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Abstract. The 2-level cactus introduced by Dinitz and Nutov in [5] is
a data structure that represents the minimum and minimum+1 edge-
cuts of an undirected connected multi-graph G in a compact way. In
this paper, we study planarity of the 2-level cactus, which can be used,
e.g., in graph drawing. We give a new sufficient planarity criterion in
terms of projection paths over a spanning subtree of a graph. Using this
criterion, we show that the 2-level cactus of G is planar if the cardinality
of a minimum edge-cut of G is not equal to 2, 3 or 5. On the other
hand, we give examples for non-planar 2-level cacti of graphs with these
connectivities.

1 Introduction

Edge connectivity is a fundamental structural property of a graph. In the last
decade, not only the properties of minimum cuts but also the number [14,12,9]
and structure [1] of near minimum cuts were examined. Galil and Italiano [8] and
Dinitz and Westbrook [3,7] developed models for all 1 and 2 cuts and all 2 and 3
cuts, respectively. Based on these two models, Dinitz and Nutov introduced the
so called 2-level cactus model – a data structure that represents the minimum and
minimum+1 edge cuts of an undirected multi-graph with connectivity λ ≥ 3 in
a compact way [5]. There is no other so compact model, and no other compact
graph model for these cuts known, for the best of our knowledge. The above
models imply, in particular, fast incremental maintenance algorithms [8,7,5].

The 2-level cactus model (or “2-level cactus”, for simplicity) generalizes the
cactus model of all minimum cuts [4]. In case of odd connectivity λ > 3, the
2-level cactus is really a cactus, that is a connected graph in which every edge is
contained in at most one simple cycle. Some cuts, however, are represented only
implicitly in the graph of the model. In order to reduce this implicitness, we add
some auxiliary edges. We call the resulting graph the extended 2-level cactus.
The main question considered in this paper is whether the modeling graph is
planar, for both odd and even cases.

The proof of planarity is based on properties of the set of projection paths of
auxiliary edges, that is the set of (shortest) paths in the 2-level cactus between
the end nodes of auxiliary edges. To obtain planarity, we give a new sufficient
planarity criterion, generalizing a corollary to the criterion of MacLane [11].
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The question of planarity is not only of graph theoretical interest, it is also
useful for algorithmic purposes. But the main reason, why we study planarity
of the 2-level cactus, is an application in graph drawing. We are interested in
drawing all small cuts (“bottlenecks”) of a graph. Clearly, for a presentation on a
screen, planarity is a key property. A first approach in visualizing the minimum
cuts is done in [2], utilizing the cactus model for all minimum cuts [4]. The 2-level
cactus might be a next step in this direction.

This paper is organized as follows. Sect. 2 first introduces MacLane’s pla-
narity criterion. Then, we generalize a corollary of MacLane’s criterion. Sect. 3
introduces the 2-level cactus. In Sect. 4, we show, first, that it is planar for
connectivity λ = 1 and for any even connectivity λ ≥ 4. In case of odd con-
nectivity, we show that the 2-level cactus together with the auxiliary edges is
planar if λ > 5. We also give examples of non-planar (extended) 2-level cacti of
graphs with connectivity λ = 2, λ = 3, and λ = 5. We conclude the paper by
Sect. 5 with some remarks on how we would like to choose the faces of a planar
embedding.

2 Planarity of Trees with Additional Edges

Let E1∆E2 = E1 \E2 ∪E2 \E1 be the ring sum of two sets E1 and E2. Let EG

be the vector space on the subsets of an edge-set E of a graph G over F2 under
the ring sum operation ∆. The set ZG of all cycles and unions of edge-disjoint
cycles is a subspace of the vector space EG and is called the cycle space of G. A
2-basis of G is a basis of the cycle space of G, such that every edge occurs in at
most two elements of this basis.

Theorem 1 (Planarity Criterion of MacLane [11]). A graph is planar if
and only if it has a 2-basis. Moreover, any 2-basis of a 2-connected graph consists
of all but one facial cycle of some of its planar representations.

A short proof of MacLane’s planarity criterion can be found in [13].
A basis of the cycle space can be constructed from a spanning tree: Let T be

a spanning tree of a connected graph G. For an edge e = {v, w} in G− T , let pe

denote the set of edges on the path in T between v and w; called the projection
path of e. Then, {{e}∪pe|e edge in G−T} is a basis of the cycle space ZG. Thus,
there is the following immediate corollary of MacLane’s Planarity Criterion.

Corollary 1. A graph G is planar if there is a spanning tree T of G such that
every edge in T is contained in at most two projection paths.

The following lemma gives a sufficient planarity criterion under somewhat weaker
conditions.

Lemma 1. A graph G is planar if there is a spanning tree T of G such that for
any edge e = {v, w} in T , the number of projection paths that contain e and one
more edge in T incident to v is at most two.
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Fig. 1. Illustration of the proof of Lemma 1. Rectangularly shaped vertices are nodes.

Proof. Let G = (V,B∪̇S)1 be a connected graph such that T = (V,B) is a
spanning tree of G that fulfills the condition of the lemma. We use Kuratowski’s
Theorem [10].

G does not contain a K5: Suppose G contains a subdivision of a K5 as a sub-
graph. We call the five vertices of thisK5 nodes. Let T ′ be the smallest subtree of
T that contains all nodes of the K5. Let v be a leaf of T ′. Then, v is a node. Let
e = {v, w} be the edge incident to v in T ′. At most one of the four subdivision
paths of the K5 that connect v to the other nodes can contain vertex w. This
situation is illustrated in Fig. 1 (left). Thus, there are at least three subdivision
paths that (i) connect the two connected components T1 and T2 of T − {e} and
that (ii) do not contain w. Such a subdivision path contains at least one edge
s ∈ S with one end vertex in T1 and one end vertex in T2. The projection path
of s contains e and one more edge incident to w. Hence, there are at least three
projection paths containing e and another edge incident to w. This contradicts
the precondition.

G does not contain a K3,3: Suppose G contains a subdivision of a K3,3. We call
the six vertices of this K3,3 nodes. We distinguish the two parts of the K3,3 as
white nodes and black nodes. Let T ′ be the smallest subtree of T that contains
all nodes of the K3,3. Let v be a vertex that has maximum degree in T ′.

Let us first consider the case that degT ′(v) ≥ 3 and v is not a node as
illustrated in Fig. 1 (middle). At most one subdivision path can contain v. So,
there is at least one connected component T ′

1 of T ′ − {v} that contains none of
the end nodes of such a subdivision path. Let e be the edge that connects T ′

1 to
v in T ′. Each subdivision path incident to a node in T ′

1 and a node that is not in
T ′

1 must contain an edge from S whose projection path contains e and another
edge incident to v. If T ′

1 contains b black nodes and w white nodes, there are

1 With M1∪̇M2 we denote the disjoint union of two sets M1 and M2.
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b(3 − w) + w(3 − b) such paths. As we have 1 ≤ b+ w ≤ 4, there are at least 3
such paths. This contradicts the precondition.

Now consider the case that degT ′(v) ≥ 3 and v is a node – say a black node
as illustrated in Fig. 1 (right). Let T ′

1 be a connected component of T ′ −{v} that
contains at least one black node. Let e be the edge that connects T ′

1 to v in T ′.
If T ′

1 contains b black nodes and w white nodes, there are b(3−w) +w(3− b−1)
subdivision paths between nodes in T ′

1 and nodes not in T ′
1 + {v}. As we have

1 ≤ b + w ≤ 3, there are at least 3 such paths and thus at least 3 projection
paths containing e and another edge incident to v – a contradiction.

If degT ′(v) = 2, tree T ′ is a path. Without loss of generality, we can assume
that v is the third node in the path. Then, we can use the same argumentation
as in the previous case. 
�

3 The 2-Level Cactus Model

Throughout the rest of this paper, let G = (V,E) be an undirected connected
multi-graph. Even though there might be several edges of G that are incident
to the same two vertices v and w, we denote each of them by {v, w}. For two
subsets S, T ⊂ V let E(S, T ) := {{s, t} ∈ E| s ∈ S, t ∈ T} denote the set
of edges in E that are incident to a vertex in S and to a vertex in T and let
c(S, T ) := |E(S, T )| be the cardinality of this set. A non-empty proper subset
S of V induces the cut E(S, S) of G. A 2-cut is a cut of cardinality 2. Let
λ = min∅�S�V c(S, S) denote the minimum cardinality of a cut of G.

A cut that is induced by S divides a subset T of V if none of the two
sets S ∩ T and S ∩ T is empty. Two cuts E(S, S) and E(T, T ) are crossing, if
none of the four corner sets S ∩ T , S ∩ T , S ∩ T , and S ∩ T is empty. If not,
they are parallel. A cut that is induced by a corner set is called a corner cut.
G′ = (V ′, E′) results from G by shrinking a subset S of V , if V ′ = (V \S)∪̇{vS}
and E′ = (E \ E(V, S)) ∪ {{v, vS}; {v, s} ∈ E(S, S)}, that is every incidence of
an edge in E to a vertex in S is replaced by an incidence to vS , omitting loops.
Two cuts C and C ′ induce the quotient graph that results from G by shrinking
the four corner sets.

For λ ≥ 3, Dinitz and Nutov developed in [5] a compact model for the λ and
(λ + 1)-cuts of a graph G, called the 2-level cactus model. In the following, we
briefly sketch this model and summarize those properties that we use to prove
the planarity of the 2-level cactus.

Generally, a model for a family F of cuts of G is a triple (G, ϕ,F) such that
the model graph G = (N , E) is an undirected multi-graph, F is a set of cuts of G,
and ϕ : V −→ N is a mapping with ϕ−1(F) = F , where ϕ−1(E(S, S)) is defined
to be E(ϕ−1(S), ϕ−1(S)). We say that a cut C of G models the cut ϕ−1(C). The
elements of N are called nodes and a node ν ∈ N with ϕ−1(ν) = ∅ is called an
empty node.

In [5], models for the set F of λ and (λ + 1)-cuts are built in the following
way. Set F is divided into the set of those λ-cuts not crossing any other λ-cut in
F , called the set of all basic cuts F bas, the set of all remaining cuts in F that do



Planarity of the 2-Level Cactus Model 95

not cross any cut in F bas, called the set of all local cuts F loc, and the set of all
cuts that cross at least one of the cuts in F bas, called the set of all global cuts
F glb. F bas can be modeled by the tree T bas. See Fig. 2a,b for an illustration to
the construction of such a tree.

a)

ν1

ν2

Gν1Gν1
Gν1

Gν2 Gν2
Gν2

Fig. 2. a) A set of cuts of a graph (the graph edges are shown grey). Continuous curves
indicate basic cuts and dashed curves indicate local cuts. The dotted curve represents
a global cut. b) Tree T bas and c) two local models Gν1 and Gν2 that d) are implanted
instead of ν1 and ν2 into T bas. White nodes are empty nodes. The remainders of
the edges in T bas are grey. e) These remainders can be contracted at the end of the
implantation process. f) The opening of the white halo node in (e).

For a node ν ∈ N , let V 1
ν , . . . , V

k
ν be the subsets of V that are mapped on

the connected components of T bas − ν, and let Gν be the quotient graph of ν
that is the graph resulting from G by shrinking the sets V 1

ν , . . . , V
k
ν into a single

vertex each. Given any subset F̃ loc of the local cuts, it can be partitioned into
F loc

ν , ν ∈ N , where F loc
ν is defined as the set of those cuts in F̃ loc, that do not

divide any of the sets V i
ν . Assume, for all ν ∈ N , there is a model for the cut

set F loc
ν (they can be considered as cuts of the graph Gν). Then, a model for

F bas ∪ F̃ loc is built by “implanting” for every node ν ∈ N with F loc
ν �= ∅ a model

Gν – called local model – for F loc
ν into T bas. See Fig. 2c,d,e for illustration. The

nodes µ of Gν with ϕ−1(µ) = V i
ν , for some i, are called halo nodes. We also call

the vertices of Gν that correspond to the shrunken sets V i
ν halo vertices. Finally,

depending on whether λ is even or odd, the global cuts and the local cuts in
F loc \ F̃ loc are added in a suitable way.

Odd connectivity. Every global cut is modeled by a 2-cut of T bas. Moreover, for
a 2-cut {e1, e2} in T bas, let pe1e2 be the set of edges on the path between e1 and
e2 in T bas, with e1 and e2 included. If cut {e1, e2} models a global cut, then, any
2-cut {e′1, e′2} ⊂ pe1e2 does also model a cut in F loc ∪F glb ([5], Lemma 5.1). The
cuts that are modeled by a 2-cut of T bas are called degenerate cuts. Let P be
the set of inclusion-maximal sets pe1e2 , such that {e1, e2} models a (λ + 1)-cut
of G. The elements of P are called generating paths.



96 Sabine Cornelsen, Yefim Dinitz, and Dorothea Wagner

Lemma 2 ([6] Lemma 5.4 and proof of Lemma 5.5).

1. Any two generating paths have at most one edge in common.
2. Let λ > 3. Let p ∈ P and {v, w} ∈ p. Except {v, w}, there are at most two

edges incident to v in T bas such that there exists a generating path containing
{v, w} and such an edge.

For the local models, we consider only λ > 3. Let F̃ loc be the set of non-
degenerate local cuts plus the set of corner cuts of non-degenerate local cuts.
Let ν be a node of T bas.

Lemma 3 ([5] Lemma 5.4). Let C,C ′ be two crossing non-degenerate cuts.
Then, the quotient graph induced by C and C ′ is a simple cycle with λ+1

2 edges
between adjacent vertices.

From this lemma and the fact that for λ > 3 no degenerate cut in F̃ loc crosses
another cut in F̃ loc, Dinitz and Nutov conclude in [5] that there exists a tree of
cycles which is a suitable local model for each node ν with F loc

ν �= ∅. Implanting
these local models into T bas results in a cactus tree type graph G, which will be
called 2-level cactus.

To make the generating paths, and thus the 2-cuts of G modeling the global
cuts, visible in a drawing of the 2-level cactus G, let us extend G as follows. For
each generating path p, consider the corresponding sequence of edges in G and
add an auxiliary edge ep connecting the first and last end node of this sequence
to E . We call the result extended 2-level cactus G+. The set of edges on the
shortest path in G between the two end nodes of ep is called the projection path
of ep. Note, that it follows from Lemma 6 Item 1 in Sect. 4 that the projection
paths are unique up to multiple edges.

Even connectivity. For a node ν of T bas, the local model Gν is either a simple
cycle or it can be described as a tree Tν plus the halo nodes, where each halo
node is connected by two additional edges to Tν . In the latter case, the following
property holds. For a halo node µ, let pµ be the set of edges on the path in Tν

between the two end nodes of the two edges incident to µ, and let P be the set
of these paths. Lemma 5.6 in [5] gives the following properties of the paths in
P .

Lemma 4.

1. Two elements of P have at most one edge in common.
2. An edge of Tν is contained in at most two elements of P .

Let C be a global cut. Then, there is exactly one non-empty node ν of T bas

such that C divides ϕ−1(ν). Moreover, C contains one or two sets of λ
2 edges

corresponding to an edge of a cycle that was implanted instead a node µ in the
neighborhood of ν in T bas. To model these cuts, the halo node of Gν that was
implanted into edge {ν, µ} of T bas is “opened”, which means the halo node is
deleted and corresponding pairs of edges are merged. See Fig. 2f for illustration.
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Suppose now that every edge in the tree Tν of a local model that is contained
in k elements of P is replaced by 3 − k parallel edges and that every tree edge
of T bas that was not contracted after implanting is replaced by a pair of parallel
edges. Then, the 2- and 3-cuts of the resulting 2-level cactus G model the λ- and
(λ+ 1)-cuts of G, respectively. This is the 2-level cactus tree model for the even
case.

4 Planarity of the 2-Level Cactus

Odd connectivity. In Sect. 2, we have shown that a tree with additional edges,
such that the projection paths fulfill the properties of Lemma 2 is planar. We
cannot apply Item 2 of Lemma 2 for λ = 3 and, it turns out that in this case the
2-level cactus is not planar in general. For example (see Fig. 3a,b), if we take
G = K4, then the extended 2-level cactus is K5.

In case of λ ≥ 5, the tree T bas extended by the above auxiliary edges is
planar, by Lemma 2. However, when λ = 5, implanting the local model might
destroy planarity. An example is shown in Fig. 3c,d. The 2-level cactus in Fig. 3d
contains a subdivision of a K5 with the 5 white nodes as nodes of the K5.

a) b) c) d)

Fig. 3. Example of planar graphs of a) connectivity 3 and c) connectivity 5, and their
non-planar extended 2-level cacti b) and d). ϕ is represented by the location of the
vertices and nodes. In the extended 2-level cacti, white nodes are empty nodes, black
edges are tree-edges, dashed edges represent the generating paths, and double edges
are those of the implanted local model.

To show that for λ ≥ 7, implanting the local models preserves planarity, we
will use the following trick. First, we will consider all cycles of G and modify
them in G+. Then, we show that Lemma 1 can be applied to the thus modified
extended 2-level cactus G+. Second, we will restore the original extended 2-level
cactus G+, and show that planarity is preserved. We start with the following
observation (see also [6] Lemma 5.2).

Lemma 5. Let e1 and e2 be two edges of a generating path. Let V1, V2 and
V ′ be the set of vertices of G that are mapped on the connected components of
G − {e1, e2} such that V ′ induces the (λ + 1)-cut that is modeled by {e1, e2}.
Then, there are exactly λ−1

2 edges connecting V1 and V2.
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Proof. Let ε, ε1 and ε2 be the number of edges between V1 and V2, V1 and V ′, and
V2 and V ′, respectively. Then we have ε+ ε1 = λ, ε+ ε2 = λ and ε1 + ε2 = λ+ 1.
Thus ε = λ−1

2 . 
�
An edge of an implanted local model is called a tree-edge if it is contained

in a 2-cycle, and it is called a cycle-edge if it is contained in a cycle of length
greater than 2. Applying Lemma 3 and Lemma 5, we can show

Lemma 6.

1. A projection path contains at most one edge of each simple cycle.
2. Let λ ≥ 5. Each cycle-edge is contained in at most one projection path.
3. Let λ ≥ 7. Each tree-edge of an implanted local model is contained in at most

two projection paths.

Proof.

1. Let p be a projection path that contains the edges {v1, v2}, . . . , {vl−1, vl}
of a simple cycle c = v1, . . . , vk. Suppose p contains more than one edge of
c. As p takes the shortest path on c, it follows that k > l. Let V1, V2, Vl,
and Vk be the subsets of V that are mapped on the connected components
of G − {{v1, v2}, {vl−1, vl}, {vl, vl+1}, {vk, v1}} such that a vertex of Vi is
mapped on vi. Then, the two cuts that are induced by V1 ∪ V2 and by
V2 ∪ Vl, respectively, are crossing (λ + 1)-cuts. By Lemma 3, there are no
edges between V1 and Vl. On the other hand, let us consider the generating
path e1, e2, . . . , er, corresponding to p. By Lemma 5 applied to the pair
{e1, er}, there are at least λ−1

2 edges between V1 and Vl, a contradiction.
2. Let c be the set of edges of a simple cycle in a local model Gν and let {v1, v2}

be an edge in c. For i = 1, 2, let Ni be the set of nodes in the connected
component of G − c that contains vi, and let Vi be the subset of V that is
mapped on Ni. Suppose edge {v1, v2} is contained in at least two projection
paths p1 and p2. Let eji , i, j = 1, 2, be the edge on pi with end nodes in Nj

that was incident to ν in T bas before implanting Gν . By Lemma 2 Item 1,
we know that e11 �= e12 or e21 �= e22, so we may assume e21 �= e22. Let vp1 and
vp2 be the end-nodes of p1 and p2 in N2. For i = 1, 2, let ei ∈ pi be the edge
incident to vpi

, and let Vp1 and Vp2 be the subsets of V2 that are mapped on
the connected components of G − {e1, e2} that contain vpi . See Fig. 4a for
illustration. Then, by Lemma 5 there are λ−1

2 edges between V1 and Vp1 and
between V1 and Vp2 , respectively, and thus, there are at least λ − 1 edges
connecting V1 and V2. On the other hand, by Lemma 3, c(V1, V2) = λ+1

2 ,
contradicting the precondition that λ ≥ 5.

3. Let e, e′ be a 2-cycle of a local model, and let ε be the number of projection
paths containing either e or e′. Let V1 and V2 be the sets that are mapped
on the connected components of G − {e, e′}. With the same argumentation
as in Item 2, per projection path that contains e or e′, there are at least λ−1

2
distinct edges between V1 and V2. As {V1, V2} induces a (λ+ 1)-cut, ε must
fulfill the inequality ε · λ−1

2 ≤ λ+ 1. For λ ≥ 7, it follows ε < 3. 
�
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Fig. 4. a) Illustration of the proof of Lemma 6 Item 2. b), c) Modification of the cycles
in the local model b) in case not all and c) in case all cycle edges are contained in a
projection path, that is indicated by a dashed curve. d) Illustration of the final proof
of planarity in the odd case.

Let us consider the following modifications on the cycles. Let c be a simple
cycle. If c contains edges that are not contained in a projection path, we choose
one of these edges and declare it to be an auxiliary edge. If each edge of c is
contained in a projection path, we replace c by a star. That means, we delete all
edges of c, add an additional vertex vc to G+ and connect all vertices of c to vc.
See Fig. 4b,c for illustration. We call the so modified graph G′ and we denote
by S′ ⊇ S the set of all auxiliary edges of G′ and by T ′ the spanning tree of G′

that is induced by the edges that are not in S′.
The only case that e is contained in the projection path of an edge in S′ \S is

if e is a cycle-edge of a local model. Thus, by the above lemma and by Lemma 2,
G′ with its spanning tree T ′ fulfills the condition of Lemma 1. Hence, G′ is planar.

It remains to show that we can restore the deleted cycle-edges into G′ without
producing edge crossings. Let c be the set of edges of a cycle of G that we
have replaced by a star. Let {v, w} be an edge of c. We will show, that in any
embedding of G′, edges {v, vc} and {w, vc} are neighboring in the cyclic order
around vc. Suppose not: then v and w divide the adjacency list of vc into two
non-empty parts S and T . As the graph induced by c − {v, w} is connected,
there is an edge {s, t} in c with s ∈ S and t ∈ T . Let p be the projection path
that contains edge {v, w}. Let ep ∈ S be the auxiliary edge that represents p
and let p′ be the projection path of ep in G′. Similarly, let q be the projection
path that contains edge {s, t}, let eq be the corresponding edge in S and q′ the
corresponding path in G′. Then, on one hand, the two cycles induced by the edge
sets cp = p′ ∪ ep and cq = q′ ∪ eq are vertex disjoint except vc: If not, the graph
that is induced by cp ∪ cq has at least four faces and thus, the graph induced by
p′ ∪ q′, which is a sub graph of tree T ′, would contain a cycle. But on the other
hand, there is an edge of cq in the inner part of cp and an edge of cq in the outer
part of cp, contradicting the planarity of G′. See Fig. 4d for illustration.
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Even connectivity. The corollary to MacLane’s planarity criterion shows that a
tree with additional edges, such that the projection paths fulfill the properties of
Lemma 4 is planar. Thus, the local models are planar. Because the local models
are stuck together in a tree-structure, proceeding from a leaf, we can open the
halo nodes without losing planarity.

Connectivities One and Two. Finally, for completeness, we consider the pro-
totypes of the 2-level cactus. The cut model of the inclusion minimal 1- and
2-cuts was introduced in [8]; it is a tree of
edges and cycles and thus, is planar. In the
case λ = 2, a cut model for all minimum
and minimum+1 cuts is described in [3]; it
is constructed in a similar way as the 2-level
cactus in the even case. In general, it is not
planar. An example is a K4 with every edge broken into two by a new vertex.
This graph and its non-planar 2-level cactus is shown on the right. We summarize
this section in the following theorem.

Theorem 2. For a connected multi-graph with edge-connectivity λ = 1 or with
even edge-connectivity λ ≥ 4 the 2-level cactus is planar, for odd edge-connectivity
λ ≥ 7 the extended 2-level cactus is planar, and for all other connectivities there
are examples of non-planar (extended) 2-level cacti.

5 Final Remarks

For an extended planar 2-level cactus (the odd case), it would be nice if:

(a) the auxiliary edges are all on the same (outer) face and
(b) each cycle that is generated by an auxiliary edge and its projection path is

the boundary of a face.

a) b)

Fig. 5. a) A graph of odd connectivity λ = 7 and its 2-level cactus G. There is no
embedding of G such that all dashed auxiliary edges are on the same face. b) A graph
of even connectivity λ = 4 and its 2-level cactus G. All non-grey nodes belong to a
single local model Gν . There is no embedding of Gν such that its halo nodes (the white
nodes) are on the same face. With an increasing number of vertices, both examples can
be extended to arbitrary odd or even connectivity, respectively.
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In this case, G is completely contained inside a planar drawing of G+, and the
projection path that corresponds to an auxiliary edge can be discovered more
easily. Moreover, the interior of each simple cycle of a local model will then be
empty. In the even case we wish that:

(a) the halo nodes of any local model Gν are all on the same (outer) face of Gν .

In this case, the tree structure of T bas can be better recognized in a planar
drawing of G.

Unfortunately, there are examples (see Fig. 5 and Fig. 6a) that show that
the above mentioned properties of the (extended) planar 2-level cactus are not
true in general. However, it follows from Mac Lane’s planarity criterion that in
the even case, Property (a) is true for the 2-connected components of the local
models. In the odd case, by subdividing each edge of T bas that is contained in
more than two projection paths as illustrated in Fig. 6b, the extended 2-level
cactus G+ can be modified in such a way that the result is still a linear sized
model for the minimum and minimum + 1 cuts of G, and has an embedding
such that

(c) for each auxiliary edge e, the cycle on the edge set e ∪ pe is a part of the
boundary of some face f .

a)

λ−3
2

λ−3
2

λ+1
2

λ+1
2

λ+1
2

λ+1
2

b)

Fig. 6. a) A graph of odd connectivity λ > 3 and its 2-level cactus G. Vertical edges
refer to λ+1

2 edges, diagonal edges refer to λ−3
2 edges, and horizontal edges refer to one

edge each. There is no embedding of G with the property that, for every simple cycle c
that is generated by a dashed edge and its projection path, there is a face f such that
c is part of the boundary of f . b) Splitting the edge that is contained in more than 2
generating paths achieves this property.
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