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ABSTRACT

Demand Side Management (DSM) is an important building block
for future energy systems, since it mitigates the non-dispatchable,
fluctuating power generation of renewables. For centralized DSM to
be implemented on a large scale, considerable amounts of electrical
demands must be scheduled rapidly with high time resolution. To
this end, we present the Scheduling With Augmented Graphs
(SWAG) heuristic. SWAG uses simple, efficient graph operations on
a job dependency graph to optimize schedules with a peak shaving
objective. The graph-based approach makes it independent of the
time resolution and incorporates job dependencies in a natural way.
In a detailed evaluation of the algorithm, SWAG is compared to
optimal solutions computed by a mixed-integer program. A com-
parison of SWAG to another state-of-the-art heuristic on a set of
instances based on real-word consumption data demonstrates that
SWAG outperforms this competitor, in particular on hard instances.

CCS CONCEPTS

• Mathematics of computing → Combinatorial optimization; •
Theory of computation → Design and analysis of algorithms;
Scheduling algorithms; • Applied computing → Operations
research; • Hardware→ Smart grid.
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1 INTRODUCTION

In large parts of the world, the electrical energy system is changing
towards larger shares of renewable generation. While this is highly
desirable, it presents the maintainers of these systems with a new
challenge: In the past, power generation could be controlled and
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be made to match the power demand. Renewable power plants can
often not be controlled, fluctuate in generation and one must rely
on uncertain forecasts for wind and solar irradiation. There exist
multiple strategies to still ensure that generation matches demand,
most notably energy storage, the expansion of the transmission
network and demand side management (DSM). Demand side man-
agement is a general term for techniques which influence the power
demand at certain times to better match what is generated. The
U.S. Department of Energy [22] defines DSM as “changes in electric
usage by end-use customers from their normal consumption pat-
terns [. . . ] to induce lower electricity use at times of high wholesale
market prices or wen system reliability is jeopardized.”

One way to categorize DSM strategies is by how the customer is
motivated to participate, i.e., by the reward structure. Usual strate-
gies include time-of-use tariffs or flexibility auctions (cf. Siano [21]).
Another important dimension of DSM techniques is how the flex-
ibility provided by the consumers is coordinated and controlled.
One can differentiate between indirect control (e.g. via time-of-use
tariffs), decentralized control (e.g. using decentralized algorithms),
or direct load control, in which a central entity controls a set of
flexible electrical demands. This direct load control is the scenario
we focus on, without regard for how consumers are rewarded in
this setting. We assume that the electrical demands can be separated
into discrete processes (or jobs), and that these processes can be
moved in time by the central controller. In this work, we do not
consider the cases that the demand of processes can be changed in
their shape or magnitude, or that certain processes could be shed
altogether.

In an energy system with a high share of renewable generation,
peak demand must often be accommodated by rapidly respond-
ing, dispatchable conventional power plants such as gas turbines,
or large battery storage. Also, the transmission and distribution
networks must be dimensioned for peak demand. To reduce the
costs for building these networks and having this energy storage
or generation capacity available, peak shaving, i.e., reducing the
maximal power demand as much as possible, is an important opti-
mization criterion. To achieve peak shaving, scheduling algorithms
are necessary which are able to schedule large amounts of loads
quickly. Speed is essential for these scheduling applications — not
only because trading at energy exchanges happens at a high pace,
but also because it will be necessary to rapidly respond to changes
in the scheduling scenario as generation fluctuates unexpectedly
or the set of processes that need to be scheduled changes. Also,
especially in scenarios reflecting the processes of large industrial
plants, one has to expect and cope with large instances.
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1.1 Our contribution

We present the Scheduling With Augmented Graphs (SWAG)
heuristic, a graph-based scheduling algorithm for flexible electrical
demands focused on industrial settings. The algorithm is based on
a job-dependency graph, which captures finish-start dependencies
between the processes to be scheduled. This approach results in
a much smaller solution space than algorithms that directly work
with start times have to cope with. Also, this representation makes
it possible to schedule with arbitrary time resolution without im-
pacting efficient computation.

We provide an in-depth evaluation of our algorithm on instances
that are based on real-world consumption data. We demonstrate
the utility of the algorithm on large instances and compare it to a
state-of-the-art algorithm by Petersen et al. [19] as well as a mixed-
integer program.We publish everything we implemented, including
the comparison algorithm as well as the mixed-integer program,
and our test instance set.

1.2 Related Work

The field of demand side management has received much attention
lately. Among the numerous reviews of the field, a general survey
is provided by Siano [21], while Vardakas et al. [24] provide a
survey with focus on the methodology for implementing DSM. A
survey with a stronger focus on the modelling of DSM problems is
provided by Deng et al. [8]. A review by Good et al. [10] examines
the challenges and enablers that DSM faces.

Scheduling problems aside from the smart grid have been looked
into intensively both by the computer science and the operations
research community. The field of computer science mostly focuses
on machine scheduling, where discrete processes must be assigned
to machines. This flavor of scheduling sometimes comes in the
form of real-time scheduling. A review is given by Chen et al. [5].
There are machine minimization problems with the objective of
scheduling a set of jobs on a minimum number of machines. These
are effectively a special case of the problem we consider, namely
the case where all jobs would have unit power demand. Such a
problem is first considered by Cieliebak et al. [6], who show its
APX-hardness and also give approximation algorithms for two
special cases. Approximation algorithms for further special cases
are given by Yu and Zhang [27].

The problem considered in this paper is a special case of what
in the operations research community is known as the Resource
Acqirement Cost Problem (RACP), itself a special case of the
Time-Constrained Project Scheduling Problem (TCPSP). An
overview over various project scheduling problems is provided by
Weglarz [25]. The RACP has first been tackled by Möhring [18] and
Demeulemeester [7]. Recently, Guldemond et al. [11] use an ILP to
solve a variant of RACP, while Ranjbar [20] uses a metaheuristic
based on path relinking.

There also is a considerable amount of work on scheduling with
special regards to the smart grid. Barth et al. [1] provide an overview
over various approaches based on mathematical programming. One
of the earliest works is by Hsu and Su [13], who use a dynamic
programming approach. While this technique yields optimal results,
it does not scale to large instances. For large instances, Petersen et
al. [19] use a metaheuristic to solve a problem similar to the one

release time ri deadline di

processing time pi

power usage ui}

}

Time

Figure 1: A graphical representation of a job in an S-RACP in-

stance. With the release time, deadline and processing time

as given, the box can be moved within the two whiskers,

while the box’s height represents the job’s power demand.

considered in this work. Yaw et al. [26] give two simple combina-
toric algorithms for peak demand scheduling problems with certain
constraints. Logenthiran et al. [15] use an evolutionary algorithm
to schedule large amounts of loads in a simulated scenario.

2 PRELIMINARIES

This section formalizes the considered problem and introduces
notation used throughout the paper.

2.1 The Problem

The problem under study in this paper is the Single-Resource
Acqirement Cost Problem (S-RACP), which is a special case of
the Resource Acqirement Cost Problem (RACP).

An instance of S-RACP consists of a set J of jobs and a directed
dependency graph G, the latter of which captures finish-start de-
pendencies between the jobs to be scheduled. We assume n to be
the number of jobs, i.e., n = |J |. In the job set J = {j1, j2, . . . jn },
each job ji is a four-tuple: ji = (ri ,di ,pi ,ui ) ∈ N × N × N × R. For
job ji , ri states the release time of ji , i.e., the earliest time at which
ji can be executed. In turn, di states the deadline, i.e., the time at
which ji must be finished. The processing time pi indicates how long
ji must be executed without interruption. Finally, ui specifies the
usage of ji , i.e., how much power (the single resource of the project
scheduling problem) ji requires. Such a job is depicted in Figure 1.
For the dependency graph G = (V ,E) we set V = J , i.e., we treat
the jobs J as vertices. The edge-set E of G specifies dependencies
between jobs: An edge (ja , jb ) ∈ E indicates that jb can start only
after ja has finished.

Given such an instance, a schedule S is a set of start times, one
for each job: S = (s1, s2, . . . sn ) ∈ Nn . Such a schedule is feasible if:
• Every job respects its limits, i.e., for all i ∈ {1, . . .n}, it holds
that si ≥ ri and si + pi ≤ di ,
• and dependencies are respected, i.e., if (ja , jb ) ∈ E, then
sa + pa ≤ sb .

For a (feasible) schedule, the demand at a point in time t is the
sum of the power demands of all jobs active during t . The peak
demand is then the maximum over all demands. A feasible schedule
is an optimal schedule, if there is no other feasible schedule with
less peak demand.

Formally, we state the S-RACP as follows:

Problem 1 (Single-Resource Acqirement Cost Problem).
Given an Single-Resource Acquirement Cost Problem instance as

J and G as defined above, find the optimal feasible schedule S∗.
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The S-RACP problem as defined above can be classified in the
classification scheme by Herroelen et al. [12] as 1|cpm, ρ j ,δj |av .

2.2 Notation

We now introduce some notation used throughout this paper. First,
we need a special kind of schedules.

Given an S-RACP instance (as J and G), we can define the left-
shifted schedule that corresponds to G as the schedule in which
every job starts as early as possible.

Definition 1 (Left-Shifted Schedule).
A schedule S = (s1, . . . sn ) is a left-shifted schedule for the Single-
Resource Acquirement Cost Problem instance determined by J
and G if for every ji ∈ J :

si = max ({sk + pk : (jk , ji ) ∈ E} ∪ {ri })

Note that such a schedule can be computed from G by a simple
topological sort ofG , which is equivalent to the well-known critical-
path method (e.g., see [4], Chapter 3).

Optimality. The algorithm we present works by gradually insert-
ing edges into G. The schedule computed is a left-shifted schedule
of the modified graph. Thus, the solution computed by SWAG must
always be a left-shifted schedule. It is therefore interesting to show
that for every S-RACP instance with G as dependency graph, there
exists a supergraph G of G (i.e., G = (J ,E ′) with E ′ ⊇ E), such
that the left-shifted schedule for G is an optimal schedule for the
S-RACP instance.

Lemma 1 (Preservation of Optimality). Let J and G = (J ,E)
be an instance of S-RACP. Then there exists an optimal schedule that

is a left-shifted schedule for some dependency graph G = (J ,E ′) with
E ⊇ E ′.

Proof. Let S∗ be an optimal schedule. Create G = (J ,E ′) such
that (ja , jb ) ∈ E ′ if and only if job ja ends before jb starts, i.e.,
E ′ = {(ja , jb ) : S∗a + pa ≤ S∗b }. Since S

∗ is a feasible schedule, this
graph respects the dependencies in G, i.e., E ′ ⊇ E. Now, let S ′ be
the left-shifted schedule for G. The peak demand of S ′ can not be
lower than for S∗ by assumption of optimality. Assume that the
peak demand of S ′ is larger than that of S∗. Then there must be at
least one pair of jobs jc and jd executing concurrently in S ′ but not
in S∗. However, if jc and jd do not execute concurrently in S∗, there
is by construction an edge between them in G, and they cannot
execute concurrently in S ′. □

3 SCHEDULINGWITH AUGMENTED

GRAPHS

In this section, we describe the SWAG algorithm using pseudo code
to illustrate. However, the description often omits implementation
details, especially ways of implementing the described methods in
an efficient way. We also publish our actual C++ implementation of
SWAG, along with the competitor algorithms used in the evaluation.
See Section 5 on how to obtain our implementation. To simplify
the description of the algorithm, we assume the initial dependency
graph G to be empty in the following. The algorithm modifies the
edges of G at various places. If the input instance does have depen-
dencies (i.e., if G is not empty), one only has to make sure never
to delete any of the edges of G. The SWAG algorithm has several

parameters (see Section 5.2 for how to choose them). Throughout
this paper, we always typeset SWAG’s parameters underlined. See
Table 2 for a full list of parameters.

During its execution, the SWAG algorithm holds and modifies a
dependency graphG . From this graph results at every point during
the execution a left-shifted schedule as defined in Definition 1. The
start time of a job according to this left-shifted schedule is referred
to simply as the start of a job. Also from the graph results for each
job a latest finish time, i.e., latest the time the job may be executing
such that no job misses its deadline. In the left-shifted schedule
corresponding toG , there is some time interval such that the cumu-
lative demand of all jobs executing during that interval is maximal,
i.e., there is no other interval with a larger cumulative demand.1
We call this interval the peak range, and the power demand during
this interval the peak demand.

The algorithm follows the well-known (e.g., see [14]) pattern
of working on a representation for a schedule, and then applying
a schedule generation scheme to create a schedule from the repre-
sentation. We use a dependency graph as representation: Given
an S-RACP instance as J and G = (J ,E) as defined in Section 2.2,
we use a graph G = (J ,E ′) with E ′ ⊇ D as representation. Then,
we use the generation of a left-shifted schedule as described in
Section 2.2 as schedule generation scheme. The main work lies in
creating G such that the peak demand is minimized. To this end,
our algorithm starts with G = G and iteratively adds edges to G,
i.e., augments the graph.

In the following, we first give a high-level overview over SWAG
in Section 3.1, hiding much of the detail. We then present in sections
3.2 and 3.3 more detailed descriptions of several aspects as well as
some insights into how to make the algorithm more efficient.

3.1 Algorithm Details

We start the explanation of SWAG by giving a big picture overview,
which is outlined in Algorithm 1. The SWAG algorithm works in it-
erations, which corresponds to the loop from line 2 to line 20. At the
start of every iteration, S , the left-shifted schedule that corresponds
to the current dependency graph G, is computed (line 3). Together
with S , start , the earliest possible starts for every job admitted byG ,
and thereby the start times of every job in the left-shifted schedule
S , are computed. Also computed is latestFinish, the latest possible
finishing time for every job, i.e., for every job the latest point in
time during which it can still execute without any job missing its
deadline. From these values, the algorithm then determines the
peak range in the form of peakBegin and peakEnd, and the jobs
executing during peak demand (lines 4–5).

At the core of every iteration, the algorithm now needs to de-
termine which edge to insert to extend a feasible schedule. We call
the possible edges to be inserted edge candidates. Inserting an edge
candidate (ju , jv ) is useful for reducing the current peak demand
if ju and jv execute concurrently within the current peak range
(cf. lines 7, 8). Inserting such an edge candidate would separate
two jobs that currently contribute to the peak demand. Among
these useful edge candidates, an edge candidate (ju , jv ) is feasible if

1If there are multiple intervals with equal, maximal power demand, one may choose
one arbitrarily. However, since the power demands are real numbers, this is highly
unlikely.
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inserting (ju , jv ) intoG would make the left-shifted schedule ofG a
feasible schedule, which is the case exactly if the duration of ju plus
the duration of jv is not greater than the time between the latest
possible finishing time for jv and the earliest possible start time for
ju . We only ever insert feasible edge candidates, thereby making
sure that the left-shifted schedule of G always stays feasible.

Edges are selected in line 9. Checking whether an edge is feasible
is straightforward: since the start of u and the latestFinish of v are
known, a useful edge candidate (ju , jv ) is feasible if and only if
start[u] + pu + pv ≤ latestFinish[v].

If at least one feasible edge candidate exists, the algorithm picks
one at random, inserts it and starts the next iteration. Note that
we explored various strategies of weighting this random selection,
however empirically, picking one of the feasible edge candidates
uniformly gave the best results. If no feasible edge candidate ex-
ists, we say the algorithm is blocked. This happens because edges
inserted earlier cause every useful edge candidate to become infea-
sible. Therefore, at least some of the edges inserted earlier must be
removed again. For this, there are two possibilities: The algorithm
can either resetG back to G (i.e., delete all inserted edges, lines 13–
14), or selectively find a small set of edges the deletion of which
makes at least one useful edge candidate feasible (line 11).

3.2 Selecting Edges for Deletion

When the algorithm is blocked, it has run into a local minimum
and must perturb the current solution to climb out of the minimum.
Before just restarting the algorithm, the heuristic tries to find a

Algorithm 1: The SWAG Algorithm
Data: G: Dependency Graph

1 oriдinalG ← G;
2 while time limit not reached do

3 S, start , latestFinish ← leftShiftedSchedule(G);
4 peakBeдin,peakEnd ← determinePeakRange(S);
5 peak Jobs ← {j ∈ J | sj < peakEnd ∧ sj + pj >

peakBeдin}
6 candidateEdдes ← {(u,v) |

7 u,v ∈ peak Jobs ∧

8 start[u] + pu > start[v] ∧

9 start[u] + pu + pv ≤ latestFinish[v]};
10 if |candidateEdдes | = 0 then

// The algorithm is blocked

11 newCandidateEdдe ←

unblockByDeletion(peak Jobs);
12 if (deletionsSinceLastReset > deletionsBeforeReset )

13 or (newCandidateEdдe = Null) then
14 G ← oriдinalG; // Reset

15 end

16 else

17 e ← randomSelection(candidateEdдes);
18 G.insert(e);
19 end

20 end

small set of edges to delete to unblock the current situation. Note
that we stated earlier that we assume the initial graph G to be
empty to simplify the description of the algorithm. In fact, this step
is the only step where one must pay attention not to delete edges
of G when finding edges to be deleted.

SWAG does not just delete edges at random, but tries to find
edges the deletion of which likely unblocks the algorithm. The
procedure to find such edges is outlined as Algorithm 2.

The search for edges to be deleted works by iterating over the
(infeasible) edge candidates, i.e., edges that we would like to insert,
but cannot without missing a deadline. The algorithm iteratively
tries to make edge candidates between two jobs in the peakJobs set
feasible. The process to make an edge candidate (ja , jb ) feasible is
a two-step process: First, it is determined by how much deadlines
would be missed if (ja , jb ) would be inserted into G. This is the
overlap computed in line 4. Note that since s and t are part of the
peakJobs set and we did not find a feasible edge candidate, the
duration of both jobs must be greater than the time between the
latest possible finishing time for t and the earliest possible start
time for s – otherwise, (js , jt ) would be a feasible edge candidate.
Thus overlap is always positive.

When selecting a set of edges to be deleted, the algorithm must
ensure that deleting the edges allows to move ja enough to the left
and jb enough to the right, such that the sum of both movements
is at least overlap. If we delete such a set of edges, the edge can-
didate (ja , jb ) becomes feasible and we can insert (ja , jb ), thereby
separating two jobs in the peakJobs set.

In line 6, the search for a set edges that can be deleted s.t. ja
can be moved to the left for up to overlap steps starts. The analog
search is done for jb in line 8. If this finds two edge sets such that
the total possible movement is at least overlap, the edges are deleted
and there is a new feasible useful edge candidate (ja , jb ) (cf. lines
9–12). If not, the algorithm tries to make a different edge candidate
feasible, for up to deletionTrials trials.

Algorithm 2: UnblockByDeletion
1 Function unblockByDeletion(peak Jobs)
2 for i ∈ {1, . . . , deletionTrials} do
3 s, t ←randomSelection(peak Jobs);
4 overlap ← duration[s] + duration[t] −

(latestFinish[t] − start[s]);
5 delForwardSet ,deleteForwardMovement ←

6 findDeletionEdgesForward(t ,overlap);
7 delBackwardSet ,deleteBackwardMovement ←

8 findDeletionEdgesBackward(s,overlap);
9 if deleteForwardMovement +

deleteBackwardMovement ≥ overlap then

10 G.delete(delForwardSet ,delBackwardSet);
11 return (s, t);
12 end

13 end

14 return Null ;
15 end



Shaving Peaks by Augmenting the Dependency Graph e-Energy ’19, June 25–28, 2019, Phoenix, AZ, USA

The searches in lines 6 and 8 are equivalent, so we only describe
findDeletionEdgesForward, outlined in Algorithm 3. The search is a
depth-limited breadth-first search on the edges of the graph. The
search progresses iteratively, and at every time holds a queue of
edges that are to be deleted. We start with all outgoing edges of jb .
In every step, we remove the first edge from the queue, say that
edge is (jx , jy ). We then insert all outgoing edges of jy into the
queue, and therefore the set of edges to be deleted. This way, the
set of edges to be deleted progressively grows in size and distance
from jb . After every such replacement, we evaluate the quality of
the current set of edges to be deleted. The quality decreases the
more edges the set contains, and if the resulting possible movement
of jb is less than overlap.

3.3 Optimizations

The heuristic as described so far should be functional, but can
benefit from optimizations in various places. We now describe

Algorithm 3: FindDeletionEdgesForward
1 Function

findDeletionEdgesForward(start Job,overlap)
/* Entries are pairs of an edge and a depth.

The initial entry ((⊥, start Job), 0) is not a
real edge, but is needed to start the loop
below with startJob. */

2 edдesToDelete ← ⟨((⊥, start Job), 0)⟩;
3 bestQuality ←∞;
4 while edдesToDelete .notEmpty() do
5 e,depth ← edдesToDelete .popFront();
6 (v,w) ← e;
7 if depth ≤ deletionMaxDepth then

/* One step in the edge BFS: Replace

(v,w) with outgoing edges of w. */

8 for f ∈ w .outдoinдEdдes do
9 edдesToDelete .pushBack((f ,depth + 1));

10 end

11 end

/* Pretend to remove edges to determine

new latest finishs */

12 G .removeEdges(edдesToDelete);
13 newLF ←computeLatestFinish (start Job);
14 G .insertEdges(edдesToDelete);
15 movement ← newLF − latestFinish[start Job];
16 quality ← |edдesToDelete | + (undermovePenalty ·

max(0,overlap −movement));
17 if quality < bestQuality then

18 bestSolution ←markedEdдes;
19 bestQuality ← quality;
20 end

21 end

22 return bestSolution, bestMovement;
23 end

three optimizations we implemented and evaluated. For an insight
into the effects these optimizations have, see Section 5.3.

Deferred Propagation. In Algorithm 1, at the beginning of each
iteration (in lines 3 and 4), up-to-date values for the starts and
latest finishes of all jobs are needed, and from this the peak demand
is computed. See below for how to efficiently compute the peak
demand. Here, we explain how to efficiently retrieve starts and
latest finishes. Instead of recomputing them at the start of every
iteration, it is possible to maintain the current start and latest finish
value for all jobs and update them as needed. Whenever an edge
(ja , jb ) is inserted into G, such an update becomes necessary.

The update is done by propagating new starts throughout G,
starting in jb , and propagating new latest finishes throughout the
reverse graph of G starting in ja . However, especially for large,
dense graphs, doing this propagation after every inserted edge is
expensive.

Assuming that the current peak range does not change after an
edge has been inserted (i.e., we need to insert more edges to remove
the current peak), the next selected edge will be between two jobs
overlapping the current peak range. Thus, in this case it is sufficient
to only propagate starts and latest finishes to jobs overlapping the
current peak range. Since these jobs are close to ja and jb inG , this
is an inexpensive operation. We say we defer the full propagation.
The algorithm records at which jobs the propagation stopped, and
continues the propagation as necessary.

Deferred propagation might cause the computation of the peak
range at the beginning of the an iteration to be incorrect - the peak
could have moved to some other place in the schedule, which is
not detected because changes in starts have not been propagated
to the jobs that are involved in the new peak. To mitigate this, the
algorithm must do a full propagation every couple of iterations,
which is determined via the parameter completePropagationAfter.

Determining the peak demand. In Algorithm 1, at the beginning
of each iteration (in line 4), the peak value and peak range is de-
termined from the job starts. The trivial way of doing this would
involve sorting all jobs by their start times, and then iterating this
list, keeping track of how much demand is active at which point.
Doing this would require O(n logn) time for the sorting step, which
is too expensive.

Instead of recomputing peak demand and range each time it is
required, we use a dynamic segment tree as described by Kreveld
and Overmars [23] to efficiently maintain these values. For each job,
we insert a segment with the length of the job’s duration into the
segment tree, with the start point corresponding to the job’s start
time. Whenever we update a job’s start time (see above), we also
update the segment in the dynamic segment tree, which can be done
inO(logn) time. In [23], segments in the segment tree are associated
with some kind of segment ID, with the effect that one can query
which segments are active at a certain point. SWAG does not need
this functionality, but needs to efficiently determine cumulative
demands at certain points. Thus, we instead associate every segment
in the tree with the power demand of the corresponding job. This
way, the dynamic segment tree allows us to retrieve the cumulative
power demand at a specific point in time in O(logn) time. With
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some additional annotations of the tree’s vertices, we can even
retrieve the peak range and the peak value in O(1) time.

Batched Edge-Candidate Generation. In Algorithm 1, line 6, we
determine all feasible edge candidates between two jobs executing
during the peak range. For large instances, this set can become
very large, thus expensive to compute. We therefore apply two
optimizations: First, we only recompute the set of feasible edge
candidates when necessary, i.e., when the peak range changes.
Second, we do not compute the whole set at once. Usually, it will be
sufficient to insert few edges to remove the current peak and shift
the peak range somewhere else. Therefore, we first only generate a
small batch of feasible edge candidates, generating more on demand
when the generated candidates are depleted and the peak range has
not shifted.

4 COMPETITOR ALGORITHM: GRASP

We implemented the scheduling heuristic by Petersen et al. [19]
to compare SWAG to. The algorithm described in that work is a
combination of a metaheuristic called greedy randomized adaptive

search procedure (GRASP) and a simple local search in the form of
a hill climber. For simplicity reasons, we refer to the combination
of both algorithms as GRASP in this paper.

The authors present and evaluate multiple variants of their al-
gorithm. We also implemented and evaluated all variants, most
notably the sorted and random variants of the GRASP step, as well
as the uniform and the weighted variants of the hill climber. An
in-depth discussion on how we chose which parameters and why
is given in Section 5.2.

The GRASP algorithm cannot originally cope with release times
and dependencies. However, both constraints are straightforward
to add. GRASP works by iteratively trying to place jobs at a differ-
ent time within the time window the respective job is allowed to
run in. To incorporate dependencies and release times, one must
only make sure to correctly constrain this window by the release
time and possible predecessor or successor jobs. Also, in their work,
Petersen et al. use GRASP to optimize for a slightly different objec-
tive. However, since GRASP is a metaheuristic, the objective can
be switched without any changes to the actual algorithm.

We performed tuning on the GRASP algorithm as described in
Section 5.2, and found several surprising insights. First, we consis-
tently got better results when using the random variant instead of
the sorted variant, which stands in contrast to what the original
GRASP authors found (cf. Table IV in [19]). This could be explained
by the fact that our instances are larger than the test instances in
[19], thus sorting consumes more time in our case. For the random
GRASP variant, the uniform hill climber consistently outperformed
the weighted variant in our tests, while the results in [19] seem to
favor the weighted variant. The optimal parameters determined
by our tuning are shown in Table 1. Consistent with the findings
in [19] is that the smallest possible values are chosen form and l ,
while rather high values are chosen for the number of hill climber
iterations.2 This means that effectively, the hill climber does the
main part of the algorithm’s work.

2In [19], the authors use a time limit instead of an iteration limit for the hill climber.
We used an iteration limit for finer control.

Parameter Value

m 1
l 1
n 200

Hill Climber Iterations 10
Hill Climber Type uniform

GRASP Type random
Table 1: Chosen parameters for GRASP. Corresponds to Ta-

ble IV in [19].

To make the comparison between SWAG and GRASP as fair as
possible, we implemented all parts that need access to (peak) de-
mands once as a simple array-based approach, of which we assume
that the authors of [19] use it, and once using the dynamic seg-
ment tree that we also use for our SWAG implementation. During
our tuning, the dynamic-segment-tree based approach consistently
outperformed the array-based variant, thus we used it for the eval-
uation.

5 EVALUATION

We perform three kinds of evaluation of the SWAG algorithm: First,
we compare the solutions computed by SWAG to near-optimal
solutions computed by a mixed-integer program (MIP) on small
instances, on which MIPs are still a feasible solution technique.
Then, we investigate the influence that various SWAG parameters
and properties of the instances have on the computed solution
quality. Finally, we compare SWAG to the GRASP algorithm by
Petersen et al. [19].

All computations have been executed on machines with Intel®
Xeon® E5-2670 CPUs with 16 cores and 64 GBs of RAM. The MIPs
were solved by Gurobi 7.0.2, running one solver with 16 threads for
30 minutes. For the SWAG and GRASP heuristics, we always ran
15 experiments in parallel and used a run time of 5 seconds for all
experiments.

Code and Data Publication. All our code, including the implemen-
tations of SWAG, GRASP and the mixed-integer linear program, as
well as all test instances are publicly available as a separate data pub-
lication [2]. While that publication contains a snapshot of the code
used for this publication, a more recent version of the optimization
software can be found at https://github.com/kit-algo/TCPSPSuite/.

5.1 Instance Sets

We use a total of three sets of instances to evaluate SWAG: A set
of small instances, called Ismall , to compare SWAG to the MIP,
since the MIP is not able to cope with larger instances. Second, a
set of large instances, called Ilarдe to compare SWAG to GRASP.
Optimization complexity for an Single-Resource Acqirement
Cost Problem instance is not only driven by the number of jobs,
but also by the jobs’ window sizes, since the size of the solution
space increases with more possibilities to place a job. Therefore, we
generate a third set of instances with larger window sizes, called
Iwindow .

All sets are generated based on the HIPE data set by Bischof et
al. [3] that was obtained from a small-scale electronics factory at

https://github.com/kit-algo/TCPSPSuite/
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the Institute for Data Processing and Electronics at the Karlsruhe
Institute of Technology. A detailed description of that data set can
be found in [3]. From this factory data, we get power demand time-
series from six machines, with sub-minute resolution. Themachines
are a chip press, a screen printer, a vacuum oven, a high temperature
oven, a soldering machine and a chip washing machine.

In a first step, we detect patterns (which we call processes) in
this data using a technique adapted from Ludwig et al. [17]. The
technique is very similar to the technique described by Ludwig et
al. [16] for their benchmark data set generation. This pattern recog-
nition subdivides every time series into sequences. Each sequence
is a consecutive series of points in the time series and belongs to
exactly one process. The sequences belonging to a process are the
occurrences of a process. In total, we detected 16 different processes
in the input data.

From these detected patterns, a representation is built for each
process based on probability distributions. Each occurrence of a
process is characterized by three parameters: The duration of the oc-
currence, the energy consumed during the occurrence and the time
of day that the occurrence started at. Thus, the set of occurrences
of a process results in a set of three-dimensional points.

Initial experiments revealed that for the duration and the con-
sumed energy, a normal distribution is a good fit. Therefore, for
each process, a bivariate Gaussian Mixture Model (GMM) is fit
to the duration and energy components of the process’ point set.
We use a mixture model since we assume that the same process
can be run in different modes, which would be captured by the
mixture model having more than one component. The start time
is not represented well by a normal distribution. We still assume
that there might be several points of time in a day around which a
process is usually started. Therefore, the start times of a process
are first clustered using the DBSCAN3 algorithm [9]. Then, the 0.1
and 0.9 quantile of every cluster is determined and taken as the
lower respective upper limit of a uniform distribution. This results
in one uniform distribution per cluster. The uniform distributions
are weighted by the number of points in the respective cluster.

To generate a job as defined in Section 2.1, release time, deadline,
duration and power demand are necessary. First, select one of the
detected processes by a weighted selection, with weights being the
number of occurrences of each process. Then, draw one sample of
duration and energy from the corresponding GMM. The duration
becomes the duration of the new job, the power demand is deter-
mined by the drawn energy divided by the duration. To draw a start
time, first select one of the uniform start-time distributions of the
selected process by their weight, then draw from that distribution.
Finally, the deadline must be determined, which is equivalent to
determining the window size. We assume that there is a certain
flexibility immanent to the process we have created the job from.
We assume that this flexibility is correlated with the difference
between the maximum and minimum of the uniform distribution
that we drew the start time from, therefore this difference becomes
the first component of the window size. Additionally, we suppose
that there is additional flexibility, which can not be seen from the
data at hand, since in the past, no effort has been made to shift

3With ϵ such that occurrences starting 30 minutes from each other are considered to
be close, and a minimum number of 5 points per dense region.

the processes in time. Therefore, draw a second component of the
window from a normal distribution the parameters of which must
be set. We call this amount thewindow growth, and the final window
size is the sum of the span of the start-time normal distribution and
the window growth.

With this approach, we generated the following three sets:

Large Instance Set. For the large instance set Ilarдe , we do ev-
erything as described above, and generate between 500 and 1500
jobs per instance, for a total of 300 jobs. For the window growth
distribution, we use a mean value of 100 minutes and a standard
deviation of 20 minutes. All instances have a time horizon of five
days, in one minute resolution.

Small Instance Set. For the small instance set Ismall , we do every-
thing as for Ilarдe , only that we limit the number of jobs to between
50 and 150, and set the time horizon to 3 days. We generate a total
of 200 instances.

Window Instance Set. The window instance set Iwindow is used
to evaluate the effect that larger window sizes have on the perfor-
mance of SWAG. To this end, we generate an instance set equal
to Ilarдe , with the only exception that we use a mean value of 500
minutes for the window growth parameter.

5.2 Parameter Tuning

Both the SWAG and theGRASP algorithm need to be parameterised.
To have a fair comparison, we determine both parameter sets using
the same technique, which we outline in this section. A systematic
technique is necessary since both algorithms have a parameter
space which is far too large to select satisfying parameters by just
eyeballing results. We describe the technique we use in an abstract
way, uncoupled from the actual algorithms we tune.

Let P = {ρ1, ρ2, . . . ρk }, ρi ∈ R be a set of (numeric) parameters
for some algorithm. We start by computing a grid search on P . For
every ρi , we select a set of li possible values Γi = {γi,1,γi,2, . . .γi,li }.
The Γi are chosen somewhat arbitrary - however, we try mostly
regularly spaced values in a range we consider reasonable, and
add some more extreme values on both ends of the range to check
whether our reasoning was wrong. The idea is that if the optimal
value for a ρi falls outside of the range of values in Γi , one of the two
extreme values at its ends should be chosen. In this case, we repeat
the tuning with an adjusted Γi . All the Γi form a set of possible
configurations C = Γ1 × Γ2 × Γ3 . . . Γk . We run the algorithm to be
tuned with every configuration inC on each of the instances in the
respective instance set.

From the set of results of this grid search, we must now select
a good configuration. A good configuration is one that not only
produces good results, but which is also similar to other configura-
tions that produce good results. If a configuration produces good
solutions, but all similar configurations don’t, then it is highly likely
that either this is a measurement error, e.g, because of random noise,
or that this configuration over-fits the instance set. Therefore, we
score configurations in a two-step process. First, we compute for
every configuration a preliminary score solely based on the per-
formance of that configuration, and then adjust this score by the
scores of similar configurations to create the final score. We start
by normalizing all solution qualities to the best solution quality
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Value for set(s)

Parameter Ismall Ilarдe , Iwindow
deletionTrials 300 400

completePropagationAfter 0 0
deletionsBeforeReset 150 300
deletionMaxDepth 0 1

batchsize 7 6
undermovePenalty 5 10

Table 2: Chosen parameters for SWAG. We use separate pa-

rameter sets for the set of small instances and the sets of

large instances.

computed on the respective instance. Then, for every configura-
tion, we add up the normalized qualities for all instances. Thus, a
configuration giving the best solution for all instances, in a set of
k instances, would get a preliminary score of k . A configuration
that consistently always is worse than the optimum by a factor of
2 would get a preliminary score of 2k .

To define the distance of two configurations, we use the L1

distance. Let P and Q be two configurations, then dist(P ,Q) =∑
i |Pi − Qi |. The influence of a neighboring solution decreases

quadratically with distance, and we set the total weight of the
neighboring solutions in a configuration’s final score to 0.3, thus

f inal(P) = 0.7 · preliminary(P) + 0.3
∑

Q ∈C,Q,P

preliminary(Q)

dist(P ,Q)2
N

with N being a normalization factor of N =
∑
Q ∈C,Q,P dist(P ,Q)

2.
We finally select the configuration with the smallest final score.

The results of tuning SWAG can be found in Table 2. Note that
we use separate sets of parameters for small and large instances.
The tuned parameters of GRASP can be found in Table 1. Since
we use GRASP only on the large instances, there is only one set of
parameters here.

5.3 SWAG analysis

This section presents a first analysis of SWAG, starting by compar-
ing results for the Ismall instance set computed by SWAG to results
computed using a mixed-integer linear program (MIP) adapted
from [1]. The MIP was optimized for 1800 seconds using 16 parallel
threads, while SWAG was executed for 5 seconds in a single thread.
The MIP finds optimal solutions for 97 of the 200 instances, and
closes the MIP gap to within 5% for 178 instances. While these
numbers look good, increasing the amount of time spent on MIP
optimization does not allow us to optimize significantly larger in-
stances using the MIP, since the major limiting factor for optimizing
larger instances using the MIP is memory consumption.

Figure 2 shows a dot for every instances in Ismall , where the x
coordinate specifies the number of jobs in the instance, and the y
coordinate specifies the peak value of the SWAG solution divided
by the peak value of the MIP’s solution.

We see that on Ismall , SWAG computes the optimal solution
within 5 seconds on many instances, especially on the smaller ones.
In total, 99 instances are solved to optimality by SWAG. Of the
100 instances with less that 100 jobs, 63 are solved to optimality.

Figure 2: Quality computed by SWAG compared to MIP solu-

tion on Ismall , ordered by number of jobs in the instance.

As the instances grow in size, more instances cannot be solved to
optimality anymore by SWAG, with the factor between the MIP
solution and the SWAG solution reaching 24% in the worst case.

5.3.1 Parameter Impact. We now investigate how the change of
various parameters impacts the performance of SWAG. This analy-
sis is done on the Ilarдe instance set. Note that the time resolution
of the instance does not affect the SWAG performance, as SWAG
is purely based on dependencies, this is why we do not evaluate it.
Many other approaches, such as the (discrete-time) MIP approach,
is influenced by time resolution.

Looking at the — according to the tuning — optimal choice for the
completePropagationAfter parameter (cf. Table 2 and Section 3.3),
deferred propagation is turned off in the optimal parameter set.
Thus, we conclude that the disadvantage of not having the correct
peak range at every point in time outweighs the advantage of not
having to update all starts and latest finishes every time.

Similarly, the choice for deletionMaxDepth (cf. Algorithm 3) lim-
its the depth of the edge breadth-first-search used to search for
edges to be deleted to 1 on the large instances, which makes the
BFS very shallow. On small instances, it is even set to 0. It stands to
reason that always setting the parameter to 0, which would result
in simply always picking the incoming (resp. outgoing) edges of s
(resp. t ) in Algorithm 2 would not impair quality too much.

To summarize these two findings, we can conclude that often,
simplicity and not doing too much work seems to be a decisive
advantage.

5.3.2 Convergence Speed. We now analyze how fast the solutions
found by SWAG converge.We do this analysis on the Ilarдe instance
set, using a maximum run time of 10 seconds. Every 0.1 seconds, we
sample the currently found best solution. After the run is completed,
we normalize the solution qualities of all samples taken during that
run by the final solution quality of the respective run, i.e., a value
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Figure 3: Convergence speed of SWAG. The y axis indicates

the quality of the best found solution at a certain point in

time relative to the best solution found after 10 seconds. The
blue line is the median over all instances, the shaded area

indicates the 0.1 / 0.9 quantiles.

of 1.1 would indicate a solution that is 10% worse than the solution
found after 10 seconds.

Figure 3 shows the results. The blue line indicates the median
value over all instances, while the shaded bands indicate the 0.9
and 0.1 quantiles, i.e., only 10% of the traces lie above or below the
blue band. We can see that already with the first samples after 0.1
seconds, we are usually reasonably close to the final solution, to
within about 8% in the median. After 2 seconds, we can expect to
be within 2% of the final solution, after 4 seconds within 1%. Thus,
the choice of using 5 seconds as run time for all other experiments
seems justified.

Complexity of Algorithm Parts. We now take a look at where the
SWAG algorithm spends the majority of its time. Figure 4 shows the
fraction of the total run time that SWAG spends on finding feasible
edge candidates by instance size, roughly corresponding to lines 6 to
9 inAlgorithm 1.We see that this is themost expensive step, needing
up to 60% of the total run time. We also see that the necessary time
increases with instance size. This is not surprising, since the size
of the peakJobs set generally increases with the number of jobs,
and the number of edges that must be checked for feasibility is
quadratic in the size of this set.

5.4 Comparison SWAG vs. GRASP

We now present how SWAG compares toGRASP on the instance set
Ilarдe with parameters chosen as shown in tables 1 and 2. Figure 5
shows a histogram of the solution qualities computed by GRASP
relative to the respective solution computed by SWAG. The value
on the x axis states by which factor the peak demand computed by
GRASP is worse than the peak demand computed by SWAG, the y

Figure 4: Fraction of run time spent on finding feasible edge

candidates

axis just counts the instances. We see that there are some instances
in which GRASP performs slightly better than SWAG, in the best
case by about 18%. For 268 of 300 instances, SWAG outperforms
GRASP, by a factor of up to 3. Figure 6 shows the results by number
of jobs in the instance. We can see that with increasing instance
size, the advantage of SWAG over GRASP grows rapidly. SWAG
computes better results than GRASP on all instances with more
than 670 jobs.

Besides instance size, the complexity of Single-Resource Ac-
qirement Cost Problem is mainly driven by the window sizes of
the jobs, as larger windows increase the solution space. We examine
the behavior of SWAG on instances with larger window sizes on
the instance set Iwindow , see Section 5.1 on how we enlarged the
jobs’ windows. The performance of SWAG compared to GRASP is
depicted in Figure 7. Here, we see that starting at an instance size of
around 600, the advantage of SWAG over GRASP grows drastically,
up to a factor of almost 20 for the largest instances. Comparing Fig-
ure 6 and Figure 7, SWAG’s better scalability in terms of instance
size seems to be corroborated by instances with larger window
sizes.

6 CONCLUSION

In this paper, we have presented SWAG, a heuristic to schedule
large amounts of time-flexible loads in a smart grid. SWAG uses
a graph-based representation, which makes it independent of the
time resolution and allows to incorporate process dependencies. We
evaluated SWAG on benchmark instances derived from real-world
energy time series, showing SWAG be very efficient in this use case.
Our evaluation also shows that SWAG outperforms GRASP on this
energy-related data set, especially on larger instances and instances
with large window sizes. On small instances, SWAG could demon-
strate its effectiveness by solving a large portion of the instances
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Figure 5: Histogram of the relative score of GRASP com-

pared to SWAG on Ilarдe .

Figure 6: Comparison between SWAG and GRASP by job

count, on Ilarдe . Every dot is one instance. The y coordinate

corresponds to the solution computed by GRASP divided by

the solution computed by SWAG.

to optimality. We could also demonstrate that the solutions found
by SWAG converge within few seconds.

In the future, it would be interesting to apply SWAG to more
general scheduling scenarios, such as settings in which processes’
power demand changes over time. Also, we have seen that the two
main factors determining the complexity of an Single-Resource
Acqirement Cost Problem instance are the instance size and the
jobs’ window sizes. Therefore, further research into what realistic
scheduling scenarios in a smart grid would look like — especially
in terms of window sizes — is necessary. Also, we determined that
SWAG spends large parts of the work in determining feasible edge

Figure 7: Comparison between SWAG and GRASP by job

count, on Iwindow . Every dot is one instance. The y coordi-

nate corresponds to the solution computed by GRASP di-

vided by the solution computed by SWAG.

candidates. Finding a more efficient way of doing this would further
increase SWAG’s efficiency.

In conclusion, we believe that SWAG can be used as a building
block of a future energy system, helping to schedule loads and
shaving peaks.
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