
Scalable Similarity Estimation in Social Networks:
Closeness, Node Labels, and Random Edge Lengths

Edith Cohen
Microsoft Research SVC

edith@cohenwang.com

Daniel Delling
Microsoft Research SVC

dadellin@microsoft.com

Fabian Fuchs∗
KIT, Germany

fabian.fuchs@kit.edu
Andrew V. Goldberg
Microsoft Research SVC

goldberg@microsoft.com

Moises Goldszmidt
Microsoft Research SVC

moises@microsoft.com

Renato F. Werneck
Microsoft Research SVC

renatow@microsoft.com

ABSTRACT
Similarity estimation between nodes based on structural properties
of graphs is a basic building block used in the analysis of massive
networks for diverse purposes such as link prediction, product rec-
ommendations, advertisement, collaborative filtering, and commu-
nity discovery. While local similarity measures, based on proper-
ties of immediate neighbors, are easy to compute, those relying on
global properties have better recall. Unfortunately, this better qual-
ity comes with a computational price tag. Aiming for both accuracy
and scalability, we make several contributions. First, we define
closeness similarity, a natural measure that compares two nodes
based on the similarity of their relations to all other nodes. Second,
we show how the all-distances sketch (ADS) node labels, which are
efficient to compute, can support the estimation of closeness sim-
ilarity and shortest-path (SP) distances in logarithmic query time.
Third, we propose the randomized edge lengths (REL) technique
and define the corresponding REL distance, which captures both
path length and path multiplicity and therefore improves over the
SP distance as a similarity measure. The REL distance can also
be the basis of closeness similarity and can be estimated using SP
computation or the ADS labels. We demonstrate the effectiveness
of our measures and the accuracy of our estimates through experi-
ments on social networks with up to tens of millions of nodes.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms]: Miscellaneous; G.2.2 [Discrete
Mathematics]: Graph Theory; H.2.8 [Database Management]:
Database Applications—Data Mining; H.3.2 [Information Stor-
age and Retrieval]: Information Search and Retrieval; I.5.3
[Pattern Recognition]: Clustering

Keywords
Closeness Similarity; Social Networks; All-Distances Sketches;
Random Edge Lengths

∗Intern at Microsoft Research during this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
COSN’13, October 7–8, 2013, Boston, Massachusetts, USA.
Copyright 2013 ACM 978-1-4503-2084-9/13/10 ...$15.00.
http://dx.doi.org/10.1145/2512938.2512944.

1. INTRODUCTION
Methods that estimate the similarity of two nodes based solely

on the graph structure are the heart of approaches for analyzing
massive graphs and social networks [4, 21, 24, 27, 30]. These
methods constitute the basic building blocks in algorithms for link
prediction (friend recommendations), collaborative filtering, prod-
uct placement, advertisement, and community discovery, to name
a few.

The underlying similarity measures can be classified as local or
global. Local measures are based only on the relation of immediate
neighborhoods and include the number of common neighbors [28]
and Adamic-Adar [4], which weighs each common neighbor in-
versely to the logarithm of its degree. Global measures are de-
fined with respect to the global graph structure and include RWR
(random walk with a specified restart probability) [34, 27], which
extends hitting time and PageRank [10]; KATZ [24], which sums
the number of distinct paths, where path contribution decreases ex-
ponentially with its length; SimRank [22], which is a recursively
defined similarity measure based on neighbor similarity; resistance
distance (viewing network as an electric circuit) and the related
commute time (symmetric hitting time) [9]; the shortest-path (SP)
distance; and the minimum cut. We refer the reader to [27] for an
overview.

Local measures are fairly effective for some applications, but
global measures can assign meaningful similarity scores to pairs
that are more than two hops apart, and therefore have a better re-
call [27]. This capability comes at a price: global measures are
often computationally more expensive, making them infeasible for
application to networks and graphs with tens to hundreds of mil-
lion of nodes, which are the norm in today’s social networks, such
as Twitter, Facebook, or LinkedIn.

Aiming for both accuracy and scalability, we introduce novel
measures based on global properties and novel estimation tech-
niques. Our approach consists of three components.

The first is a definition of the closeness similarity between nodes,
which is based on the similarity of their distances to all other nodes
in the network. Closeness similarity is specified with respect to
three functions (distance, decay, and weight) and naturally extends
the classic closeness centrality [31, 32] and several measures based
on local and global properties.

The second component, all-distances sketch (ADS) labels, is a
sketching technique that assigns a label to each node in the graph.
ADS labels were initially developed for estimating the number
of nodes reachable from (or within a certain distance of) a given
node [6, 7, 12, 16, 19, 29], then extended to estimate closeness
centrality [13, 15]. Although we need to compute an ADS label
for each node in a graph, the above papers show that this can be

done efficiently, with a logarithmic total number of traversals per
edge. These computations can also be done offline, leading to ex-
tremely efficient (online) queries, consisting of simple operations
on the (small) ADS labels. We show here that the ADS labels of
two nodes can be used effectively to estimate both their SP distance
and their closeness similarity.

As the third component in our approach, we introduce the ran-
domized edge lengths (REL) technique. We define the REL dis-
tance, which is the expected SP distance with respect to this
randomization. While both shorter path length and multiplicity
strongly correlate with similarity in social networks, the SP dis-
tance does not account for multiplicity. The REL distance compen-
sates for this semantic deficiency of SP distances while retaining
the computational advantages of this benchmark similarity measure
[27]. Another property of the REL distance that is not shared by the
SP distance but holds for popular global measures (such as RWR,
KATZ, and resistance distance) is that it can be used to identify sit-
uations in which the similarity value of two nodes highly depends
on the presence of a third node (a “critical hub”). This is important
because a critical hub between nodes may overstate actual similar-
ity and also the number of pairs with respect to which a node is
a critical hub can be used as a measure of betweenness centrality.
Lastly, REL can be integrated with both ADSs (for efficiency) and
closeness similarity (for accuracy).

We demonstrate both the effectiveness and the scalability of our
approaches through a large-scale experimental study on three real
social networks. The first two, DBLP and arXiv, are undirected net-
works representing co-authorships. The third, the so-called men-
tion graph in Twitter, is directed and has tens of millions of nodes.
We can answer arbitrary similarity queries (even global ones) on
real social networks of such scale in a few microseconds, taking
the full structure of the graph into account. Our experiments com-
pare our approach against well-established algorithms representing
both local (Adamic-Adar) and global (RWR) measures of similar-
ity. As proxy for ground truth we use metadata associated with the
networks (the text in paper titles, abstracts, and tweets), and use
standard similarity measures from information retrieval to evaluate
the degree of similarity between the nodes in the network. For val-
idation, we also consider one synthetic small world network [26],
for which we actually hold the ground truth.

In summary, the contributions of our work are:

• A definition of closeness similarity in graphs with a suitable
parametrization, capable of capturing both local and global
definitions.

• The application of all-distances sketch (ADS) labels to es-
timate distances and closeness similarities with theoretical
performance guarantees.

• The application of randomized edge lengths (REL) to in-
crease the accuracy of the similarity estimation.

• Experiments demonstrating the scalability and effectiveness
of our approach on large-scale networks with comparisons to
other representative approaches.

The remainder of this paper is organized as follows. We give a
precise definition of ADSs and related notions in Section 2. Sec-
tion 3 discusses how ADSs can be used to obtain distance estimates,
and gives novel theoretical bounds for their accuracy. Section 4 in-
troduces the notion of closeness similarity, studies two natural spe-
cial cases (based on SP distances and Dijkstra ranks), and shows
how they can be efficiently approximated using ADSs. Section 5

introduces the concept of randomized edge lengths (REL). The re-
sults of our experimental evaluation are provided in Section 6. We
conclude with final remarks in Section 7.

2. PRELIMINARIES
We consider both directed and undirected networks. For nodes

v, u, we use dvu to denote the shortest-path (SP) distance from v to
u. Let πvu denote the Dijkstra rank of u with respect to v, defined
as its position in the list of nodes ordered by increasing distance
from v. For simplicity, we assume consistent tie-breaking to make
distances distinct.

For two nodes u, v, we use the notation Φ<u(v) = {j|πvj <
πvu} for the set of nodes that are closer to v than u is. For d ≥ 0
and node v, Nd(v) (the d neighborhood of v) is the set of nodes of
distance at most d from v, and N<d(v) is the set of nodes that are
of distance less than d from v. We use nd(v) ≡ |Nd(v)|.

For directed graphs, we distinguish between forward and back-
ward Dijkstra ranks (−→π vi, ←−π vi) and neighborhoods (

−→
Φ<u(v),

←−
Φ<u(v),

−→
N d(v),

←−
N d(v)). The forward relations are with respect

to the graph with edges oriented forward. The backward relations
are with respect to the graph with edges reversed.

For a numeric function r : X → [0, 1] over a setX , the function
kth
r (X) returns the k-th smallest value in the range of r on X . If
|X| < k then we define kth

r (X) = 1.
The all-distances sketch (ADS) labels are defined with respect to

a random rank assignment to nodes such that ∀v, r(v) ∼ U [0, 1],
i.e, they are independently drawn from the uniform distribution on
[0, 1]:

ADS(v) = {(u, dvu) | r(u) < kth
r (Φ<u(v))} .

In other words, a node u belongs to ADS(v) if u is among the
k nodes with lowest rank r within the ball of radius dvu around
v. (For simplicity, we abuse notation and often interpret ADS(v)
as a set of nodes, even though it is actually a set of pairs, each
consisting of a node and a distance.) Since the inclusion probability
of a node is inversely proportional to its Dijkstra rank, the expected
size of ADS(v) is E[|ADS(v)|] ≤ k lnn, where n is the number
of nodes reachable from v [12, 16]. A detailed example is given in
the appendix.

Moreover, a set of ADSs (one for each node) with respect to
the same r can be computed efficiently, using O(k lnn) traver-
sals per edge in expectation. The two proposed ADS computations
(see overview in [13]) are based on performing pruned Dijkstra-
based single-source shortest path computations [12, 16] or (for un-
weighted edges) dynamic programming [29, 19, 6, 7].

For a node u ∈ ADS(v), we define

pvu = kth
r (Φ<u(v)) (1)

to be the k-th smallest rank value amongst nodes that are closer to
v than u is. By definition, kth

r (Φ<u(v)) = kth
r ({i ∈ ADS(v)|dvi <

dvu}) (the k-th smallest amongst nodes in ADS(v) that are closer
to v than u is). Therefore, pvu can be computed from ADS(v)
for all u ∈ ADS(v). The value pvu is the inclusion probability
Pr[i ∈ ADS(v)], conditioned on fixing r on all nodes in Φ<u(v)
(but not fixing r(u)). Under this conditioning, i is included if and
only if r(i) < pvu. Since r(i) ∼ U [0, 1], this happens with proba-
bility pvu. We use pvu to obtain estimators for node centrality and
pairwise relations.

Another useful function that can be computed from ADS(v)
with respect to a distance x > 0 is the threshold rank, defined
as

τv(x) = kth(N<x(v)). (2)

The threshold rank is the maximum rank value that suffices for a
node at distance x from v to be included in ADS(v), fixing the
ranks of all other nodes. When u ∈ ADS(v), then pvu = τv(dvu).
We use τ in the analysis of our similarity estimators. The inverse
function

τ−1
v (y) = max{dvi | kth

r (Φ<i(v)) > y} (3)

is the maximum distance for which the threshold rank is larger than
y. This function gives a lower bound on the distance dvi for a node
i 6∈ ADS(v). It also allows us to identify nodes that are far away
from a set of nodes.

For directed graphs, we distinguish between the forward and
backward ADSs:

−−→
ADS(v) is computed with respect to

−→
Φ v and

←−−
ADS(v) is computed with respect to

←−
Φ v . Accordingly, we use the

forward and backward notation with the functions p and τ (−→p uv ,
←−p uv , −→τ ,←−τ).

As a relative error measure for the quality of our estimators we
use the coefficient of variation (CV), defined as the ratio of root of
square error to mean.

3. DISTANCE ESTIMATION
We explore the use of ADSs as distance labels. Distance labels

enable the computation of the SP distance dij from the labels of
the nodes i and j. Node labels that have the same format as ADSs
(2-hop labels [14]) have been successfully used for exact distances
in road networks [3] and medium-size unweighted social graphs
[5]. These exact labels, however, are much larger and much more
expensive to compute than ADSs.

We show here how ADSs can be used to obtain bounds on the
distance. Without loss of generality, we use the directed notation.
If we are lucky and j ∈ −−→ADS(i) or i ∈ ←−−ADS(j), we can determine
the exact distance dij from

−−→
ADS(i) or

←−−
ADS(j). Otherwise, we can

obtain upper and lower bounds, which we denote by dij and dij ,
respectively. The upper bound is obtained by treating the ADSs
as 2-hop labels [3, 5, 14], namely considering the shortest path
through a node in

−−→
ADS(i) ∩

←−−
ADS(j):

dij ← min{div + dvj | v ∈
−−→
ADS(i) ∩←−−ADS(j)} (4)

To study the quality of the upper bound given by Equation (4),
we consider its stretch, defined as the ratio between the bound and
the actual SP distance. We bound the stretch of (4) on undirected
graphs as a function of the parameter k. As our first contribution,
we show that the bounds on stretch, query, space, and construction
time asymptotically match those of the Thorup-Zwick distance or-
acles [33].

THEOREM 3.1. On undirected graphs, with constant probabil-
ity,

dvu ≤
(

2

⌈
logn

log k

⌉
− 1

)
dvu.

PROOF. Let d ≡ dvu. We have the relationNd(u) ⊂ N2d(v) ⊂
N3d(u) ⊂ N4d(v) ⊂ . . . Consider the ratio nid(v)

n(i+1)d(u)
for i ≥

1. We look at the smallest i where nid(v)
n(i+1)d(u)

> c/k. When
this holds, we are very likely to have a common node that is in
ADS(v)∩ADS(u)∩Nid(v). Simply, the k smallest ranked nodes
in N(i+1)d(u) are a uniform sample, so one of them hits Nid(v)

with probability 1 − (1 − c/k)k ≈ 1 − 1/ec. Finally, since there
are at most n nodes, we must have i ≤ logk/c n.

This means the stretch is logn if we choose k to be constant, and
2a−1 if we pick k = n1/a (for some integer a). The bound can be

slightly tightened by looking at the maximum h such that, for some
increasing n1 ≤ n2 ≤ . . . ≤ nh, k

∑
i ni/ni+1 < 1 (bounding

the sum rather than the minimum ratio). This would give as stretch
log(n)/ log log(n) with fixed k.

A naive implementation of ADS intersection takes O(k lnn)
time and works well in practice for small k. To improve query
time when k is large (while still guaranteeing the same bound on
the stretch), we further observe that the smallest ranked node in
Nid(v) is likely to be one of the k smallest in N(i+1)d(u). There-
fore, it suffices to test for inclusion in ADS(u) only the nodes in
ADS(v) that would have been included when k = 1. This would
reduce query time toO(lnn). We note that asymptotic query times
can be further reduced by a more careful use of the ADSs, but the
details are mainly of theoretical interest and outside the scope of
this work.

A clear advantage of the ADSs over the Thorup-Zwick sum-
maries is that they are also “oracles” for other powerful measures:
closeness similarity, as we show here, neighborhood sizes [12],
and closeness centralities [13, 15]. In practice, the distance esti-
mates obtained by the ADSs are much better than these worst-case
bounds for arbitrary graphs. As we show in Section 6, we observe
very small stretch even for directed graphs. We now provide a theo-
retical justification for these observations by considering structural
properties of social networks.

For two nodes i, j we are likely to get a good upper bound if a
good “intermediate” vertex is likely to be present at the intersection
of the ADSs. More precisely, suppose nodes vh are ordered by
increasing dh ≡ divh + dvhj , i.e., by the upper bound they yield
on the distance. Note that

Pr[vh ∈ ADS(i) ∩ ADS(j)] ≥

min

{
1,

k

|
−→
Φ i(vh) ∪

←−
Φ j(vh)|

}
≥ k
−→π ivh +←−π jvh

.

This is because a sufficient condition for vh to be in the intersection
is that it is k-th in the random permutation induced on vh and the
nodes

−→
Φ i(vh)∪

←−
Φ j(vh). These events are negatively correlated for

different nodes. Therefore, by summing over potential intermediate
nodes, we are (1 − 1/ec) likely to get an upper bound at most ds
when

k

s∑
h=1

1

max{−→π ivh ,
←−π jvh}

≥ c.

A sufficient condition to obtain an upper bound ds with probability
1 − 1/ec is that there is x < ds so that the Jaccard similarity of
Nx(i) and Ndij−x(j) is at least c/k.

Qualitatively, the stretch is lower when there are many potential
“hub” nodes v that lie on almost shortest paths (dij ≤ (1+ε)(div+
dvj)). Since the presence of multiple short paths is an indicator of
similarity, this suggests that the approximate distance might be bet-
ter in capturing some aspects of similarity than the exact distance.

3.1 Better Bounds
Our experiments show that simply applying Equation (4) (even

for fairly small values of k) is enough to obtain very accurate results
for social networks. For even better upper bounds, one can use
more information and trade accuracy for computation time. For
example, the formula

dij ← min{dix + dxz + dzy + dyj | x ∈
−−→
ADS(i), (5)

y ∈ ←−−ADS(j), z ∈ −−→ADS(x) ∩←−−ADS(y)}

uses neighboring ADSs to obtain a tighter upper bound, but the
associated query time is O(k2 ln2 n).

Moreover, we could use ADSs to obtain lower bounds on the dis-
tance between any two nodes as well. More precisely, the following
lower bound on dvu can be obtained from r(u) and ADS(v):

∆(u, v) =

{
dvu, if u ∈ ADS(v)
τ−1
v (r(u)), if u 6∈ ADS(v).

For directed graphs we use
−→
∆ and

←−
∆ , according to the direction of

the ADS of v. A tighter bound can be obtained using both ADS(u)
and ADS(v):

dij ← max

−→
∆(j, i),
←−
∆(i, j),

∀v ∈ −−→ADS(j),
−→
∆(v, i)− djv

∀v ∈ ←−−ADS(i),
←−
∆(v, j)− dvi.

(6)

The last two conditions state that, if there is a node v in ADS(j)
and distance d from v which we know has distance at least d + x
from i, then we get a lower bound of x on the distance between i
and j.

4. CLOSENESS SIMILARITY
Using only the distance between two nodes to measure their sim-

ilarity has obvious drawbacks. In this section, we introduce the
concept of closeness similarity, which measures the similarity of
two nodes based on their views of the full graph. More precisely,
we consider the distance from each of these two nodes to all other
nodes in the network and measure how much these two distance
vectors differ. This is computationally expensive, but ADSs allow
an efficient estimation of this view, as Section 4.1 will show.

Closeness similarity is specified with respect to a distance func-
tion δij between nodes, a distance decay function α(d) (a mono-
tone non-increasing function of distances), and a weight function
β(i) of node IDs. The basic expression for closeness similarity is

Sα,β(v, u) =
∑
i

α(max{δvi, δui})β(i), (7)

but we actually prefer the following Jaccard form, where the simi-
larity is always in [0, 1]:

Jα,β(v, u) =

∑
i α(max{δvi, δui})β(i)∑
i α(min{δvi, δui})β(i)

. (8)

LEMMA 4.1. If α(d) ≥ 0 is monotone non-increasing and
β(x) ≥ 0 is nonnegative, then Jα,β(u, v) ∈ [0, 1] for all pairs
u, v, and Jα,β(v, v) = 1 for any v.

PROOF. The first claim follows from monotonicity of α, which
implies that α(min{δvi, δui}) ≥ α(max{δvi, δui}). The second
from α(min{δvi, δvi}) = α(max{δvi, δvi}) = α(δvi).

The notion of closeness similarity is quite general and extremely
powerful, as this section will show. A potential drawback is that it
is expensive to compute exactly, but Section 4.1 will show that we
can use ADSs to approximate it accurately and efficiently for all
choices of α and β and two natural choices of the distance function
δ. In terms of effectiveness, our experiments will show that simply
setting α(x) ≡ 1/x, β ≡ 1, and δvi ≡ πvi (Dijkstra ranks) is
enough to obtain very good results.

In general, however, the weighting β can be anything that de-
pends on readily-available parameters of a node, such as its degree
or metadata (e.g., gender or interests obtained through text anal-
ysis). Similarity is then measured with respect to these weights.

Using β ≡ 1 weighs all nodes equally, in which case we omit β
from the notation. A weight function that increases with degree
can be used to emphasize contribution of highly connected nodes
to the similarity. Alternatively, a decreasing β may make sense
in collaborative filtering applications, where the proximity of two
nodes to a third one is more meaningful when the third node is less
central.

In the remainder of this section, we consider closeness similarity
with respect to both SP distance (where δij ≡ dij), in Section
4.1.1, and Dijkstra rank (position in the nearest-neighbor list, with
δij = πij), in Section 4.1.2. We explain the semantic difference
between these choices in Section 4.2.

The notion of closeness similarity generalizes several existing
measures. In particular, when δ is the SP distance, the Adamic-
Adar (AA) measure [4] can be expressed as Sα,β using α(x) = 0
when x ≥ 2 and α(x) = 1 otherwise, and β(u) = 1/ log |Γ(u)|,
where |Γ(u)| is the degree of u. Using α(x) = 1/(1 + x)c (for
some choice of c) gives us a global variant of AA. Similarly, the
intersection size of d-neighborhoods, which naturally extends the
local common neighbors measure, can be expressed using β(u) ≡
1 and α(x) = 1 if x ≤ d and 0 otherwise.

Closeness similarity is also tightly related to the classic notion of
closeness centrality, which measures the importance or relevance
of nodes in a social network based on their distances to all other
nodes. The closeness centrality Cα,β(i) of a node i is simply the
closeness similarity Sα,β(i, i) between the node and itself. Use of
α(x) = 1/x specifies Harmonic mean centrality (used in [32] with
resistance distances and evaluated in [8] with SP distances) and
α(x) = 2−x specifies exponential decay with distance [20]. The
number of reachable nodes from v can be expressed using α(x) =
1. Estimators for Cα(v) from ADS(v) were studied in [13, 15] and
have coefficient of variation (CV) ≤ 1/

√
2(k − 1), which means

that the relative error rapidly decreases with k.
In directed networks such as Twitter, we can consider closeness

similarity with respect to either forward and backward edges. The
forward similarity compares nodes based on how they relate to “the
world,” whereas backward similarity compares them based on how
the world relates to them. To simplify the technical presentation,
we focus on undirected graphs. Results easily extend to directed
graphs by appropriately considering forward or backward paths.

4.1 Estimating Closeness Similarity
The exact computation of (7) and (8) is expensive, since it

amounts to performing two single-source shortest-path searches for
each pair of nodes. We will show, however, that we can obtain good
estimates from ADS(u) and ADS(v). Since the expected time to
compute the whole set of ADS labels is within a k lnn factor of
a single-source shortest-path computation, this is very appealing.
We also provide tight theoretical bounds on the quality of these
estimates.

Our estimates Ŝα,β(u, v) and Ĵα,β(u, v) are obtained by sepa-
rately estimating α(max{δvi, δui}) and (when using the Jaccard
form) α(min{δvi, δui}) for each node i. We then substitute the
estimate values α̂(max{δvi, δui}) and α̂(min{δvi, δui}) in the re-
spective expressions (7) and (8). Since the estimate values are pos-
itive only for nodes i ∈ ADS(u) ∪ ADS(v), the computation is
very efficient. In order to obtain a small relative error with arbi-
trary β, the random ranks underlying the ADS computation have to
be drawn with respect to β (as done for centrality computation in
[13]). This is explained in Section 4.3.

The estimates we obtain for each summand, and therefore each
sum, are nonnegative. They are also unbiased for SP distances,
and nearly so for Dijkstra ranks. The estimate on each summand

(with respect to each node i) typically has high variance: since each
ADS has expected size k lnn, for most nodes i we have limited
information from ADS(u) and ADS(v). We can, however, bound
the error of the aggregate estimate. To do so, we consider each
variant (based on SP distances and Dijkstra ranks) separately.

4.1.1 SP Distance Closeness
We use the L∗ estimator of Cohen and Kaplan [17, 18], which is

the unique estimator that is unbiased, nonnegative, and monotone
(estimate is non-increasing with r(i)). The L∗ estimator is also
variance-optimal in a Pareto sense [17]. We explicitly derive the
estimator for functions α that are monotone non-increasing with
the maximum distance α(max{dvi, dui}) and with the minimum
distance α(min{dvi, dui}). We state the estimator, as applied to
ADS(u) and ADS(v), and our error bounds.

Our estimator for α(max{dvi, dui}) is defined by the following
lemma.

LEMMA 4.2. The L∗ estimate of α(max{dvi, dui}) is

α̂(max{dvi, dui}) ={
i 6∈ ADS(u) ∩ADS(v): 0

i ∈ ADS(u) ∩ADS(v): α(max{dvi,dui})
pi,u,v

,

where pi,u,v = min{pvi, pui}, with pvi and pui as defined in (1).

PROOF. When we have no information (no upper bound on
max{dvi, dui}), the estimate is 0. The value pi,u,v is the condi-
tional probability (conditioned on fixed ranks of all other nodes) of
the event i ∈ ADS(u)∩ADS(v). Therefore the estimator is simply
the inverse-probability estimate conditioned on fixed ranks.

Note that we have all the information needed to compute the
estimate. When i 6∈ ADS(u) ∩ ADS(v), the estimate is 0. When
i ∈ ADS(u)∩ADS(v), we know both dui and dvi and can compute
pvi and pui. Lastly, to estimate the sum

∑
i α(max{dvi, dui})β(i)

it suffices to only consider nodes that belong to the intersection of
the ADSs, because they are the only ones with a positive estimate.

Our estimate for α(min{dvi, dui}) is defined as follows.

LEMMA 4.3. The L∗ estimate of α(min{dvi, dui}) is

α̂(min{dvi, dui}) =

i 6∈ ADS(u) ∪ADS(v) : 0

i ∈ ADS(u) \ADS(v) : α(dui)
pui

i ∈ ADS(v) \ADS(u) : α(dvi)
pvi

i ∈ ADS(u) ∩ADS(v) :
if pvi ≤ pui :

α(min{dvi,dui})−(pui−pvi)
α(dui)
pui

pvi
if pui < pvi :

α(min{dvi,dui})−(pvi−pui)
α(dvi)
pvi

pui
.

PROOF. We apply the general derivation of the L∗ estimator,
presented in [17]. In our context, we consider the outcome as a
function of r(i), conditioned on the ranks on all other nodes being
fixed. The outcome is the occurrence of the events i ∈ ADS(u)
and i ∈ ADS(v), as a function of r(i). The outcome depends on
the relation of r(i) to the two threshold values τv(dvi) and τu(dui)
as in (2), which are solely determined by the ranks of Φ<i(v) and
Φ<i(u). In particular, they do not depend on r(i).

To obtain the L∗ estimate, we need to consider the (tightest)
lower bound we can obtain on α(min{dvi, dui}) from the out-
come. This is the infimum of the function on all possible data
(distances dui and dvi) that are consistent with the outcome. Note

that from the outcome for a given r(i) = y, we have enough infor-
mation to determine the outcome, and the respective lower bound
function, for all r(i) ≥ y.

We now provide the estimator for all possible outcomes.
The first case is i 6∈ ADS(u) ∪ ADS(v), which happens when

r(i) > max{τv(dvi), τu(dui)}. This is consistent with i not even
being reachable from v or i (or being very far). We therefore do
not have an upper bound on the minimum distance (and thus do not
have a lower bound on α(min{dvi, dui})). We use the estimate
α̂(min{dvi, dui}) = 0.

The second case is i ∈ ADS(u)\ADS(v). This can only happen
if τu(dui) ≥ τv(dvi) and when r(i) ∈ (τv(dvi), τu(dui)]. In this
case we know dui, and we have that pui = τu(dui). Note that dui
is trivially an upper bound on the minimum distance. It is also the
tightest bound we can get from the information we have. We can
only obtain a lower bound of τ−1

v (r(i)) (see Equation (3)) on dvi,
but we can not upper bound it. If τ−1

v (r(i)) ≥ dui then we know
that dvi ≥ dui and thus we know that the minimum distance is dui.
Otherwise, we only know that the minimum distance is between
τ−1
v (r(i)) and dui and the best upper bound we have is dui. Either

way, whether we know the minimum distance or not, the estimate
is α̂(min{dvi, dui}) = α(dvu)

τv(dui)
. The case i ∈ ADS(v) \ ADS(u)

is symmetric.
The remaining case is when i ∈ ADS(v) ∩ ADS(u). In this

case we can determine dvi, dui, and both thresholds τv(dvi) =
pvi and τu(dui) = pui. Assuming τv(dvi) ≤ τu(dui) (the
other case is symmetric), the L∗ estimate is the solution for x
of the unbiasedness constraint: α(min{dvi, dui}) = (τu(dui) −
τv(dvi))

α(dui)
τu(dui)

+ τv(dvi)x.

Note again that we have all the information we need to compute
the estimate. We know dvi and pvi if and only if r(i) ≤ pvi, which
happens if and only if i ∈ ADS(v), and symmetrically for u.

With these estimators, the Jaccard closeness similarity can be
estimated in the natural way:

Ĵβ,α(v, u) =

∑
i∈ADS(u)∩ADS(v) α̂(max{dvi, dui})β(i)∑
i∈ADS(u)∪ADS(v) α̂(min{dvi, dui})β(i)

. (9)

The estimates for both the numerator and denominator are unbi-
ased, since our estimates for each summand are unbiased. The es-
timate on the ratio is biased, but we can bound the root of the mean
square error of the estimate:

THEOREM 4.1. When α(x) is non-increasing and node ranks
are drawn according to β(i), the root of the expected square error
of Ĵβ,α(v, u) is O(1/

√
k).

PROOF. The coefficient of variation of the estimate
on

∑
i α(min{dvi, dui}) is bounded by 1/

√
2(k − 1).

The RMSE (square root of expected square error)
on the estimate

∑
i α(max{dvi, dui}) is bounded by∑

i α(min{dvi, dui})/
√

2(k − 1).

4.1.2 Dijkstra Rank Closeness
A natural choice for the distance decay function is α = 1/x,

based on the harmonic mean. With Dijkstra ranks, we suggest the
use of the variant α(x) = min{1, h/x} for some integer h > 1.
With α(x) = 1/x, the weights assigned to the h closest nodes
are in the range [1/h, 1], which can make the measure less robust
when these nodes are actually similar. By using h > 1, we give
the h closest nodes the same α weight, increasing robustness to
variations in their ordering.

We now consider the choice h = k. Making the appropriate
substitutions in Equation (8) we have

J∗(u, v) =

∑
i min{1, k

max{πvi,πui}
}∑

i min{1, k
min{πvi,πui}

}
. (10)

It turns out that we can obtain a particularly simple estimator
for J∗:

Ĵ∗(u, v) =
|ADS(u) ∩ ADS(v)|
|ADS(u) ∪ ADS(v)| . (11)

This is due to the following relations:

LEMMA 4.4. For any three nodes i, u, and v,

Pr[i ∈ ADS(u) ∩ ADS(v)] ≈ min

{
1,

k

max{πvi, πui}

}
Pr[i ∈ ADS(u) ∪ ADS(v)] ≈ min

{
1,

k

min{πvi, πui}

}
PROOF. Recall that the probability that a node i appears in

ADS(v) is min{1, k/πvi}. The probabilities that the node appears
in the intersection of two or more ADSs are highly positively cor-
related. The joint probability is close to the minimum of the two,
which is k

max{πvi,πui}
. More precisely, for k = 1, the joint prob-

ability is between k
πvi+πui

(if the sets of preceding nodes in the
permutations are disjoint) and k

max{πvi,πui}
(if the sets of preced-

ing nodes are maximally overlapping). Asymptotically, when k is
larger, the expected size of the intersection of ADSs more closely
approximates (10).

Note that a nice property of these approximations is that we
can work with a very compact representation of ADSs. Since
each ADS has expected size k lnn, to estimate size of union and
intersection we can hash node IDs to a smaller domain of size
O(log k + log logn). We can then store the ADS as an unordered
set, obtaining a significant reduction in storage needed for the la-
bels for very large graphs.

These approximations quickly converge with k. Using lin-
earity of expectation, it follows that the sum with respect to
α(max{πvi, πui}) can be approximated by the size of the in-
tersection |ADS(u) ∩ ADS(v)|, and the sum with respect to
α(min{πvi, πui}) is approximated by the size of the union
|ADS(u) ∪ ADS(v)|.

We now consider estimating closeness similarity for more gen-
eral forms of α. One complication is that, in contrast to the distance
dui, the Dijkstra rank πui of a node i is not readily available when
i ∈ ADS(u). Fortunately, we can still obtain an estimate with good
concentration:

LEMMA 4.5. Conditioned on i ∈ ADS(v), the estimate π̂vi =

1 + ̂|Φ<i(v)|, where

̂|Φ<i(v)| =
∑

j∈ADS(v)∩Φ<i(v)

1

pvj
, (12)

is unbiased and has CV at most 1/
√

2(k − 1).

PROOF. The Dijkstra rank πvi = 1+ |Φ<i(v)| is equal to 1 plus
the number of nodes that are closer to v than i (we assume unique
distances in this definition). The best estimator we are aware of for
|Φ<i(v)| is the RC estimator [13], which is (12). This RC estimate
is equal to the exact size when |Φ<i(v)| ≤ k (i.e., πvi ≤ k+1) and
an estimate that always exceeds k otherwise. The CV of the esti-
mate is upper-bounded by 1/

√
2(k − 1). Therefore for large k we

can get good concentration. Note that we are able to compute this
estimate only when i ∈ ADS(v) (because otherwise we can not
determine the nodes in ADS(v) that are closer to v than i is). Note
however that the estimate is independent of the inclusion of i in
ADS(v). Therefore, we get good concentration and unbiasedness
when the estimate is conditioned on i ∈ ADS(v).

We can then substitute the estimated Dijkstra ranks π̂vi instead
of distances in the SP distance closeness similarity estimators.

4.2 SP Distance versus Dijkstra Rank
We now explain the qualitative difference between closeness

similarities based on distances and Dijkstra ranks, which prompted
us to consider both. The measures behave differently in heteroge-
neous networks where nodes have different distance distributions.
For intuition, we relate the problem to the classic information re-
trieval problem of similarity of documents. For duplicate elimina-
tion, we may want to deem documents similar based on both topic
and size. When searching for query matches, we may want to fac-
tor out the size and compare only based on topic. In our social
network context, the Dijkstra rank closeness captures “topic sim-
ilarity”: the similarity of two nodes in terms of the relative order
of their relations to other nodes. SP distance closeness uses the
absolute strength of the relations.

To make this concrete, consider measuring the similarity of two
nodes u and v. Suppose that the 100 nearest neighbors of u are
much closer to u than the 100 nearest neighbors of v are to v. If
these sets are sufficiently similar, we may want to say that u and v
are similar in that they both view the world (or, if there is direction,
the world relates to them) in a similar way. In this case, we should
use Dijkstra rank closeness. To identify nodes that are similar in
both topic and level of involvement, we should use distance-based
closeness.

In our experiments on social networks, we use TF-IDF cosine
similarity as a proxy for ground truth (see Section 6.1.2). With this
measure, the similarity between nodes is only based on topics (and
not the number) of publications or tweets associated with them. As
explained, this makes Dijkstra rank closeness (and Equation (10))
a better fit.

4.3 Using Node Weights
In order to retain the CV bound of our closeness similarity es-

timators of Theorem 4.1 when β is not uniform, we need to make
slight modification to the ADS computation. We briefly state these
modifications. The rank r(u) we assign to each node u is expo-
nentially distributed with parameter β(u). This can be done by
drawing y ∼ U [0, 1] (independently for each node) and computing
r(u) = − ln(y)/β(u). The intuitive explanation for this choice is
that the expected rank of a node is 1/β(u). Therefore, nodes with
higher β(u), which also have a higher contribution to closeness
similarity, are more likely to obtain a lower rank value r(u) and
therefore are more likely to be represented in the ADSs of other
nodes.

The estimators we apply need to be modified accordingly, since
we are using a different distribution. The only difference is the
computation of the probabilities pui and pvi. Instead of simply
using (1), we compute the probability that an exponential random
variable with parameter β(u) is smaller than kth

r (Φ<u(v)). We ob-
tain

pvu = 1− e−β(u)kth
r (Φ<u(v)).

Note that, because exponential random variables are not bounded,
we need to define kth

r (X) = +∞ when |X| < k. The intuition
behind the analysis is that (under an appropriate scaling) a node

of weight β(i) is treated like β(i) nodes of weight 1 under uni-
form scaling. Note that the mapping is not exact, as all β(i) copies
are correlated, but then the correlations between the copies work
in our favor: if any one of the copies was represented in the de-
composed problem then all of them would be represented in the
weighted instance we are actually treating. For more details, we
refer the reader to [12, 13, 15]. (Our problem here is more general,
but the technique of handling node weights is the same)

5. RANDOMIZED EDGE LENGTHS
In this section, we introduce a similarity measure that is based

on the SP distance and can be computed by SP computations, but
is sensitive to path multiplicities as well as length. Our intuitive
expectation from a similarity measure is that the similarity between
u and v increases when there are more paths between u and v and
when the paths are shorter. On the simple patterns in Figure 1,
we expect similarity to increase with r (the number of paths) and
decrease with ` (the SP distance). All common similarity measures
satisfy this expectation in a weak sense: similarity is non-increasing
with path lengths and is non-decreasing with multiplicity. Popular
global measures such as KATZ, RWR, or resistance distance satisfy
this expectation in a strong sense: similarity strictly decreases with
` and strictly increases with r. The SP distance and the minimum
cut, however, satisfy the expectation only in a weak sense: the SP
distance does not depend on r but does decrease with `, whereas
the minimum cut does not depend on ` but (for patterns B and C)
increases with r. These two measures thus fail to capture some
essential property of the connectivity between the nodes.

Given a network with link multiplicities we, we define the REL
distance to be the expected shortest path distance with respect to
random edge lengths that are drawn independently from an ex-
ponential distribution with parameter we. This is the same as
assigning to each edge e a random length −(lnue)/we, where
ue ∼ U [0, 1] are independent.

The use of the exponential distribution is natural here: if we have
multiple parallel links with multiplicities {wi}, their effect on the
REL distance is the same as that of a single link with multiplicity∑
i wi, which is what we intuitively want to happen. This holds

because the minimum of several exponentially distributed random
variables distributes like a single exponential random variable with
parameter that is the sum of the original parameters.

The REL distance can be estimated using standard SP compu-
tations: we simply draw a set of random lengths and compute SP

(A) (B) (C)

Figure 1: Connection between two nodes in simple networks.
Pattern (B) consists of r disjoint paths of length `. Pattern (C)
has a path of length ` with r parallel edges between consecutive
nodes. Pattern (A) has r disjoint paths of length 2 to an inter-
mediate node and a path of length `− 2 from the intermediate
node to the other end point. All paths in these examples are of
integral length ` > 2.

distances with respect to these lengths. We repeat this m times (for
some m) for accuracy and take the average distance.

LEMMA 5.1. The REL distance estimator is unbiased and has
CV ≤ 1/

√
m.

PROOF. Unbiasedness is immediate. The CV does not exceed
that of a single exponential random variable.

Note that REL distance is computationally not much more ex-
pensive than SP distance, but has several advantages, which we
discuss in the remainder of this section.

5.1 Edge Robustness
Intuitively, a similarity measure is more robust when it is less

sensitive to removal of edges [11, 21], or additions of spurious (ran-
dom) edges to the network, which connect nodes that are otherwise
very dissimilar. In this sense, the REL distance is much more ro-
bust than the SP distance, and behaves more similarly to KATZ
and RWR.

Consider again the patterns in Figure 1 and the relative similar-
ity scores on these patterns by different measures. (C) is the most
robust to random edge removals and (A) is the least robust. There-
fore, we would like our similarity measure to have (C) � (B) �
(A). The SP measure does not distinguish between the three cases,
all having the same SP distance of `, so we get (A) ≈ (B) ≈ (C).
The same holds for RWR (PageRank, hitting time) regardless of
the restart probability. The KATZ measure would give (C) � (A)
≈ (B), since case (C) has r` paths and there are only r paths in
cases (A) and (B). Thus, KATZ fails to distinguish between (A)
and (B). The resistance distance is `/r in both (B) and (C), thus not
distinguishing between the two, but correctly giving higher resis-
tance distance `− 2 + 1/r in case (A). The same relation holds for
the minimum cut, where the cut value is r for (B) and (C) but only
1 for (A). Thus, with both resistance distance and minimum cut,
we obtain (C)≈ (B)� (A). Lastly, the REL distance gives the rela-
tion we want: (C) � (B) � (A). To see why, note that (C) has REL
distance `/r; this is much lower than (B), which has REL distance
≈ `− r

√
` (the standard deviation for a single length-` path is

√
`

and we use an approximation for r �
√
`); this in turn is lower

than (A), which has REL distance between `− 2 + 2/r and `.

5.2 Capturing Hub Nodes
Intuitively, when modeling or representing the relations of a node

u it is important to identify when the similarity of a pair (u,w) is
highly dependent on the presence of a single node v. That is, if v
is removed, the similarity of (u,w) would significantly decrease.
In such cases, we say that v is a local hub for the pair (u,w). For
the relations between end points in the patterns in Figure 1, there
are no local hubs in (B), all ` − 1 middle nodes are local hubs in
(C), and there are ` − 2 local hubs in (A). We say that a similarity
measure captures local hubs when we can identify that node v is
a local hub for (u,w) from the similarities of (u, v), (v, w) and
(u,w). We can identify local hubs with KATZ and RWR using the
product relation suw ≈ suvsvw, with minimum cut using the rela-
tion suw ≈ min{suv, svw}, and with REL and resistance distance
using the sum relation suw ≈ suv + svw. SP distance, in contrast,
does not capture local hubs: it is possible that duw = duv + dvw
(as in pattern (B)) even when v is not a local hub for (u,w).

5.3 REL with ADSs
We have seen that REL has several desirable properties. As de-

fined, however, it is very expensive to compute: it requires the com-
putation of multiple shortest paths between two nodes, with differ-

` = 1
` = 2
` = 3
` = 5
` = 7
` = 10

R
E
L

D
is
ta
n
ce

r: Number of paths
1 10 100

0

1

2

3

4

5

6

7

8

9

10

(a) µ

R
E
L

D
is
ta
n
ce

1 10 100
0

1

2

3

4

5

6

7

8

9
` = 1
` = 2
` = 3
` = 5
` = 7
` = 10

r: Number of paths

(b) µ− σ/2

Figure 2: Variants of REL distance for two nodes connected by r disjoint paths of length `: (a) standard REL; (b) REL distance
minus half the standard deviation.

ent cost functions. Once again, we can use ADSs to approximate
the REL computation efficiently and accurately.

We repeat the ADS computation t times, all with respect to
the same random node ranking, but using different draws of edge
lengths. Using the same node ranking makes the union of the ADSs
more similar: a node that is included in one iteration is more likely
to be included in another. That way, we can produce a single com-
pact representation of all t sets of ADSs where each node appears
with some aggregate information (average, quantile, sample SD of
its distance or estimated Dijkstra rank in the different iterations).
To estimate closeness similarity, we can use the t sets or work with
the aggregate representation (which has a slightly different inter-
pretation). We note that when using REL with closeness centrality
estimation, we could randomize over node ranks as well. In an
one-time centrality computation, the ADSs are computed but do
not need to be stored [13], so there is no advantage for overlap.

A side advantage of REL when using Dijkstra ranks is that in-
significant differences between nodes that can have very different
Dijkstra ranks under fixed distances are ironed out. When differ-
ences are not significant, the REL distributions have significant
overlap, which means that nodes would alternate relative Dijkstra
rank in different repetitions.

5.4 Parametrized REL
With REL, as with other distance measures, many different pat-

terns yield the same similarity score. We may want to be able to
tune that by a parameter which controls the relative significance of
different path lengths. Such a parameter is present in KATZ (the
base of the exponent) and RWR (the restart probability) measures.

We propose a way to gain such control with REL. Instead of
only considering the expectation of the distance, we can consider
its distribution (more precisely, the variance of the REL distance
random variable). Longer paths have smaller variance for the same
expectation, and the sample variance and sample standard deviation
σ are as easy to estimate as the sample mean µ. We propose using
µ − cσ (for some constant c ≥ 0) in order to increase the cost of
longer paths and µ+ cσ to achieve the opposite. Alternatively, we
can also use a quantile of the distribution.

To understand this parametrization, we consider the REL dis-
tance a(r, `) from u ro v when they are connected by r disjoint
paths of length `. The REL distance increases with ` and decreases
with r (as discussed earlier, all the similarity measures we men-
tion are non-increasing with ` and non-decreasing with r). Figure
2(a) shows the standard REL distance as a function of r for dif-
ferent values of the path length `. The figure shows the relation

between paths of different lengths. For example: a single length-7
path has the same REL distance as 4 disjoint length-10 paths. A
single length-1 path (single edge) has the same REL distance as 3
disjoint length-2 paths or 8 disjoint length-3 paths.

Figure 2(b) shows the relation when using a modified REL dis-
tance of µ− σ/2, which makes longer paths have higher cost. We
can see that now a single path of length 7 has the similarity of 7
length-10 paths. Similarly, it takes 6 length-2 paths or 30 length-3
paths to match a single length-1 path.

6. EXPERIMENTS
We now present experimental results that illustrate the useful-

ness of the concepts introduced in this paper. Our focus is on
testing the most natural variant of each major concept we dealt
with: distance estimation (using ADSs), closeness similarity, and
randomized edge lengths. Our general approach is to compare the
graph-based measures we study with independent similarity mea-
sures based on metadata associated with each node.

6.1 Setup and Methodology
Our code is written in C++ and compiled with Microsoft Visual

C++ 2012. Our test machine runs Windows Server 2008 R2 and has
384 GiB of DDR3-1066 RAM and two 8-core Intel Xeon E-5-2690
2.90 GHz CPUs, each with 8×64 KB of L1, 8×256 KB of L2, and
20 MB of shared L3 cache. All executions are single-threaded and
run in memory.

6.1.1 Data Sets
We consider the largest (strongly) connected component of three

real-world social networks (arXiv, DBLP, and Twitter) as well as a
synthetic one (small world). The first two columns of Table 1 give
key statistics for these networks. (We will discuss the remaining
columns in Section 6.1.4.)

Table 1: Key statistics of our data sets, together with label gen-
eration effort (time and nodes per label) and in-memory query
times for label intersection (k = 3, m = 1)

nodes edges prep. label query
graph [×106] [×106] [h:m] size [µs]
arXiv 0.43 28.68 0:02 37.85 1.22
DBLP 1.06 9.16 0:02 39.09 1.64
twitter 29.64 603.87 8:05 50.82 3.51
smallworld 1.00 5.98 0:02 40.74 1.35

hops

se
m

an
tic

 s
im

ila
rit

y
● semantic

uniform
hops

2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) arXiv
hops

se
m

an
tic

 s
im

ila
rit

y

● semantic
uniform
hops

2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) DBLP
hops

se
m

an
tic

 s
im

ila
rit

y

● semantic
uniform
hops

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) Twitter
hops

se
m

an
tic

 s
im

ila
rit

y

● semantic
uniform
hops

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(d) Small World

Figure 3: Plots of all pairs sampled according to each distribution (uniform, hop-based, and semantic).

The first two networks come from DBLP and arXiv data.1 In
both cases, the raw data contains a list of articles with titles and au-
thors; in addition, arXiv has abstracts and DBLP has venues. In the
corresponding network, nodes represent authors and edges indicate
co-authorship. We set the length of an edge to be the inverse of the
number of common papers by the corresponding authors.

The third social network is the Twitter mention graph, built from
tweets of December 2011. Each node represents a distinct user, and
there is an edge between v and u if user v sends a tweet directed at
user u (using the @ sign). This network is directed and weighted by
1/(number of mentions).

The final network we consider is a synthetic realization of a small
world (SW) network [26], which is undirected and unweighted. It
consists of an N ×N toroidal grid with additional “long-distance”
edges. For each node, we add an edge to a random node at L1

distance d in the grid, where the probability of picking a particular
value of d is proportional to d−2.

6.1.2 Semantic-based Similarity
To evaluate the graph-based similarity measures we tested, we

compare them against semantic-based similarity measures. These
are based on individual properties of the entities represented by
each node, with no direct information about the graph itself.

For the small world instance, we take the semantic similarity
between nodes v and u to be the inverse of the L1 distance between
the corresponding points in the original metric space.

For real-world social networks, we measure semantic similarity
using the metadata associated with each node. We map each node
to a document, seen as a bag (multiset) of all terms (words) uttered
by the user/author. For arXiv, this consists of the titles and ab-
stracts of all articles written by the author; for DBLP, we use titles
and venues; for Twitter, all tweets sent by the user, as long as at
least two-thirds of the characters in the tweet are ASCII printable
(this filters out most messages in non-Western languages, for which
word-based similarity may not be an adequate ground truth). We
measure the similarity between two nodes by comparing the cor-
responding documents. We first reweight terms using the standard
TF-IDF (term frequency-inverse document frequency) method [23]
(to deemphasize stop-words and other common terms), then com-
pute the cosine similarity between the corresponding vectors.

More precisely, let f(t, d) be the frequency of t, i.e., the num-
ber of times a term t appears in document d. Let the logarithmi-
cally scaled term frequency be tf(t, d) = ln(f(t, d) + 1). The in-

1Available at http://export.arxiv.org/oai2 and
http://dblp.uni-trier.de/xml/.

verse document frequency is defined as idf(t,D) = ln(|D|/|{d ∈
D : t ∈ d}|}), where D is the entire corpus (set of documents).
For a fixed document d and term t, tfidf(t, d,D) is defined as
tf(t, d) · idf(t,D). Let T be the set of all terms that appear in the
entire corpus. Conceptually, each document d can be seen as a |T |-
dimensional vector v(d) whose t-th entry represents tfidf(t, d,D).
The normalized semantic similarity between two documents da and
db is defined as the dot product of v(da) and v(db), divided (for
normalization) by the product of the L2 norms of v(da) and v(db).
This is the similarity measure we use in our experiments.

6.1.3 Query Distribution
We evaluate the quality of our similarity measures on sample

pairs of nodes. We pick such pairs using three distributions: uni-
form, hop-based, and semantic-based. Each has about 5000 pairs,
and Figure 3 compares them. Each sampled pair (v, u) corresponds
to a point; its x coordinate indicates the number of hops between
v and u and its y coordinate indicates the semantic similarity. The
color/shape of each point indicates the distribution it came from.

In the natural uniform distribution, each pair consists of two
nodes picked independently and uniformly at random. Although
it was often used in previous studies, this distribution is heavily bi-
ased towards pairs that are semantically quite different, since their
nodes tend to be far apart in the graph.

In most real-life applications, however, we are interested in eval-
uating nodes that have some nontrivial degree of similarity. The
hop-based distribution ensures that enough such pairs are evalu-
ated, as follows. First, we pick a center node v uniformly at ran-
dom. We then run a breadth-first search on the entire graph from v
(disregarding any edge costs) and, for each i ∈ {1, 2, 3, . . . , 10},
we pick a node ui uniformly at random between all nodes that are
exactly i hops away from v, creating a pair (v, ui). We repeat this
process with 500 different center nodes v.

The third distribution is semantic-based. Our semantic-
based similarity measures are real numbers between 0 and
1. We split this range into twenty equal-width buckets
[0, 0.05), [0.05, 0.10), [0.10, 0.15), . . . , [0.95, 1.00] and pick up to
250 pairs of nodes within each interval. We do so by picking pairs
uniformly at random and assigning them to the appropriate bucket,
keeping only the first 250 in each case. (For some inputs, the prob-
ability of hitting some of the higher buckets is extremely small; we
may leave some buckets incomplete after sampling 20 million pairs
unsuccessfully.)

As Figure 3 shows, most pairs in the uniform distribution are far
apart and have extremely low semantic similarity. The hop-based
distribution picks more pairs with higher semantic similarity, but

samples per edge

co
rr

el
at

io
n

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

1 4 8 12 16 20 24 28 32

●

+

ADS dist REL (small world)
Closeness REL (small world)
ADS dist REL (arXiv)
Closeness REL (arXiv)

●

●

●

●

●
● ● ● ● ●

+
+

+
+ + + + + + +

k

co
rr

el
at

io
n

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

1 2 3 4 5 6 7 8 9 10

●

+

ADS dist REL (small world)
Closeness REL (small world)
ADS dist REL (arXiv)
Closeness REL (arXiv)

●

●

●
● ●

●

+

+
+ + + +

Figure 4: Parameter tests. On the left, we fix k = 3 and vary the number m of samples per edge. On the right, we fix m = 16 and
vary k. For each set of parameters, we report Spearman’s correlation relative to the semantic similarity.

they also tend to be very close together (in terms of hop distances).
In general, the semantic-based distribution picks a more diverse set
of pairs, with less correlation between hop distance and semantic
similarity. We believe this distribution gives more insight into real
applications.

Note that the two co-authorship networks (arXiv and DBLP) are
quite different, due to different paper population and metadata. The
small world network is quite distinct from other networks, with
different structure, node degrees, and metadata.

6.1.4 Algorithms
To test the concepts introduced in this paper, we computed ADSs

based on Dijkstra’s algorithm, as described in [12, 13, 16]. Labels
are represented in the obvious way, as pairs of hubs and distances,
sorted by hub id to allow for a straightforward implementation of
intersection in linear time [3]. Table 1 reports the time to gener-
ate labels (with k = 3 and m = 1, as defined in Sections 2 and
5) on our networks, the average number of nodes per ADS, and
the average time to compute the similarity between two nodes from
their ADSs. Note that preprocessing times are reasonable (a few
hours for Twitter), and queries are extremely fast (a few microsec-
onds). We want to stress that we did not tune our preprocessing
code too much; our main focus is exploring the feasibility of ADS-
based approaches for estimating similarity. We thus optimized our
code enough to handle the Twitter data, but did not exploit further
optimizations such as multi-threading or cache locality.

We implemented two ADS-based approaches to measure simi-
larity. The first, ADS distance, simply computes the upper bound
on the SP distance using Equation (4). Smaller distances indicate
higher similarity. The second approach we consider is closeness
similarity based on Dijkstra rank, using Equation (11).

We apply each variant to the original graph as well as to a version
with randomized edge lengths (REL). For the latter, we use a single
random rank function, and sample m = 16 lengths for each edge
(see Section 6.2). The resulting preprocessing time is thus 16 times
longer than those reported in Table 1.

To measure the quality of the results obtained, we compute
Spearman’s rank correlation coefficient [25] (or Spearman’s corre-
lation, for short) between each structure-based similarity measure
and the appropriate semantic similarity, which we take as ground
truth. Since Spearman’s correlation is rank-based, it is a good fit to
evaluate measures that operate on different scales. For consistency,
when evaluating a similarity measure for which lower values are
meant to indicate higher similarity (such as distance-based meth-
ods), we negate the similarity measure when computing Spear-
man’s correlation. For all methods tested, therefore, positive values
are better. Note that zero indicates a lack of correlation.

6.2 Parameter Setting
Both methods we study (ADS distance REL and Closeness REL)

have two parameters: the threshold k for inclusion of nodes in ADS
labels and the number m of samples per edge (for randomizing its
length). We performed some preliminary explorations on the data
to determine their values. Figure 4 shows how our similarity mea-
sures are affected (in terms of quality) when we fix one of these
parameters and vary the other. As already mentioned, quality is
measured in terms of Spearman’s correlation to the semantic simi-
larity (ground truth). We consider two representative graphs, small
world and arXiv, and use the semantic-based distribution of pairs.

As predicted by our theoretical analysis, the trade-offs we must
contend with are straightforward: increasing either parameter leads
to better expected quality, at the cost extra time and space. (Recall
that the preprocessing effort of the ADSs depends linearly on both
k and m.) This monotonicity is very important in practice, since
it eliminates the risk of overfitting to a specific input. In contrast,
parameters such as the restart probability of RWR do not have this
property.

Figure 4 shows that setting k = 3 and m = 16 is a reasonable
trade-off between quality and efficiency. We therefore use these
parameters in our experiments.

6.3 Results
Our main experimental results are reported in Tables 2, 3, and 4

(one table for each distribution of pairs described in Section 6.1.3).
For each method and each graph, we give the Spearman’s corre-
lation between the similarity values they compute and the corre-
sponding semantic similarities. The best result for each experiment
(graph and distribution) is highlighted in bold.

Besides “ADS dist” and “Closeness” (and their respective ver-
sions augmented with REL), we also evaluate some competing
measures. The distance measure is the actual graph distance be-
tween two nodes (computed explicitly with Dijkstra’s algorithm).
The hops measure is similar, but uses unit edge lengths. As a
proxy for local methods, we use the Adamic-Adar measure [4],
which adds up the number of common neighbors between v and u,
weighted by the reverse logarithm of their degrees. As a proxy for
global similarity measures, we consider random walk with restarts
(RWR) [34], where the similarity between v and other nodes de-
pends on the stationary distribution of a random walk from v, in
the spirit of the rooted PageRank algorithm [10, 34]. The restart
probability of this random walk must be tuned for different graphs,
so we consider four different values (from 0.00 to 0.75). Our im-
plementation of RWR is relatively slow, hence we only test it for
one distribution on two networks. However, even the most efficient
implementation of RWR [34] is orders of magnitude slower than
ADS-based approaches.

Table 2: Uniform distribution: Spearman’s correlation be-
tween each measure and semantic similarity.

measure arXiv DBLP Twitter SW
Adamic-Adar 0.097 0.034 0.107 0.000
hops 0.350 0.221 0.536 0.623
distance 0.470 0.319 0.191 0.623
ADS dist 0.462 0.318 0.196 0.519
ADS dist REL 0.419 0.314 0.242 0.769
Closeness 0.039 0.015 0.461 0.413
Closeness REL 0.063 0.034 0.612 0.666

Table 3: Hop-based distribution: Spearman’s correlation be-
tween each measure and semantic similarity.

measure arXiv DBLP Twitter SW
Adamic-Adar 0.570 0.457 0.420 0.486
hops 0.645 0.468 0.678 0.831
distance 0.648 0.507 0.447 0.831
ADS dist 0.617 0.497 0.448 0.839
ADS dist REL 0.512 0.454 0.471 0.947
Closeness 0.379 0.249 0.518 0.877
Closeness REL 0.404 0.320 0.637 0.949

Table 4: Semantic distribution: Spearman’s correlation be-
tween each measure and semantic similarity. (Entries marked
“—” were not tested.)

measure arXiv DBLP Twitter SW
Adamic-Adar 0.626 0.746 0.548 0.000
hops 0.752 0.748 0.169 0.767
distance 0.590 0.634 −0.140 0.767
RWR-0.75 — 0.734 — 0.286
RWR-0.50 — 0.737 — 0.617
RWR-0.25 — 0.740 — 0.791
RWR-0.00 — 0.500 — 0.915
ADS dist 0.566 0.637 −0.127 0.671
ADS dist REL 0.614 0.584 −0.155 0.865
Closeness 0.641 0.742 0.613 0.609
Closeness REL 0.634 0.752 0.649 0.808

It is clear from the tables that no single measure dominates. This
is to be expected, given that these are different networks that have
evolved under different circumstances and with different semantics
in mind. In DBLP, for example, an edge between nodes indicates
an intentional collaboration that resulted in a paper. An edge in
Twitter may result from a direct mention resulting from a re-tweet
(which is common in some virtual chats), a casual reply, or a dis-
cussion/conversation.

There are, however, some obvious patterns we can discern. As
expected, the effectiveness of local similarity measures is quite lim-
ited for arbitrary queries. Although Adamic-Adar works reason-
ably well for the hop-based distribution (Table 3), its performance
varies wildly for other query distributions. The standard distance-
based similarity tends to perform better in co-authorship and small
world networks, since it can handle long-range queries appropri-
ately. Interestingly, the hop-based measure is not far behind. In
fact, on Twitter counting hops is consistently better than measuring
the actual distances, indicating that the widely-used edge weighting
scheme (inversely proportional to the frequency of communication)
is not a good choice for this network.

The main drawback of the distance-based similarity measure is
that evaluating long-range pair similarity requires costly Dijkstra
computations. With ADS dist, we can approximate such distances
in microseconds (see Table 1), which is orders of magnitude faster.
Moreover, Tables 2 to 4 indicate that the results we obtain from both
measures are comparable in quality. This is not surprising: for real-
world social networks, we measured an average stretch below 10%.
Adding randomized edge lengths (ADS dist REL) can lead to even
better similarity estimates. This is particularly evident for small
world networks, indicating that randomization is indeed effective
in accounting for the underlying path multiplicity.

Remarkably, we can obtain even better results (comparable to
RWR with tuned parameters) with our new ADS-based closeness
similarity measure, which is just as cheap to compute. Comparing
how two nodes are related to the entire network can be significantly
more effective than measuring distances directly, especially when
combined with randomized edge lengths. This is particularly true
for Twitter. The method does have limitations, however. As Ta-
ble 2 shows, closeness similarity does not work very well when
nodes are far apart in the graph, as tends to be the case for pairs
picked according to the uniform distribution in co-authorship net-
works (see Figures 3(a) and 3(b)). But in typical applications (such
as community detection), when one is interested in ranking nearby
(but not necessarily neighboring) nodes, ADS-based closeness sim-
ilarity excels.

7. FINAL REMARKS
We have introduced global similarity measures based on all-

distances sketches that are extremely efficient to compute. Our ex-
periments on social networks with tens of millions of nodes show
that these new measures are quite powerful in practice. We can
compute the similarity between two arbitrary nodes in a few mi-
croseconds with accuracy that is at least as good as, and often bet-
ter than, existing approaches. Another advantage is that our al-
gorithms are simple to implement, naturally lending themselves to
distributed and external memory scenarios, including within rela-
tional databases [2].

We stress that our experiments are done at full scale rather than
with local subsamples of the networks. In fact, we observed that
taking small samples of Twitter, for example, may significantly bias
the results, leading to potentially inaccurate conclusions.

Given the diversity of social networks and their semantics, it is
unrealistic to expect any single method based on structural proper-
ties of the graph to consistently dominate all others. The particu-
lar (global) approaches that we tested in our experiments are quite
robust to the choice of input. That said, there are other possible
instantiations of the parameters in our definitions of closeness sim-
ilarity, as well as combinations with the REL techniques that we are
planning to investigate and characterize further. A natural avenue
for future work is to reduce the preprocessing effort (ADS com-
putation), which is currently higher than we would like. Finally,
another important direction is the extension of our techniques to
computing seeded communities [1], where a group of nodes are
presented and the task is to find a community spawning from this
group.

8. REFERENCES
[1] I. Abraham, S. Chechik, D. Kempe, and A. Slivkins.

Low-distortion inference of latent similarities from a
multiplex social network. In SODA, pages 1853–1872, 2013.

[2] I. Abraham, D. Delling, A. Fiat, A. V. Goldberg, and R. F.
Werneck. HLDB: Location-Based Services in Databases. In
GIS, pages 339–348. ACM Press, 2012.

[3] I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck.
Hierarchical Hub Labelings for Shortest Paths. In ESA,
volume 7501 of LNCS, pages 24–35. Springer, 2012.

[4] L. A. Adamic and E. Adar. How to search a social network.
Social Networks, 27, 2005.

[5] T. Akiba, Y. Iwata, and Y. Yoshida. Fast exact shortest-path
distance queries on large networks by pruned landmark
labeling. In SIGMOD, pages 349–360, 2013.

[6] P. Boldi, M. Rosa, and S. Vigna. HyperANF: approximating
the neighbourhood function of very large graphs on a budget.
In WWW, 2011.

[7] P. Boldi, M. Rosa, and S. Vigna. Robustness of social
networks: Comparative results based on distance
distributions. In SocInfo, pages 8–21, 2011.

[8] P. Boldi and S. Vigna. Studying network structures for IR:
The impact of size. http:
//ecir2012.upf.edu/ecir_paolo_boldi.pdf,
2012.

[9] B. Bollobás. Modern graph theory. Springer, 1998.
[10] S. Brin and L. Page. The anatomy of a large-scale

hypertextual web search engine. In WWW, 1998.
[11] S. Chechik, Y. Emek, B. Patt-Shamir, and D. Peleg. Sparse

reliable graph backbones. Information and Computation,
210:31 – 39, 2012.

[12] E. Cohen. Size-estimation framework with applications to
transitive closure and reachability. J. Comput. Syst. Sci.,
55:441–453, 1997.

[13] E. Cohen. All-distances sketches, revisited: Scalable
estimation of the distance distribution and centralities in
massive graphs. Technical Report cs.DS/1306.3284, arXiv,
2013.

[14] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick.
Reachability and distance queries via 2-hop labels. SIAM J.
Comput., 32(5):1338–1355, 2003.

[15] E. Cohen and H. Kaplan. Spatially-decaying aggregation
over a network: model and algorithms. J. Comput. Syst. Sci.,
73:265–288, 2007.

[16] E. Cohen and H. Kaplan. Summarizing data using bottom-k
sketches. In PODC, 2007.

[17] E. Cohen and H. Kaplan. A case for customizing estimators:
Coordinated samples. Technical Report cs.ST/1212.0243,
arXiv, 2012.

[18] E. Cohen and H. Kaplan. What you can do with coordinated
samples. In RANDOM, 2013.

[19] P. Crescenzi, R. Grossi, L. Lanzi, and A. Marino. A
comparison of three algorithms for approximating the
distance distribution in real-world graphs. In TAPAS, 2011.

[20] C. Dangalchev. Residual closeness in networks. Phisica A,
365, 2006.

[21] A. Das Sarma, S. Gollapudi, M. Najork, and R. Panigrahy. A
sketch-based distance oracle for web-scale graphs. In
WSDM, pages 401–410, 2010.

[22] G. Jeh and J. Widom. SimRank: a measure of
structural-context similarity. In KDD. ACM, 2002.

[23] K. S. Jones. A statistical interpretation of term specificity
and its application in retrieval. Journal of Documentation,
28(1):11–21, 1972.

[24] L. Katz. A new status index derived from sociometric
analysis. Psychometrika, 18(1):39–43, 1953.

[25] E. S. Keeping. Introduction to Statistical Inference. Dover,
1962.

[26] J. M. Kleinberg. The small-world phenomenon: an algorithm
perspective. In STOC. ACM, 2000.

[27] D. Liben-Nowell and J. Kleinberg. The link-prediction
problem for social networks. J. Am. Soc. Inf. Sci. Technol.,
58(7):1019–1031, 2007.

[28] M. E. J. Newman. Clustering and preferential attachment in
growing networks. Phys. Rev. E 64, 025102, 2001.

[29] C. R. Palmer, P. B. Gibbons, and C. Faloutsos. ANF: a fast
and scalable tool for data mining in massive graphs. In KDD,
2002.

[30] R. Panigrahy, M. Najork, and Y. Xie. How user behavior is
related to social affinity. In WSDM, pages 713–722, 2012.

[31] G. Sabidussi. The centrality index of a graph. Psychometrika,
31(4):581–603, 1966.

[32] K. A. Stephenson and M. Zelen. Rethinking centrality:
Methods and examples. Social Networks, 11, 1989.

[33] M. Thorup and U. Zwick. Approximate distance oracles. In
ACM STOC, pages 183–192, 2001.

[34] H. Tong, C. Faloutsis, and J.-H. Pan. Fast random walk with
restart and its applications. In ICDM. IEEE, 2006.

APPENDIX
This appendix contains a detailed example of a network and cor-
responding ADSs. For node h in the network in Figure 5, the for-
ward ADS for k = 1 is

−−→
ADS(h) = (h, e, k, a). For k = 2 we

have
−−→
ADS(h) = (h, e, g, f, i, k, a). Node j has forward distance

−→
d hj = 11 and forward Dijkstra rank −→π hj = 4 with respect to h.
The backwards ADS from a for k = 1 is

−−→
ADS(a) = (a) since a is

the node with lowest rank. For k = 2,
−−→
ADS(a) = (a, c, d, b, e, k).

0.17a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

8

9

6

8

10

4

9

11

10
9

77

6

8

9

8

5

6

6

5
7

8

6 69

7

45

5

0.33

0.63

0.49

0.36

0.11

0.22

0.26

0.89

0.48

0.35

0.15

0.57

0.91

0.29

Figure 5: A directed network with lengths associated with
edges and random rank values associated with its nodes. The
nodes sorted by increasing distance from h, together with their
distance, are (h, 0), (e, 6), (g, 7), (j, 11), (f, 15), (c, 20), (i, 20),
(k, 21), (a, 24), (n, 28), (m, 31), (b, 31), (d, 32), (o, 34), (l, 39).
The nodes sorted by reversed increasing distance from node
a are (a, 0), (c, 4), (d, 6), (b, 9), (f, 9), (g, 12), (e, 14), (k, 15),
(h, 16), (j, 19), (n, 22), (o, 23), (l, 25), (i, 28), (m, 39).

