branching node of T in L(m). The degree of that
node is 3.

Proof. Since there is no leaf of T in L(m) for m ≤ n we
must have exactly one branching node of degree 3 and m−1
nodes of degree 2 in L(m) in order to connect the m points
of L(m) to the m + 1 points in L(m + 1).

We associate (j, n − j) ∈ L(n + 1) to the number j/n
to obtain a set N = {j/n : j = 0, 1, 2, . . . n} ⊂ [0, 1]. For
each edge e of T in G(n), the set of vertices of L(n + 1)
in the subtree rooted at e are consecutive and hence their
associated numbers form an interval I(e) ⊂ N . Let x(e)
denote the largest element in I(e). An example is given in
Figure 3, where I(e) = {0.4, 0.5, 0.6} and x(e) = 0.6.

Proof of Theorem 3.2. For m = 1, . . . , n + 1 let xm =
x(em), where em is the upper (i.e. vertical) branch of the
unique branching node in L(m). We artificially set x0 = 1.
Thus we obtain a sequence X(T ) = x0, x1, . . . , xn, which
is a permutation of N . Let E(m) be the set of edges in T
going from L(m) towards L(m + 1). The following lemmas
are obvious from the definitions:

Lemma 3.4. The set {x(e) : e ∈ E(m)} equals the set
{x0, x1, x2, . . . , xm}.

Lemma 3.5. Let e and f be edges in E(m). If e is to
the left of f , i.e., the endpoint of e has smaller x-coordinate
than the endpoint of f in L(m + 1), then x(e) < x(f).
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For example, the tree T in Figure 3 creates the sequence
X(T ) = 1, 0, 0.6, 0.3, 0.8, 0.2, 0.7, 0.4, 0.9, 0.1, 0.5. The labels
in Figure 3 show the correspondence between the unique in-
ternal branching node in L(i) and the leaf located at (nxi, n−
nxi) in L(n + 1) that is associated with the number xi. For
each i = 1, . . . , n the corresponding nodes are labeled by i.
In other words, each branching node and the rightmost leaf
in the upper branch of that node have the same numbering.

We now consider the discrepancy of X(T ). From Theo-
rem 3.1, we have 0 ≤ a ≤ 1 and m < n for n large enough
such that |am − Xm(a)| > c log n. The following two cases
should be considered:

Case 1: Xm(a) > am + c log n. Consider the node q
located at (Xm(a)−1, m− (Xm(a)−1)) ∈ L(m+1), and let
e be the edge between q and its parent in T . By definition,
q is on the path dig(op) from o to the node p = (x(e)n, n −
x(e)n) ∈ L(n + 1). Because of the definition of Xm(a) and
Lemma 3.4, we have exactly Xm(a) edges f ∈ E(m) for
which x(f) ≤ a. However, there are also exactly Xm(a)
edges of E(m) to the left of e, including e itself, since q is the
Xm(a)-th node in L(m+1) counted from the left. Lemma 3.5
implies that no edge g to the right of e can attain x(g) ≤ a.
Thus, e itself must satisfy x(e) ≤ a. Now, consider the L∞

distance of the line segment op and q. The line op goes
through (x(e)m,m−x(e)m), which is the L∞-nearest point
from q on op. The L∞ distance is (Xm(a) − 1 − x(e)m) ≥
(Xm(a) − 1 − am) > c log n − 1.

Case 2: Xm(a) < am − c log n. Consider the node q
located at (Xm(a),m − Xm(a)) ∈ L(m + 1) and the edge e
between q and its parent. Since there are only Xm(a) edges
f ∈ E(m) for which x(f) ≤ a we have x(e) > a (again, from
Lemma 3.5). Node q is on the path dig(op) to the node
p = (x(e)n,n − x(e)n). Similarly to Case 1, we can show
that the L∞ distance from q to op is greater than c log n.
This proves the theorem.

3.3 The upper bound results
We deterministically construct a spanning tree DT(2) of

G, such that for every p = (i, j) ∈ V , the unique path from
p to o in DT(2) defines the digital ray dig(op) simulating
the line segment op. By the monotonicity axiom, dig(op) is
always a shortest path in the orthogonal grid.

We give the construction of DT(2) restricted to G(n) for
n = 2k. By creating rotated copies in the other quadrants
and extending them to the infinite grid we get DT(2). For
simplifying the description (especially, when we generalize to
higher dimensions later), we transform the grid by a linear
map Φ that maps the lattice base (1, 0) and (0, 1) to (1, 0)
and (1, 1), respectively. The linear map Φ transforms the
quadrant containing G(n) to the the first octant and maps
G(n) to a skew-grid with the base (1, 0) and (1, 1) in the
triangular region defined by 0 ≤ y ≤ x ≤ n. The set L(m)
is mapped to the m-th column of the transformed grid. Fig-
ure 4 shows the tree T that we will construct in the skew
grid as well as the corresponding tree Φ−1(T ) in G(n).

In the transformed grid Φ(G(n)), all edges are horizontal
or diagonal with positive unit slope. An edge connecting a
vertex (i, j) and a vertex (i + 1, j) or (i + 1, j + 1) is called
an edge in the i-th edge-column. The i-th edge-column is
called an even (odd) edge-column if i is even (odd). Note
that the column index starts from 0.

Since the infinite tree DT(2) cannot have leaves, the set of
leaves of T clipped to Φ(G(n)) must be the right vertices of

the edges in the rightmost edge-column, i.e., the set {(n, b) |
b = 0, 1, 2, . . . , n}. Any such spanning tree, and thus also the
one we will construct, must satisfy the following lemma.

Lemma 3.6. If an edge e ∈ T is horizontal (resp. diag-
onal), all the edges in T in the same edge-column below e
(resp. above e) must be horizontal (resp. diagonal).

Proof. If e is horizontal and there is a diagonal edge
below e then two edges in that column must share their
right endpoint by the pigeon hole principle. This creates a
cycle in T , which contradicts the fact that T is a tree. If e
is diagonal a similar argument holds.

This lemma implies that there is not much freedom for
defining T , and it is also a crucial observation for generaliz-
ing the construction to higher dimensions.

We give a procedure to construct all paths from the leaves
to the root of T . This suffices to define T . For convenience’
sake, we denote the spanning tree clipped to the subgrid
Φ(G(2k)) by T k. We have two boundary paths: The path
towards (2k, 0) uses only horizontal edges, and the path to-
wards (2k, 2k) uses only diagonal edges. These are the only
paths for k = 0 and uniquely define T 0. If k ≥ 1, we first
give the path towards (2k, 2k−1), which we call the center
path (see Figure 4). The center path is the alternating chain
of horizontal and diagonal edges, starting with the horizon-
tal edge connecting the origin o = (0, 0) and (1, 0). Thus,
the center path has a horizontal edge in each even column
and a diagonal one in each odd column. We observe that
the left vertex of an edge of the center path in an even col-
umn is on the diagonal line y = x/2, while its right vertex
is below this line. The following lemma is a straightforward
consequence of Lemma 3.6:

Lemma 3.7. In the tree T k, all the edges in an even col-
umn below the center path are horizontal and all the edges
in an odd column above the center path are diagonal.

Let’s first consider the part of T k below and including the
center path. The even columns are determined by Lemma 3.7
and consist of horizontal edges only. The lower half of the
(2i +1)-th column in Φ(G(2k)) can be naturally mapped to
the i-th column of Φ(G(2k−1)), and we copy the i-th col-
umn of T k−1 to the lower half of the (2i + 1)-th column of
T k. Similarly, we know the odd columns of the part of T k

above the center path and fill the even columns by copying
the i-th column of T k−1 to the upper half of the 2i-th col-
umn for i = 0, 1, . . . , 2k−1 − 1. These copies do not conflict
with the boundary paths of T k. This gives a spanning tree
of Φ(G(n)).

This recursively constructs T k for k ∈ N, and we can
generate a spanning tree T of the first octant of the whole
infinite grid such that T k is the restriction of T to Φ(G(2k)).
Our tree in the orthogonal grid G(2k) is Φ−1(T k), which
we can obviously extend to DT(2), the tree on the whole
orthogonal grid G.

Theorem 3.8. The set of digital rays defined by DT(2) is
consistent. For any grid point p ∈ G(n), the L∞-Hausdorff
distance between dig(op) and op is less than 1 + log n.

Proof. It is easy to check that the set of digital rays
defined by DT(2) is consistent, i.e., it satisfies axioms (R1)–
(R5). It remains to bound the distance between dig(op) and
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Figure 4: The spanning tree T = T 4 (a) and the corresponding tree Φ−1(T ) in G(n) (b). The center path and the two
boundary paths are highlighted in bold.

op. Let p = (xp, yp) be any vertex in T = T k, and let
q = (xq, yq) be the vertex on dig(op) (i.e., the path from p
to o in T ) attaining the maximum vertical distance to the
line op. We would like to claim that the vertical distance is
at most k by induction on k. If k ≤ 1, the claim is trivial.
Thus, assume that the claim holds for Tk−1. We can further
assume that xq ≤ xp − 2, as we can check the claim directly
otherwise.

If dig(op) is the center path, the claim holds by construc-
tion of the center path. Thus we assume this is not the case.
Since two paths in T cannot cross each other, both p and q
must be on the same side of the center path. We distinguish
the following two cases:

Case 1. If p = (xp, yp) is below the center path (i.e.,
yp < ⌊xp/2⌋), then q = (xq, yq) satisfies that yq ≤ ⌊xq/2⌋.
From the recursive definition of T we know that the odd
columns below the center path are copied from T k−1 and
the even columns contain only horizontal edges. Thus p is a
copy of p′ = (⌊xp/2⌋, yp) and q is a copy of q′ = (⌊xq/2⌋, yq).

Since the claim holds for T k−1, the vertical distance from
q′ to the line op′ is at most k − 1, i.e.,

dy(q′, op′) = |yq − yp(⌊xq/2⌋)/(⌊xp/2⌋)| ≤ k − 1.

Now, consider the vertical distance dy(q, op) = |yq−ypxq/xp|
from q to op. We have the following inequality

˛

˛

˛

˛

yp
⌊xq/2⌋
⌊xp/2⌋

− yp
xq

xp

˛

˛

˛

˛

≤ yp

˛

˛

˛

˛

xq + 1
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xp

˛

˛

˛

˛

= yp

˛

˛

˛
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˛
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˛
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˛

˛
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and thus

dy(q, op) ≤
˛

˛

˛

˛

yq − yp
⌊xq/2⌋
⌊xp/2⌋

˛

˛

˛

˛

+

˛

˛

˛

˛

yp
⌊xq/2⌋
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xq

xp

˛

˛

˛

˛

≤ (k − 1) + 1 = k.

Case 2. If p = (xp, yp) is above the center path (i.e., yp >
⌊xp/2⌋), then q = (xq, yq) satisfies that yq ≥ ⌊xq/2⌋. The
even columns above the center path are copied from Tk−1

and the odd columns contain only diagonal edges. Thus p

is a copy of p′ = (⌊xp/2⌋, yp − ⌊xp/2⌋) and q is a copy of
q′ = (⌊xq/2⌋, yq − ⌊xq/2⌋).

Since the claim holds for T k−1, the vertical distance from
q′ to the line op′ is

dy(q′, op′) =

˛

˛

˛

˛

yq −
jxq

2

k

− (yp −
jxp

2

k

)
⌊xq/2⌋
⌊xp/2⌋

˛

˛

˛

˛

=

˛

˛

˛

˛

yq − yp
⌊xq/2⌋
⌊xp/2⌋

˛

˛

˛

˛

≤ k − 1,

which is exactly the same expression as in Case 1. Hence,
by inequality (1) and the same argument as above, we get
dy(q, op) ≤ k.

Since Φ−1 maps the vector (1, 0) to (1, 0) and the vector
(0, 1) to (−1, 1), the L∞ distance of q and a line op (with a
positive slope) in G(n) is the same as the vertical distance
dy(Φ(q), Φ(op)) between the corresponding point and line
in Φ(G(n)). Since the adjacent grid points in a digital ray
have distance 1 to each other, we can analogously show that
the L∞ distance from any point on a line segment to the
corresponding digital line segment is 1 + log n.

The tree DT(2) is related to a famous low discrepancy
sequence called Van der Corput sequence [17]. Assume that
n is a power of 2, and construct a sequence from DT (2)
using the method of Section 3.2 (ignoring x0 = 1). Then,
we have x1 = 0, x2 = 1/2, x3 = 1/4, x4 = 3/4, and in
general, if b1b2b3 . . . bs is the 2-adic expansion of i − 1, xi =
0.bsbs−1 . . . b1 in 2-adic decimal expansion for 1 ≤ i ≤ n.
This sequence is indeed the Van der Corput sequence.

It is also an interesting observation that DT(2) has a quite
uniform structure. Indeed, for any grid point p = (x, y),
the path from o to p has ⌊log(|x| + |y|)⌋ or ⌈log(|x| + |y|)⌉
branching vertices (excluding o) in DT(2).

Surprisingly, if we omit the monotonicity axiom (R5), the
lower bound does not hold. We instead give a constant upper
bound on the Hausdorff distance in Theorem 3.9. The same
bound holds for the Fréchet distance if we regard the digital
ray as a connected chain consisting of edges. The digital ray
that we construct is locally snake-like almost everywhere;
but its bird’s eye view can approximate a line segment fairly
well.
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Figure 5: Trapezoid decomposition and two trees of the for-
est T1.

Theorem 3.9. If the monotonicity axiom (R5) is not con-
sidered, there exists a system of digital rays in the plane grid
such that the Hausdorff distance between each digital ray and
its corresponding Euclidean line segment is O(1).

Proof. The idea is as follows: We first consider a coarser
grid of width 2, and construct a spanning forest T1 of it
allowing internal leaves. Then, we replace each node v of
this forest by four nodes in the original unit-width grid such
that v is located in the center of gravity of these four nodes.
Then we convert the forest T1 into a tree T2 in the original
finer grid.

Let c > 1 be an irrational constant. The forest T1 is con-
structed as follows: We consider the belt R(k) ⊃ G(2k+1) \
G(2k) defined by 2k < x + y ≤ 2k+1 in the first quadrant

and subdivide it into trapezoids by lines ℓt : y = 2k
−tc
tc

x

passing through the non-grid points (tc, 2k − tc) on the line
x + y = 2k for t = 1, 2, . . . , ⌊2k/c⌋. The widths of the two
parallel edges of each trapezoid are (at most)

√
2c and 2

√
2c,

respectively. Further, each trapezoid F is adjacent to one
trapezoid p(F ) in R(k − 1) called the parent of F and to
two trapezoids l(F ) and r(F ) in the belt R(k + 1) that are
called the left and right child, respectively. Let q be the
intersection of x + y = 2k+1 and the dividing line of l(F )
and r(F ). The nearest grid point to q in F is called the exit
node of F , and the nearest grid points to q in l(F ) and r(F )
are called their entry nodes. Each trapezoid has exactly one
entry and one exit node. In Figure 5, the entry node and
the exit node of F are marked by “E” and “X”, respectively.

By gathering these trapezoids for all k ≥ ⌈log c⌉, we have
a decomposition of the first quadrant of the plane. Since
c > 1, each trapezoid is wide enough so that the induced
subgraph of the grid points in a trapezoid is connected. It is
easy to find a spanning tree of the vertices in each trapezoid
consisting of a stem that is shortest path from its entry node
to its exit node, together with branches such that the length
of each branch (i.e., the path length from the stem to the
furthest leaf) is at most 2c as seen in Figure 5. This gives
a forest T1 consisting of small trees, one in each trapezoid.
Now, let’s convert T1 to T2 as shown in Figure 6. Each node
of T1 is replaced by four nodes at the corners of the sur-
rounding unit square. Thus, we can realize the walk around
the subtree of T1 in F as a Hamiltonian cycle in the finer

X

E

E

X

· · ·

· · ·

.

.

.

.

.

.

Figure 6: The walks around the two trees (top) and the
corresponding part of the tree T2 formed by connecting the
two walks (bottom).

grid. We cut the cycle at the exit node and connect to the
entry nodes of the trees in the two child trapezoids as in
Figure 6. We obtain a tree T2 that has no internal leaf. For
any grid point p ∈ F , the line segment op is contained in the
union of the ancestor trapezoids of F , and also all ancestors
of p in the tree T2 are in the same union of trapezoids. Since
the width of each trapezoid is at most 2

√
2c, the distance

from any point q in the path dig(op) in T2 to the line op is
at most 2

√
2c. It might happen that the nearest point from

q to the line op is not in the segment op since we do not
assume the monotonicity axiom. However, since the length
of each branch of a subtree in T1 is at most 2c, the Hausdorff
distance between the segment op and the path from o to p
in the tree is at most (2

√
2 + 2)c.

4. DIGITAL RAYS IN HIGHER-DIMENSIO-

NAL GRIDS
We can give a d-dimensional analogue of DT(2) to define

digital rays in d-dimensional space. We utilize the fact that
a line in d-dimensional space is uniquely determined by its
projections to all two-dimensional subspaces spanned by the
first coordinate and the i-th coordinate for i = 2, 3, . . . , d.
We first demonstrate the construction for the case d = 3 and
discuss the general case later.

Analogously to the two-dimensional case, we first trans-
form the orthogonal grid by a linear map that maps the base
vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1) to (1, 0, 0), (1, 1, 0) and
(1, 1, 1), respectively. Thus, the first octant of the orthogo-
nal grid is mapped to the part Q(3) defined by 0 ≤ z ≤ y ≤ x
of the skew grid spanned by three types of edges correspond-
ing to the vectors (1, 0, 0), (1, 1, 0) and (1, 1, 1). Next, we
define a spanning tree T (3) in this skew grid and transform
it back to a spanning tree in the orthogonal grid.

To define T (3), it suffices to define the parent of each ver-
tex (i, j, k) ∈ Q(3). We use our previous two-dimensional
tree in the skew-grid Φ(G) which covers the range 0 ≤ y ≤ x
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in the plane. We call this tree T (2) implying that it is a
tree in the two-dimensional skew-grid. We define two copies
T (2; x, y) and T (2; x, z) of T (2) for the dimension pairs (x, y)
and (x, z), which we call (x, y)-tree and (x, z)-tree, respec-
tively. The (x, y)-tree covers the range 0 ≤ y ≤ x and the
(x, z)-tree covers the range 0 ≤ z ≤ x.

Given a grid point p = (i, j, k) ∈ Q(3), we denote p as
(x, y)-horizontal (resp. (x, y)-diagonal) if the edge between
(i, j) and its parent in the (x, y)-tree is horizontal (resp.
diagonal). Similarly, p is called (x, z)-horizontal (resp. (x, z)-
diagonal) if the edge between (i, k) and its parent in the
(x, z)-tree is horizontal (resp. diagonal).

The following case distinction defines the parent in T (3):

1. if (i, j, k) is (x, y)-horizontal and (x, z)-horizontal, it is
connected to (i − 1, j, k);

2. if (i, j, k) is (x, y)-diagonal and (x, z)-horizontal, it is
connected to (i − 1, j − 1, k);

3. if (i, j, k) is (x, y)-diagonal and (x, z)-diagonal, it is
connected to (i − 1, j − 1, k − 1);

There is one case missing, namely if (i, j, k) is (x, y)-horizontal
and (x, z)-diagonal. Our key observation is that this case
cannot occur. By the definition of Q(3), we have k ≤ j.
And by Lemma 3.6 there is never a diagonal edge below a
horizontal one in an edge column of T (2). Now if (i, j, k) is
(x, y)-horizontal it must also be (x, z)-horizontal.

Therefore, we have defined a graph T (3) in the grid Q(3),
which uses only edges whose vectors are (1, 0, 0), (1, 1, 0), or
(1, 1, 1). Analogously, we can confirm that every node has at
least one child. In fact, the following lemma holds for T (3).

Lemma 4.1. For each p = (i, j, k) ∈ Q(3), there is a
unique path p towards the origin o in T (3). Thus, T (3)
is a tree rooted at o. The projection of p to the (x, y)-plane
(resp. (x, z)-plane) coincides with the path from (i, j) (resp.
(i, k)) to o in the (x, y)-tree (resp. (x, z)-tree).

The next lemma is a consequence of Lemma 4.1 and The-
orem 3.8:

Lemma 4.2. For any plane x = a where 0 ≤ a ≤ n, let
(a, b, c) and (a, b′, c′) be its intersection points with op and
dig(op), respectively. Then, |b − b′| < log n and |c − c′| <
log n.

We use the inverse map from the skew grid Q(3) to the
three-dimensional orthogonal grid; this maps T (3) to an or-
thogonal tree DT(3).

Proposition 4.3. The L1 distance from any point on the
digital ray in DT(3) to the corresponding Euclidean line is at
most 4 log n if the absolute value of each coordinate value of
the point is bounded by n. Consequently, the L1-Hausdorff
distance between a line segment and the corresponding digital
ray is a most 4 log n.

Proof. Let’s examine how the distance changes during
the inverse map. The vectors (0, 1, 0) and (0, 0, 1) are mapped
to (−1, 1, 0) and (0,−1, 1), respectively. Thus, a vector
(0, s, t) is mapped to (−s, s− t, t) and | − s|+ |s− t|+ |t| ≤
2|s| + 2|t|. Thus, for |s| ≤ n and |t| ≤ n we can apply
Lemma 4.2 which yields the proposition.

For the general d-dimensional grid, we have the following
theorem:

Theorem 4.4. Given a d-dimensional grid with nd grid
points in the orthogonal topology, we can define a spanning
tree T (d) such that the L1-Hausdorff distance between the
line segment op and the digital ray dig(op) is less than 2(d−
1) log n if the absolute value of each coordinate value of p is
bounded by n.

Proof. Let x1, x2, . . . , xd be the coordinates of the d-
dimensional space and define Q(d) by 0 ≤ xd ≤ xd−1 ≤
. . . ≤ x1. As before we define copies T (2; x1, xi) of T (2) for
the dimension pairs (x1, xi), where i = 2, 3 . . . , d. Now, let’s
consider a grid point p = (p1, p2, . . . , pd) ∈ Q(d) and define
its parent in T (d). From Lemma 3.6, there exists an integer
2 ≤ i ≤ d+1 such that (p1, pj) is diagonal in T (2; x1, xj) for
j < i and horizontal for j ≥ i. Note that all edges (p1, pj)
are horizontal (resp. diagonal) if i = 2 (resp. i = d + 1).
We connect p by an edge with the vector (1, 1, 1, . . . , 0, 0)
to its parent, where the vector has (i − 1) unit entries and
(d − i + 1) zero entries. This yields a spanning tree of the
grid points of Q(d). The rest is analogous.

5. DIGITAL MOUNTAIN APPROXIMATION
Consider a [0, 1]-valued function f on P, which we call a

pixel image function. In computer vision, it is important
to find an approximation of a given pixel grid image (repre-
sented by a function) by using another function with a nice
property. The problem can be formulated as follows as a nat-
ural variant of the least-squares method: Let’s fix a family
O of pixel image functions with some nice property. Given
a pixel image function f , we would like to find φ ∈ O mini-
mizing the L2 distance |f − φ|2 = [

P

p∈P
(f(p) − φ(p))2]1/2.

Picture retouching is a typical process on a pixel image:
The user clips a part of a digital picture and retouches it;
for example, to remove noise, waves, scars and/or stains in
a picture. A useful operation in picture retouching is as
follows: Given a peak position o (as user’s input or automat-
ically), reform the clipped part into a distribution peaked
at o and gradually fading out to the boundary. This can be
formulated as the following particular function approxima-
tion problem: Given a function f defined on P, its level set
at a height t is {p ∈ P : f(p) ≥ t}. The boundary of a level
set is often called a contour. We call f a mountain function
with the peak position o ∈ P if each of its level sets is a
digital star-shaped region centered at o (thus, each contour
is a digital star-shaped polygon).

The optimal mountain approximation problem is as fol-
lows: Given a real-valued function f defined on P, we would
like to find a digital mountain function φ minimizing the L2

distance |f −φ|2 = [
P

p∈P
(f(p)−φ(p))2]1/2. Geometrically,

the problem can be regarded as transforming a terrain rep-
resented by f to a mountain. Figure 7 illustrates how the
mountain approximation works in our implementation.

The following theorem given by Chen et al. [3] is our basic
tool to compute the optimal digital mountain approxima-
tion: Let R = R(f, t) be the region in a family F maximiz-
ing

P

p∈R(f(p)− t) for a given real value t. If there is more
than one such region, there is a maximum and a minimum
(in terms of inclusion) among those regions if F is closed
under intersection and union of regions. We denote them
Rmax(f, t) and Rmin(f, t). Further, we call t a critical height
if Rmax(f, t) 6= Rmin(f, t). The following theorem shows
that it suffices to compute R(f, t) for each critical height t
in order to compute φ.
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Figure 7: Mountain approximation: the values of the pixel image functions f (left) and φ (right) are represented by gray
levels.

Theorem 5.1. If F is a region family closed under inter-
section and union of regions then P (φ, t) = R(f, t) for the
optimal φ ∈ F minimizing the L2 distance from f . More-
over, if φ(p) = t for a pixel p ∈ P then p ∈ Rmax(f, t) \
Rmin(f, t).

Let’s consider the family S of digital star-shaped regions.
For each vertex v ∈ V of the tree DT (2), we give a paramet-
ric weight w(v, t) = f(v)−t, where f(v) is the value of the in-
put function f at the pixel corresponding to v. R(f, t) must
be a rooted subtree of DT(2) maximizing the sum of the
parametric weights of the vertices. For a given t, it is quite
easy to compute R(f, t): We traverse DT(2) in a bottom-
up fashion starting from the leaves and remove each vertex
v and the subtree rooted at v if the sum of the paramet-
ric weights of v in the subtree (ignoring removed vertices so
far) is negative. The final subtree obtained by the algorithm
gives Rmax(f, t). If we replace “negative” by “non-positive”
in the above procedure, we obtain Rmin(f, t). Clearly, this
can be done in linear time in terms of the tree size.

Now, we can apply a so-called hand probing operation:
Given t1 < t2 where R1 = Rmax(f, t1) 6= R2 = Rmax(f, t2),
we find t1 < t3 < t2 such that R1 and R2 have the same
parametric weight at t3 and compute R3 = Rmax(f, t3). Ap-
parently, this operation can be done in linear time in terms
of the tree size. Thus, we can either find a critical height
or a new level set, and we can thus find all critical heights
in O(h) hand-probing operations, where h is the number
of different level sets in the mountain. In total we have a
O(h|T |) = O(hN) time complexity. We can replace h by
log N + log Γ if each f(p) is an integer value less than Γ
by using a method given in [3], which is based on the fact
that we can contract the region R2 and also the outside of
R1 when we compute R3. We omit the details here but ob-
serve that the time complexity to compute the mountain is

O(min{h, (log N + log Γ)}N). Here, N = n2, h ≤ N is the
number of different layers of the mountain, and log Γ is the
precision of the gray levels (it is 8 if the input is a digital
image using 256 gray levels). In the setting where the peak
position o is not specified by the user, we need to test for
each candidate position of peaks and find the best one.

We remark that the result can be easily extended to the
d-dimensional case that is an analogue of the pyramid con-
struction problem considered in [3]. Moreover, we can use
the non-monotonic rays in our algorithm. We can also con-
trol the curvature of the contours by using the method of
Chen and Wu [19], where we consider a directed acyclic
graph obtained by adding artificial edges to DT (2), although
we need a minimum-cost-flow algorithm for solving that ver-
sion.

6. CONCLUDING REMARKS
Although our O(log n) bound for the distance is asymp-

totically optimal, we may improve the constant factor: The
lower bound factor in discrepancy theory is merely 0.06 [11].
An obviously important problem is to investigate the defi-
nition of consistent digital line segments for all pairs of grid
points or, as a first step, for digital rays with multiple ori-
gins. As shown in the introduction, if the set of digital line
segments satisfies the axioms, the distance bound seems to
become Ω(n); it is interesting to prove or disprove this. We
may apply a small random perturbation to the edge weights
of the grid graph to define dig(pq) as the unique shortest
path. Although the maximum Hausdorff distance is reduced
to O(

√
n log n), this method does not guarantee axiom (S4).
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